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ABSTRACT

The article presents results of using remote sensing images and machine learning to
map and assess land potential based on time-series of potential Fraction of Absorbed
Photosynthetically Active Radiation (FAPAR) composites. Land potential here refers
to the potential vegetation productivity in the hypothetical absence of short-term
anthropogenic influence, such as intensive agriculture and urbanization. Knowledge
on this ecological land potential could support the assessment of levels of land
degradation as well as restoration potentials. Monthly aggregated FAPAR time-series
of three percentiles (0.05, 0.50 and 0.95 probability) at 250 m spatial resolution were
derived from the 8-day GLASS FAPAR V6 product for 2000-2021 and used to
determine long-term trends in FAPAR, as well as to model potential FAPAR in the
absence of human pressure. CCa 3 million training points sampled from 12,500
locations across the globe were overlaid with 68 bio-physical variables representing
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climate, terrain, landform, and vegetation cover, as well as several variables
representing human pressure including: population count, cropland intensity,
nightlights and a human footprint index. The training points were used in an
ensemble machine learning model that stacks three base learners (extremely
randomized trees, gradient descended trees and artificial neural network) using a
linear regressor as meta-learner. The potential FAPAR was then projected by
removing the impact of urbanization and intensive agriculture in the covariate layers.
The results of strict cross-validation show that the global distribution of FAPAR can
be explained with an R” of 0.89, with the most important covariates being growing
season length, forest cover indicator and annual precipitation. From this model, a
global map of potential monthly FAPAR for the recent year (2021) was produced,
and used to predict gaps in actual vs. potential FAPAR. The produced global maps of
actual vs. potential FAPAR and long-term trends were each spatially matched with
stable and transitional land cover classes. The assessment showed large negative

How to cite this article Hacklidnder J, Parente L, Ho Y-F, Hengl T, Simoes R, Consoli D, $ahin M, Tian X, Jung M, Herold M, Duveiller G,
Weynants M, Wheeler 1. 2024. Land potential assessment and trend-analysis using 2000-2021 FAPAR monthly time-series at 250 m spatial
resolution. Peer] 12:¢16972 DOI 10.7717/peerj.16972


http://dx.doi.org/10.7717/peerj.16972
mailto:julia.hacklaender@�opengeohub.org
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj.16972
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/

Peer/

FAPAR gaps (actual lower than potential) for classes: urban, needle-leave deciduous
trees, and flooded shrub or herbaceous cover, while strong negative FAPAR trends
were found for classes: urban, sparse vegetation and rainfed cropland. On the other
hand, classes: irrigated or post-flooded cropland, tree cover mixed leaf type, and
broad-leave deciduous showed largely positive trends. The framework allows land
managers to assess potential land degradation from two aspects: as an actual
declining trend in observed FAPAR and as a difference between actual and potential
vegetation FAPAR.

Subjects Ecosystem Science, Data Mining and Machine Learning, Data Science, Environmental
Impacts, Spatial and Geographic Information Science

Keywords Machine learning, Spatiotemporal modeling, Land potential, FAPAR, Natural
vegetation, Land degradation, Primary productivity, Trend analysis

INTRODUCTION

Land productivity has been identified by the United Nations Convention to Combat
Desertification (UNCCD) as one of the key indicators in land degradation assessments
(Sims et al., 2021). It resembles the productive biological capacity of the terrestrial
ecosystem and provides a measure of vegetation health and ecosystem functioning.
Identifying degradation processes as a result of different human management options
requires continuous monitoring of land productivity, resulting in time- and
resource-intensive costs, especially when validating involved processes on the ground.
Remote sensing has therefore emerged as a more efficient alternative to long-term
controlled field trials, with the ability to allow objective wall-to-wall mapping and
continuous monitoring of changes over time.

In recent decades, researchers have focused on modeling global land productivity and
land degradation using time series of earth observation (EO) biophysical indices such as
the Normalized Difference Vegetation Index (NDVI), Leaf Area Index (LAI), and similar
(De Jong et al., 2011; Gonzalez-Roglich et al., 2019; Rotllan-Puig, Ivits & Cherlet, 2021; Teich
et al., 2019; Venter et al., 2020). Sims et al. (2021), building on the work of Ivits ¢ Cherlet
(2013), proposed using three indicators to assess land productivity based on a 15-year
baseline period and an analysis of: (i) significant trend, (ii) change in current state
compared to the past state, and (iii) difference in state compared to ecologically similar
units in the surrounding area. For (iii), Gonzalez-Roglich et al. (2019) used unique
intersections of land cover and soil type to derive ecologically similar units, while
Rotllan-Puig, Ivits & Cherlet (2021) used a k-means clustering combined with a local net
scaling approach based on phenological variables (Prince, Becker-Reshef ¢» Rishmawi,
2009). In principle, all the approaches listed above use some form of spatial stratification to
estimate land productivity, assuming that a comparison of land productivity with past
conditions or with ecologically similar units should reveal its level of degradation.
However, a baseline period of e.g., 15 years may be insufficient to capture the full ecological
potential of the land as realized in deep time (Enquist et al., 2020). In addition, the
separation into ecologically similar units is largely based on informed, yet subjective
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categorization. Furthermore, the surrounding environment used for the reference
comparison may already be in a degraded state, leaving the assessor prone to the effect
commonly referred to as “shifting baseline syndrome” (Papworth et al., 2009).
Alternatively, comparisons with an assumed natural or “maximum ecological state”,

i.e., a deep—time state in the absence of short-term anthropogenic influence, could reveal a
land’s full ecological potential (Enquist et al., 2020).

The concept of “potential natural vegetation” (PNV) has first been defined by Tiixen
(1956) as the vegetation that would be encountered in the absence of human intervention
and of any significant changes to the current climatic conditions. The PNV concept has
previously been applied in various studies by modeling the potential distribution of natural
biomes (Bonannella et al., 2023; Hengl et al., 2018; Levavasseur et al., 2012), and by
mapping the potential biomass stocks of forests (Erb et al., 2018; Roebroek et al., 2023).
Hengl et al. (2018), specifically, proposed a data-driven framework using a machine
learning approach to estimate potential primary productivity. Previous studies on potential
primary productivity, such as from Hengl et al. (2018) and Krause et al. (2022), however,
are limited by the coarse spatial resolution of EO data, and/or by focusing on a single
region or a short time period. In this article, we apply the PNV approach to derive a new
baseline reference for land monitoring and to provide estimates of the potential for land
productivity. We follow a data-driven approach based on spatio-temporal machine
learning to assess the global primary productivity of vegetation and analyze trends.

For this, we make use of time series data of the Fraction of Absorbed Photosynthetically
Active Radiation (FAPAR). FAPAR is defined as the fraction of the incoming solar
radiation in the spectral range of 400-700 nm that is absorbed by vegetation, hence, values
depend to a large extent on canopy and leaf properties, and can in turn be associated with
vegetation biomass (Mottus et al., 2012). It is a unitless parameter, that can take values
between 0 and 1. FAPAR provides a direct, bio-physically-based metric of land
productivity. As a result, FAPAR plays a key role in primary productivity models (Fuster
et al., 2020; Verger et al., 2023; Zhao et al., 2005), and has been recognized as both an
Essential Climate Variable (Zemp et al., 2022); as well as an Essential Biodiversity Indicator
(Skidmore et al., 2021). Hengl et al. (2018) simulated the potential FAPAR for the time
period 2014-2017 using observed “natural” vegetation sampled from protected areas as the
reference state. However, protected areas are subject to varying definitions, commonly
allow anthropogenic land uses within them, and are difficult to validate on the ground as
ecologically intact. Shao et al. (2024) showed that variables related to human activity, such
as land use and population density, can support the identification of degradation degree.
Hence, removing the impact of such variables could give estimates of the PNV state of the
land. Here, we train the FAPAR model on globally available biophysical and human
pressure variables, without selecting or removing points that do not fall in natural
vegetation areas. Next, we apply the model to project the hypothetical state of no-human-
impact by imposing the least human pressure under the same biophysical conditions.
FAPAR under no-human pressure in our study refers to the potential FAPAR we could
observe when removing the impact of urbanization, intensive agriculture, fertilization, and
irrigation. Knowledge of potential primary productivity can then be used to fundamentally
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underpin agricultural diversification and substantiate land restoration targets; as well as to
monitor restoration efforts at the field level.

Several global FAPAR products derived from remote sensing technology exist, such as
products of Moderate Resolution Imaging Spectroradiometer (MODIS) (Knyazikhin et al.,
1998), Global LAnd Surface Satellite (GLASS) (Liang et al., 2021), GEOV2 (Verger et al.,
2023), Medium Resolution Imaging Spectrometer (MERIS) (Bacour et al., 2006), Visible
Infrared Radiometer Suite (VIIRS) (Yan et al., 2018), PRoject for On-Board
Autonomy-Vegetation (PROBA-V) (Fuster et al., 2020), and Ocean and Land Colour
Instrument (OLCI) (Gobron et al., 2022) among others. Ma et al. (2022) have recently
produced a consistent and harmonized time series of FAPAR at 250 m resolution covering
2000 to 2021 in 8-day interval steps by integrating several satellite products: the existing
MODIS Collection 6, PROBA-V V1, and GLASS V5 FAPAR products. This product
showed improvements compared to GLASS V5 FAPAR in terms of higher spatio-temporal
continuity and details in reflectance values. In this article, we make use of this new
state—of-the-art global FAPAR dataset to derive trends and identify differences in current
and potential land productivity, in order to demonstrate its potential for land degradation
assessments and use in land restoration efforts. Our main research questions include:

RQ1 What are the key environmental variables explaining spatial and temporal variation
in monthly FAPAR?

RQ2 What is the maximum achievable accuracy of predicting the monthly FAPAR?
RQ3 Which land cover types show the largest gaps between actual vs potential FAPAR?

RQ4 Which land cover types show positive and negative long-term trends of FAPAR
(2000-2021)?

The data and code reported in this work are available under an open data license from
https://doi.org/10.5281/zenodo.8381409 and https://doi.org/10.5281/zenodo.8403714;
code used to produce analysis and visualizations is available at https://github.com/Open-
Earth-Monitor/Global FAPAR_250m.

MATERIALS AND METHODS

General workflow

To model land potential we use the newly provided GLASS FAPAR V6 dataset as a
baseline input (Ma, 2022). We estimated trends and gaps in FAPAR globally per pixel for
the time period 2000-2021 using a spatio-temporal machine learning (ML) framework.
An overview of the workflow is shown in Fig. 1. The whole processes can be represented
with seven (7) main steps. First, we aggregated the GLASS FAPAR V6 8-day time series
from 2000 to 2021 to monthly values of three percentiles (5th, 50th and 95th), representing
their position in the value distribution. Second, we generate a sampling design and then
overlay the points using the location of the points and the date to produce a regression
matrix to model the actual FAPAR as a function of environmental predictors, including
several variables related to human pressure. Third, we optimize and fit an ensemble
machine learning model. Fourth, we use the fitted model to predict potential FAPAR, in
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Figure 1 General workflow of the data analysis and modeling with main inputs, outputs and the
main research questions (Ma et al., 2022). Full-size K&] DOT: 10.7717/peerj-16972/fig-1

this case by setting the value in the hypothetical state of no-human-impact, i.e., removing
the impact of urbanization, intensive fertilization, and irrigation. Fifth, we calculated the
gap between actual and potential FAPAR globally per pixel on a monthly basis for the year
2021. Sixth, we derived the long-term linear trend per pixel to supplement the gap analysis
between potential and actual FAPAR, and finally (seventh) we ran a spatial overlay and
match both the FAPAR long-term trend and the FAPAR gap with land cover maps to
derive statistics per land cover type.

GLASS FAPAR V6

The GLASS FAPAR V6 data is a harmonized and consistent time series of FAPAR at
250 m resolution, which covers the time period from 26th February 2000 to 27th
December 2021 in 8 day interval steps (Ma et al., 2022). It is an improved version of the
GLASS FAPAR V5 in terms of time series trend stability. In contrast to V5, which makes
use of radiative transfer functions, V6 is derived from a bidirectional long/short-term
memory (Bi-LSTM) model to estimate FAPAR using Moderate Resolution Imaging
Spectroradiometer (MODIS) reflectance and LAI data and several other FAPAR products
(MODIS Collection 6, GLASS FAPAR V5, and PROBA-V1 FAPAR).
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We derived monthly FAPAR time series by extracting, per pixel, the p0.05, p0.50, p0.95
percentiles using time series of the 8—-day GLASS FAPAR V6 data. The percentiles indicate
the FAPAR values that encompass the specified percentage of data set values falling below
them. The 50th percentile (p0.50), hence, represents the median of the aggregated values.
We processed all data in MODIS Sinusoidal Tile Grid and using full parallelization as
implemented in the joblib library version 1.1.0 (https://joblib.readthedocs.io) and the
scikit-map library (https://github.com/scikit-map/scikit-map) in Python. For each
month, we aggregated all composites within that month plus one composite each before
and after that month, resulting in five to six composites as input for each monthly value.
This helped to reduce potential missing dates in the time series and noise in the original
FAPAR 8-day composites and allowed a better understanding of differences within each
month. Finally, we merged the processed tiles into global Cloud-Optimized GeoTiffs,
which resulted in a total of 792 composites throughout 22 years. These data (almost 1.4 TB
in size) are publicly available via https://doi.org/10.5281/zenodo.8381409.

We explore the monthly aggregated FAPAR time series by spatially overlaying all
training points used for modeling with monthly aggregated time series data of the
Enhanced Vegetation Index (EVI) derived from MOD13Q1 (50th percentile) at 250 m
spatial (Didan, 2021), monthly daytime land surface temperature derived from MOD11A2
(50th percentile) at 1 km spatial resolution (Wan, Hook ¢» Hulley, 2015), monthly water
vapor derived from MCD19A2 (mean value) at 1 km spatial resolution (Lyapustin ¢
Wang, 2022; Parente, Simoes ¢» Hengl, 2023), and monthly accumulated precipitation from
CHELSA V2.1 (Karger et al., 2017, 2021) at 1 km spatial resolution. To aid interpretation
of FAPAR patterns, we created density scatter plots to visualize FAPAR (all three
percentiles p0.05, p0.50, p0.95) against each variable and calculated Pearson’s r coefficient.

We validated our monthly aggregated GLASS FAPAR V6 values against reference
measurements provided by Ground Based Observation for Validation (GBOV). The “RM6
—Fraction of Intercepted Photosynthetically Active Radiation” data was downloaded from
https://land.copernicus.eu/global/gbov/ (Brown et al., 2020). The stations included in this
analysis are shown in Table 1. For sites where measurements from both upward and
downward facing DHP (Digital Hemispherical Photography) images were available
(FIPAR-up and FIPAR-down, respectively), we approximated total FIPAR following
Eq. (1), as provided in Brown et al. (2020):

FIPAR = FIPAR,;, + (1 — FIPAR,;) * FIPAR jo,. (1)

Note that the difference between DHP-derived FIPAR and FAPAR is generally
considered marginal (Brown et al., 2020).

We filtered out any values with a measurement error greater than 0.1 or any raised
quality issue (quality flag greater than 1). Each site has differing time intervals between
measurements. For a more coherent comparison with the monthly GLASS FAPAR V6
values, we aggregated the reference measurement values per site to monthly averages
whenever more than one value per month and year was available. This resulted in 3,262
unique space-time points. Reference measurements, as provided by GBOV, represent one
elementary sampling unit each. Depending on the ground station, the extent of an
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Table 1 Ground sites and time periods used for FAPAR reference measurements in this study. Note
that most sites consist of 2-3 individual ground stations in proximity to each other, resulting in a total of
74 individual ground stations.

Site name Network IGBP class Start date  End date
Bartlett experimental forest NEON Mixed forest 2014-05 2021-10
Blandy experimental farm NEON Deciduous broadleaf  2015-04 2021-10
Central plains experimental range NEON Grasslands 2014-03 2021-10
Dead lake NEON Deciduous broadleaf 2016-03 2021-10
Guanica forest NEON Evergreen broadleaf  2015-07 2021-12
Hainich FluxNet ~ Mixed forest 2019-08 2020-10
Harvard forest NEON Mixed forest 2014-05 2021-10
Jones ecological research center NEON Evergreen needleleaf 2013-06 2016-07
Jornada NEON Open shrublands 2015-06 2021-11
Konza prairie biological station NEON Croplands 2017-07 2021-10
Lajas experimental station NEON Grasslands 2016-04 2021-12
Litchfield savanna TERN Woody savannas 2020-11 2022-02
Moab NEON Open shrublands 2015-05 2021-09
Niwot ridge mountain research station NEON Evergreen needleleaf 2017-07 2021-09
Oak ridge NEON Mixed forest 2015-03 2021-10
Onaqui ault NEON Open shrublands 2014-05 2021-09
Ordway swisher biological station NEON Evergreen needleleaf 2013-04 2021-12
Santa Rita NEON Closed shrublands 2016-04 2021-10
Smithsonian conservation biology institute =~ NEON Mixed forest 2014-06 2021-11
Smithsonian environmental research center NEON Croplands 2015-04 2021-10
Steigerwaldt land services NEON Deciduous broadleaf 2015-07 2021-09
Talladega national forest NEON Evergreen needleleaf 2014-05 2021-10
Tumbarumba FluxNet  Evergreen broadleaf = 2019-07 2020-12
Underc NEON Mixed forest 2015-09 2021-10
Valencia anchor station SM Cropland mosaics 2019-07 2021-02
Woodworth NEON Grasslands 2014-05 2015-10

elementary sampling unit can range from 20 m x 20 m to 40 m x 40 m (see the Algorithm
Theoretical Basis Document on RM6 provided by the GBOV service at https://land.
copernicus.eu/global/gbov/products/). We spatially and temporally matched the stations
with GLASS FAPAR V6 values, assuming a relatively homogeneous vegetation cover in the
250 m radius around each station and hence a neglectable effect of differing spatial
resolutions between reference and observed data.

Predictor variables

A total of 68 spatially explicit and harmonized variables representing (bio)climatic,
topographic, geographic, vegetation cover and human pressure factors were used for
modeling purposes. All layers were resampled onto a standard grid covering latitudes
between 87.37°N and 62.0°S and reprojected to the coordinate reference system
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EPSG: 4326. The majority of covariates, for example, variables from the Digital Terrain
Model (DTM) variables, lights at night, snow probability and similar, were available at
250-500 m spatial resolution (Yamazaki et al., 2017). Other 1-km resolution variables
were resampled to 250 m resolution using a cubic splines in GDAL (Warmerdam, 2008).
Whenever time-series covariate data were unavailable for the years 2020 and/or 2021, we
used the most recent available year (e.g., previous year). We also added the percentile value
of FAPAR as a covariate so that the fitted model can be used to predict FAPAR for an
arbitrary part of the distribution.

Topographic variables

Elevation and derived variables originate from a global MERIT DEM at 250 m spatial
resolution (Yamazaki et al., 2019). From this dataset we included derived variables:
elevation, slope, sine and cosine of aspect, upslope and downslope curvature, negative and
positive openness, compound topographic index and valley bottom flatness.

Climatic variables

All climate data was acquired or derived from CHELSA V2.1 at 1 km spatial resolution
(Brun et al., 2022a, 2022b; Karger et al., 2017, 2021) that was downscaled to 250 m spatial
resolution using cubic splines using GDAL. Specifically, we made use of:

e 15 BIOCLIM variables and two climatologies (growing season length (gsl) and snow
cover days (scd)) for the time period from 1981-2010. BIOCLIM variables BIO8, BIO9,
BIO18, BIO19 and other climatologies were excluded either due to artifacts or spatial
gaps, i.e., being incomplete.

e Time series of monthly average, minimum, and maximum air temperature, long-term
monthly values, and the difference of actual and long-term values for each date.

o Time series of monthly precipitation sum, long-term monthly values, and the difference
of actual and long-term values for each date.

e Time series of cumulative annual precipitation.

Lithologic and landform variables

Lithological and landform classification variables based on the USGS Global Ecosystem
Map (Hartmann ¢ Moosdorf, 2012) were downloaded as indicator maps at 250 m spatial
resolution (Hengl, 2018). Lithological indicators (0-100% fraction maps) include: “basic

» o« » o« » o«

plutonics”, “siliciclastic sedimentary”, “intermediate plutonics”, “acid volcanic”,

» o«

“metamorphics”, “intermediate volcanics”, “unconsolidated sediment”, “carbonate

sedimentary rock”, “acid plutonics”, “pyroclastics”, “mixed sedimentary rock”, “evaporite”,

“basic volcanics”. Landform indicators (0-100% fraction maps) include: “breaks foothills”,
» <«

“flat plains”, “high mountains deep canyons”, “hills”, “low hills”, “low mountains”, and
“smooth plains”.

Geometric temperature variables
The geometric minimum and maximum temperature is a variable obtained by geometric
transformation of latitude, day-of-the-year and elevation (Kilibarda et al., 2014).
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We include these to represent the geometry of the earth and the day-of-the-year.
Geometric temperatures may improve distinct predictions of points showing similar
monthly or long-term temperatures in climate time series despite their distinct latitudinal
location or seasonal time position. Witjes’s et al. (2022) work, for example, showed a high
feature importance of geometric temperatures in machine learning predictions of land
cover classes. The geometric minimum and maximum temperatures, respectively denoted
as tmiy and t,,, can be defined anywhere on the globe using:

tunlday, 6,2) =242 cosp 157 - (1 — cosO(day, 9)) -sinlg| ~06 = (@)
tmax(day, ¢,z) = 37 - cosp — 15.4 - (1 — cos O(day, ¢)) - sin|$| — 0.6 ITiO (3)

with 0 derived as

2
0(day, ¢) = (day — 18) - 2= +2' @) .7, (4)

where day is the day of year, ¢ is the latitude, z is the elevation in meters, the number 18
represents the coldest day in the northern and warmest day in the southern hemisphere,
0.6 is the vertical temperature gradient per 100 m elevation increase, and sgn denotes the
signum function that extracts the sign of a real number.

Vegetation cover variables

We derived annual indicator maps (values 0 or 100 for absence/presence) from the ESA
CCI land cover at 300 m spatial resolution for each vegetation cover type of forest,
shrubland, cropland and grassland. Vegetation cover types were aggregated from ESA CCI
land cover classes to IPCC classes as described in ESA (2017). The aggregation scheme can
be seen in Table 2.

Human pressure variables
We prepared a number of global layers at moderate resolution (250 m) representing
human pressure:

e Yearly Human Footprint Index: The index combines data on land cover, accessibility,
nightlights and population density in a scoring scheme to produce annual estimates of
human pressure at 1 km spatial resolution (Mu et al., 2022).

e Population count: We downloaded 5-year interval population count data at 100 m
spatial resolution from Schiavina et al. (2023). We linearly interpolated between each
5-year interval to derive annual population count estimates.

e Cropland intensity: Annual fraction of cropland within each 1 x 1 km cell derived from
the History Database of the Global Environment 3.2 (HYDE 3.2) and the Land-Use
Harmonization 2 (LUH2) (Cao et al., 2021a, 2021b).

o Nightlights: Annual visible nightlight V2 from NASA/NOAA Visible Infrared Imaging
Radiometer Suite for the time period 2012-2019 (Elvidge et al., 2021) and extrapolated
for 2000-2011 using logistic regression by Hengl (2023) at 500 m spatial resolution.

Hacklander et al. (2024), PeerdJ, DOI 10.7717/peerj.16972 9/42


http://dx.doi.org/10.7717/peerj.16972
https://peerj.com/

Peer/

Table 2 Crosswalk table from ESA CCI land cover and Biome 6000 classification to vegetation cover variables.

Vegetation cover ESA CCI class (ESA, 2017) ESA CCI Biome 6000 class (Hengl et al., 2018)
variable code
Forest Tree cover, broadleaved, evergreen, closed to open (>15%) 50 Cold deciduous forest
Cold evergreen needleleaf forest
Tree cover, broadleaved, deciduous, closed to open (>15%) 60, 61,62  Cool evergreen needleleaf forest
Cool mixed forest
Tree cover, needleleaved, evergreen, closed to open (>15%) 70, 71, 72 Cool temperate rainforest
Temperate deciduous broadleaf forest
Tree cover, needleleaved, deciduous, closed to open (>15%) 80, 81, 82 Temperate evergreen needleleaf open
woodland
Temperate sclerophyll woodland and
shrubland
Tree cover, mixed leaf type (broadleaved and needleleaved) 90  Tropical deciduous broadleaf forest and
woodland
Tropical evergreen broadleaf forest
Mosaic tree and shrub (>50%)/herbaceous cover (<50%) 100  Tropical semi evergreen broadleaf forest
Warm temperate evergreen and mixed
forest
Tree cover, flooded, fresh or brakish water 160
Tree cover, flooded, saline water 170
Shrubland Shrubland 120  Xerophytic woods scrub
Grassland Mosaic herbaceous cover (>50%)/tree and shrub (<50%) 110  Tropical savanna
Grassland 130 -
Cropland Rainfed cropland 10, 11, 12
Irrigated cropland 20
Mosaic cropland (>50%)/natural vegetation (tree, shrub, herbaceous 30

cover) (<50%)

Training points

We generated training points using a stratified random sampling approach, excluding
areas of permanent water or ice (Brus, 2022). To ensure the inclusion of a minimum
number of samples from proportionally underrepresented feature-space areas of human
impact and of areas with least human impact, we created a set of non-spatially overlapping
strata focusing on:

1. areas with minimal human pressure: all four human pressure variables at zero in years at
the start (2000 and 2001), and at the end of the time series (2020 and 2021),

2. areas with recent change in vegetation cover from forest/wetland to cropland/grassland

and vice versa comparing years 2000/2001 to 2019/2020,

2

3. areas with a change in nightlight values above plus or below minus 1[nW.cm 2.sr™!]

comparing the average of the years 2000/2001 to 2020/2021.

We calculated the optimal sample size per stratum based on the total standard deviation
of each stratum of four FAPAR images across the quarters (January, April, July and
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Table 3 Overview of training point strata encoding, sample sizes and sample weights.

Stratum code Nightlights change Land cover change Human pressure Population size Standard deviation Sample size Sample weight

0 outside land mask (permanent water/ice) - - - -
1 >/< 0 100 23,517,852,472  72.02 7,738 3,039,268
2 >/< 1 0 13,870,136  70.29 204 67,991
3 >/< 1 100 174,111,464  60.17 247 704,905
4 >/< 2 0 11,797,016  58.52 203 58,113
5 >/< 2 100 163,219,120  59.30 243 671,684
7 >1 0 100 529,097,288  53.98 327 1,618,035
9 >1 1 100 3,092,984  50.65 201 15,388
11 >1 2 100 2,689,992  48.41 201 13,383
13 <-1 0 100 270,521,584  55.27 267 1,013,189
15 <-1 1 100 1,914,936  52.32 200 9,575
17 <-1 2 100 1,278,024  49.04 200 6,390
18 any other combination 6,670,463,000 76.44 2,469 2,701,686
Notes:

Nightlights: >/<, values in the range -1 to 1 (nW.cm™

2.sr71); >1, values greater than 1; <1, values less than —1.

Land cover code: 0, any other LC type or change than 1 or 2; 1, forest/wetland to grassland/cropland; 2, grassland/cropland to forest/wetland.
Human pressure: 0, all human pressure variables equal to zero; 100, any one of the human pressure variables >0.

October) of the years 2001 and 2021, using Neyman’s allocation formula (Neyman, 1934;
Wright, 2014):

NSy,
=S (5)
> im1 NiSi
and calculating sample weights W), using
N
Wh =" (6)
iy

where #ny, is the sample size for stratum h, Ny, is the population size, S is the standard
deviation and # is the total sample size.

In summary, a total of 12,500 unique spatial points were sampled using this sampling
design. A minimum sample size of 200 was applied to each stratum, and the remaining
samples were distributed proportionally according to the standard deviation of each
stratum. A full overview of the strata and sample sizes can be found in Table 3. The
stratification of points with simple random sampling within each stratum resulted in
globally distributed samples (Fig. 2). Each training point was overlaid with the time series
of each of the three FAPAR percentiles (p0.05, p0.50, p0.95) and of all covariate layers
from 2000-2021. This resulted in a total of 9,825,000 unique space-time data points. In this
first model test, the cross-validation of the ANN model exceeded the volatile memory
available in the machine used for the computation (i.e., 1 TB), hence we finally decided to
randomly subset the 10 millon points to about 3 million space-time points from the total as
input for modeling. Note that the regression matrices are also large because we used a large
number of covariate layers.
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Potential FAPAR model building and evaluation
Feature selection
To reduce the risk of overfitting FAPAR models, we ran a recursive feature elimination
(RFE) using a random forest estimator (number of trees = 60) and five-fold spatial cross
validation (RFECV). Spatial blocking at the training points ensured that the time series
data points belonging to the same geographic location are only present in either the
training or validation data set. We refer to this as the “strict spatial cross-validation”.
To reduce computation costs, we selected a random subset of 4,000 spatially unique
locations (3,132,000 space-time points) from the total training point data set. After
running RFECV, we ran RFE to obtain the features of the highest importance in predicting
FAPAR. From these two outputs, we selected the predictor variables for fitting the actual
model.

FAPAR model training and evaluation
We trained an ensemble machine learning (EML) model (Brownlee, 2021) to predict
FAPAR as a function of topography, bioclimate, lithology, vegetation cover, and human
pressure. The EML model uses a linear regressor to stack three base learners: Extremely
randomized trees (Extra Trees), Gradient descended trees (XGBoost), and an artificial
neural network (ANN). The EML model was implemented in Python, using the scikit-
map library built on scikit-learn (Pedregosa et al., 2011). Due to the limitation of
computing resources, we randomly sampled a total of 3,132,000 space-time points from
across all 12,500 spatially unique points to ensure a global spatial coverage for training,
resulting in a different random subset of the total training points than for recursive feature
elimination. We selected the parameters of each model by hyperparameter tuning a
predefined set of parameters to test using HalvingRandomSearchCV as implemented in
Pedregosa et al. (2011) (Table 4) with five-fold spatial CV. For hyperparameter tuning, we
used a maximum resource value of 20,000. The EML model and each sub-model accuracy
was evaluated using all 3,132,000 points in a five-fold spatial CV with spatial blockage on
the geographic location. The coefficient of determination (R?), the concordance correlation
coefficient (CCC), the root mean squared error (RMSE), mean absolute error (MAE) and
bias were calculated using stratum-specific sample weights (Eq.(6)), i.e., the inverse of the
inclusion probability, to account for the sampling intensities differing over the strata.
Furthermore, we sampled 500,000 spacetime points from 13,700 independent locations
(i.e., locations not included in the RFE, hypertuning, or model training) to evaluate the
performance of the final EML model that is trained on all 3,132,000 spacetime points.
To keep the validation points representative of the model, independent points were
sampled with the same proportions of each stratum as used for the training of the actual
FAPAR EML model. The EML model predictions of the actual FAPAR were also validated
against the GBOV ground reference measurements as we did for the monthly aggregated
GLASS FAPAR Veé.
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Figure 2 Global distribution of training points used to model FAPAR. (A) Global coverage of training
points. (B) Example of strata from which the training points were sampled (centered at location
lat = 0.24229823, lon = -76.57932387). Source of background image: Wessel ¢ Smith (1996). (C) Example
of FAPAR p0.95 at 250 m spatial resolution for December 2021 showing an area of about 300 x 300 km,
with a selected point (query location). (D) Time series plot of FAPAR p0.95 monthly values for the query
location of (C) at coordinates lat = —9.73096951, lon = -52.15942255, (Brazil) showing a typical
deforestation pattern. Full-size K&l DOT: 10.7717/peerj-16972/fig-2

Prediction of potential FAPAR

To model potential FAPAR, we used the FAPAR model trained using all data, but then for
prediction, we set a hypothetical space where human impact is set to 0 values, e.g., lights at
night, human footprint, cropland intensity, population count. For hypothetical vegetation
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Table 4 Hyperparameter optimisation overview. Tested and selected hyperparameters for each of the
sub-models included in the FAPAR EML meta-estimator.

Model Hyperparameter Lower limit Upper limit  Selected
Extremely randomized trees Number of estimators 10 100 44
Maximum tree depth 5 100 92
Maximum number of features 0 1 0.84
Minimum samples for splitting 2 100 16
Minimum samples per leaf 1 10 2
Gradient descended trees Number of estimators 10 100 81
Maximum tree depth 3 100 50
Alpha 0 2 1.19
Reg Alpha 0 0.2 0.007
Eta 0 2 1.999
Reg_Lambda 0 0.2 0.12
Gamma 0 2 0.05
Learning rate 0 0.2 0.06
colsample_bytree 0 1 0.88
colsample_bylevel 0 1 0.66
colsample_bynode 0 1 0.47
Artificial neural network Epochs - - 10
Batch size - - 256
Learning rate - - 0.0005
Number of layers - - 4
Number of neurons - - 128
Activation - - ReLu
Dropout rate - - 0.15
Output activation - - Sigmoid

cover, we use the potential biome distribution of 2000-2017 from Hengl (2019). We use
vegetation indicator maps of forest, shrubland, and grassland, and then we translate them
into potential vegetation cover maps (Table 2), assigning 0 or 100 for the absence or
presence of each biome. At the same time, we set the cropland indicator layer to zero
values.

All other covariates were used unmodified in the simulation, thus assuming negligible
interactions between vegetation and climatic and topographic variables at the grid level.
Spatial predictions were made at 250 m resolution for the 95th percentile. We chose the
95th percentile for predictions of potential FAPAR to reduce the effect of noise in the data.
In addition, we provide the standard deviation of the three sub-models, called “model
deviance” hereafter, on a per—pixel basis.

FAPAR gap and trend analysis of time-series data
We calculated the monthly gaps between the actual and the potential FAPAR for the 95th
percentile per pixel for the year 2021 by subtracting the potential FAPAR predictions from
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the actual FAPAR values. We spatially matched the FAPAR gap with every combination of
land cover between 2000 and 2020 according to the ESA CCI annual land cover maps,
stable and transition areas (ESA, 2017) and visualized the distribution of gap values for
each. We conducted the analysis in the aggregated land cover classes as shown in Table 5.

To perform trend analysis, we extracted the trend component of the FAPAR time series
(2000-2021) by season-trend decomposition using locally estimated scatterplot
smoothing (LOESS), Seasonal and Trend decomposition using Loess (STL) (Ben
Khalfallah et al., 2021), and fitted an ordinary least squares (OLS) model on the trend
component. For every FAPAR pixel we computed the OLS coefficients (alpha and beta),
standard deviation, p and R?. The percentage of area with significant positive and negative
trends (p < 0.005) was calculated for every land cover change combination (2000 and
2020) according to aggregated ESA CCI land cover classes.

RESULTS

Monthly aggregated FAPAR data exploration
The correlation between the monthly aggregated actual FAPAR in relation to EVI,
precipitation, daytime land surface temperature (LST) and water vapor, together with the
calculated Pearson’s r for each, is shown in Fig. 3. FAPAR shows a strong positive
correlation with EVI (Pearson’s r = 0.89). The correlation with monthly precipitation and
water vapor is also positive but less strong. The density plots indicate a more complex
distribution of these two parameters in relation to FAPAR. Water vapor and precipitation
both show a similar range of values throughout the FAPAR range. The density plot of LST
against FAPAR indicates a decrease of LST with increasing FAPAR. However, this is not
reflected in the Pearson’s correlation value, which can be attributed to a wide range of
values in the LST especially at a FAPAR value of 0, where values range from —50 °C to
+50 °C. Generally, FAPAR values in the range 0.75-0.85 were underrepresented compared
to the entire FAPAR range. In general, it can be said that FAPAR is strongly correlated
with EVI, LST, precipitation, and water vapor, but the relationship is often non-linear and
saturation can be observed for FAPAR values near to 0.0 and 0.9.

The validation of the monthly FAPAR shows a strong agreement and a low bias with the
GBOV ground validation points (R* = 0.80, Fig. 4). This matches the results of Ma et al.
(2022).

FAPAR model performance and variable importance

The recursive feature elimination showed an optimal feature number of 52 (out of 68
variables provided). The spatial cross-validation results for modeling distribution of
monthly FAPAR with the selected 52 variables using the EML model showed an R* of 0.89
and a CCC of 0.94. RMSE and MAE resulted in moderate values of 0.10 and 0.06,
respectively. The selected hyperparameter sets for the “Extremely randomized trees” and
“Gradient descended trees” model are shown in Table 4. The accuracy metrics for each

submodel are only slightly lower, showing that each model performs similarly well
(Table 6).
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Table 5 Aggregation of land cover classes of ESA CCI for computing summary statistics on FAPAR gap and trend.

ESA CCI class (level 4) Aggregated ESA CCI class
10. Cropland, rainfed 10. Cropland rainfed
11. Herbaceous cover 10. Cropland rainfed
12. Tree or shrub cover 10. Cropland rainfed
20. Cropland, irrigated or post-flooding 20. Cropland, irrigated or post-flooding
30. Mosaic cropland (>50%), natural vegetation (tree, shrub, herbaceous cover) (<50%) 30. Mosaic cropland—natural vegetation
40. Mosaic natural vegetation (tree, shrub, herbaceous cover) (>50%), cropland (<50%) 30. Mosaic cropland—natural vegetation
50. Tree cover, broadleaved, evergreen, closed to open (>15%) 50. Tree cover broadleaved evergreen
60. Tree cover, broadleaved, deciduous, closed to open (>15%) 60. Tree cover broadleaved deciduous
61. Tree cover, broadleaved, deciduous, closed (>40%) 60. Tree cover broadleaved deciduous
62. Tree cover, broadleaved, deciduous, open (15-40%) 60. Tree cover broadleaved deciduous
70. Tree cover, needleleaved, evergreen, closed to open (>15%) 70. Tree cover needleleaved evergreen
71. Tree cover, needleleaved, evergreen, closed (>40%) 70. Tree cover needleleaved evergreen
72. Tree cover, needleleaved, evergreen, open (15-40%) 70. Tree cover needleleaved evergreen
80. Tree cover, needleleaved, deciduous, closed to open (>15%) 80. Tree cover needleleaved deciduous
81. Tree cover, needleleaved, deciduous, closed (>40%) 80. Tree cover needleleaved deciduous
82. Tree cover, needleleaved, deciduous, open (15-40%) 80. Tree cover needleleaved deciduous
90. Tree cover, mixed leaf type (broadleaved and needleleaved) 90. Tree cover mixed leaf type

100. Mosaic tree and shrub (>50%) herbaceous cover (<50%) 100. Mosaic tree and shrub—herbaceous cover

110. Mosaic herbaceous cover (>50%) tree and shrub (<50%) 100. Mosaic tree and shrub—herbaceous cover

120. Shrubland 120. Shrubland

121. Evergreen shrubland 120. Shrubland

122. Deciduous shrubland 120. Shrubland

130. Grassland 130. Grassland

140. Lichens and mosses 140. Lichens and mosses

150. Sparse vegetation (tree, shrub, herbaceous cover) (<15%) 150. Sparse vegetation

151. Sparse shrub (<15%) 150. Sparse vegetation

152. Sparse herbaceous cover (<15%) 150. Sparse vegetation

160. Tree cover, flooded, fresh or brakish water 160. Tree cover flooded

170. Tree cover, flooded, saline water 160. Tree cover flooded

180. Shrub or herbaceous cover, flooded, freshsalinebrakish water 180. Shrub or herbaceous cover flooded

190. Urban areas 190. Urban areas

200. Bare areas 200. Bare areas

201. Consolidated bare areas 200. Bare areas

202. Unconsolidated bare areas 200. Bare areas

210. Water bodies 210. Water bodies

220. Permanent snow and ice 220. Permanent snow and ice

The bias for all tested models based on five-fold cross validation (CV) is close to zero.
The evaluation of the EML model against independent validation set (500,000 spacetime
points) resulted in similar values to the spatial CV results with an R? of 0.90, CCC of 0.95,
RMSE of 0.09 and MAE of 0.06 (Fig. 5). The distribution of the density plot of reference
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Figure 3 Density scatter plots and Pearson’s r coefficient of monthly GLASS FAPAR V6 p0.50 vs.
monthly EVI p0.50, average accumulated precipitation, daytime land surface temperature (LST)
p0.50 and average water vapour. Full-size K&l DOT: 10.7717/peerj-16972/fig-3

against prediction for this independent point data set from GLASS FAPAR V6 shows an
overall high agreement between the reference and predicted values.

The predicted actual FAPAR at ground stations also showed a high agreement with the
GBOV points (R* = 0.75, Fig. 4). The results of both independent tests show that high
FAPAR values (above 0.75) tend to be underestimated, while low FAPAR values (below
0.4) tend to be overestimated (Fig. 5).

Variable importance analysis showed that the three most important variables for
modeling were: (1) the growing season length, (2) the forest cover indicator, and (3) the
annual precipitation amount (BIO12) as shown in Fig. 6. In general, the climatic variables
played a more significant role in explaining FAPAR than topographic and lithologic
variables. All variables on human pressure (human footprint index, population count,
cropland intensity, and nightlights) were retained in the recursive feature elimination,
highlighting the additional information each of them provides in explaining FAPAR,
despite appearing lower in the variable importance ranking than climatic variables. While
both the “Extremely randomized trees” and the “Gradient descended trees” model showed
a higher importance for the human footprint index than other human pressure variables,
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Figure 4 Monthly aggregated FAPAR (p0.05, p0.50, p0.95) from Ma et al. (2022) (upper) and EML
predicted actual FAPAR (lower) plotted against monthly average FAPAR derived from GBOV

ground measurements.

Full-size K&l DOTI: 10.7717/peerj-16972/fig-4

Table 6 Evaluation metrics of ensemble model (EML) and each sub-model based on five-fold spatial

CV.
Model R’ CCC RMSE MAE Bias
EML 0.89 0.94 0.10 0.06 —-0.0008
Extremely randomized trees 0.88 0.94 0.10 0.07 0.0002
Gradient descended trees 0.88 0.94 0.10 0.07 0.001
Artificial neural network 0.87 0.93 0.11 0.07 0.0001
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Figure 5 Density scatter plot of reference vs. EML predicted actual FAPAR of independent test data
points (independent locations) of GLASS FAPAR V6.  Full-size kal DOI: 10.7717/peerj-16972/fig-5

the “Gradient descended trees” gave cropland intensity, population density and nightlights
a higher importance than “Extremely randomized trees”.

Visual examination of global maps of FAPAR gap actual vs. potential
and long-term trend

We visually inspected the global maps of average annual actual and potential FAPAR
produced for the year 2021 (Fig. 7). The global distribution of potential FAPAR indicates
that Northern latitudes (Europe, North America, Northern Asia) show mostly negative gap
values (actual FAPAR lower than potential), while highest values are found at latitudes
close to the equator, especially in the Amazon region, the Congo River Basin and
South-East Asia. The model deviance (standard deviation of the sub-models) of these
regions is comparably low with other regions of the globe.

The gap of actual vs. potential FAPAR shows that the area of these same regions exhibits
mostly little difference, but with patches of potential FAPAR lower than actual. Regions
with a potential FAPAR lower than the actual relate mainly to locations that show a
potential forest cover according to the potential biome maps. On the other hand, regions
with a potential FAPAR higher than the actual relate to the distribution of potential
grassland and shrub cover.

The model deviance seems to be higher for regions that show a potential FAPAR lower
than the actual FAPAR than vice versa (Fig. 7). Predictions of potential FAPAR in
deforestation areas in Brazil show a potential FAPAR close to the surrounding forested
areas, although generally with slightly lower values. This is expected from the model
results, which show a tendency to underestimate FAPAR in the range 0.75-1.0 (Fig. 5).
We specifically looked at known areas of irrigation to identify the behavior of the model in
these areas. The typical pivot irrigation areas in the U.S. and the region around the Nile in
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Figure 6 Normalized variable importance of extremely randomized trees and gradient descended
trees models. Full-size K4l DOL: 10.7717/peerj-16972/fig-6

Egypt show a potential FAPAR lower than the actual FAPAR. This shows that the model
detects human pressure variables (e.g., cropland intensity) as an important factor in
predicting FAPAR.

The global FAPAR trend map for 2000-2021 shows that regions at latitudes close to the
equator show large areas of negative trends (Fig. 8). Negative trends are also observed on a
wide scale in Australia, North America, and Central Asia. Europe, on the other hand,
shows mainly stable and positive trends. Both India and China show especially wide areas
of positive FAPAR trends. While in India we observe mostly an actual FAPAR higher than
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Figure 7 Global maps of actual, potential, model deviance (standard deviation) and the gap of actual
vs. potential FAPAR (https://doi.org/10.5281/zenodo.8403714). In the difference map of actual vs.
potential FAPAR, negative values indicate that actual FAPAR is lower than potential FAPAR.

Full-size K&l DOT: 10.7717/peerj-16972/fig-7
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Figure 8 Global FAPAR trend and zoomed-in examples of three locations showing the spatial
overlap with land cover change and LST trend. (A) Colombia—Las Gaviotas in Cumaribo
(lat = 4.53477280, lon = —70.90632447), (B) Brazil—Iriri River in State of Para (lat = —3.89600839,
lon = —53.41974961), (C) Somalia—Kismaayo (lat = —0.39853, lon = 42.26388). Land cover change
classes were aggregated from ESA CCI-LC classes according to the CORINE land cover change grid.
Gradient legends show cumulative cut count values as min/max. Background image source world map:
CARTO (https://carto.com/) and OpenMapTiles.org. Source of satellite image: Microsoft(R) BingTM

Maps.
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its potential with a high model deviance of the potential FAPAR, in China we observe
mostly an actual FAPAR lower than its potential with a low model deviance.

For three sample locations in Figs. 8-10, we provide a more detailed inspection of
FAPAR trend, gap and time series. The location of the reforestation project at Las Gaviotas
in Colombia shows a spatial overlap of positive FAPAR trend with reforestation and a
decrease in LST (Fig. 8). Although the actual FAPAR shows lower values than its potential
at the start of the time series, it increases over time to similar values as the potential and
even grows beyond the potential values (Fig. 9). The FAPAR maps show that the potential
FAPAR is similarly high across the region, while the actual FAPAR is lower in the vicinity
of the reforestation area than the potential FAPAR (Fig. 10). The location close to the Iriri
River in Brazil shows a spatial overlap of the negative trend of FAPAR with deforestation
and an increase in LST. While the potential FAPAR remains stable over time, the actual
FAPAR decreases from 2008 to 2016. Similarly, as for the site in Colombia, we can see a
homogeneously high potential FAPAR in the area. The gap between actual vs. potential
FAPAR is small in the stable forest area, while there is large gap in the deforestation part.

For the location of Kismaayo in Somalia, we observe a strong negative trend over the
entire inspected area. Land cover remains stable over the period of time; however, an
increase in LST observed, which is mostly observed in areas of “other vegetation”
(shrubland in this case), while cropland shows a more stable LST over time. The centre
pixel shows a decrease in the time series, whereas the potential FAPAR remains rather
stable. The actual FAPAR is mostly lower than the potential; however, the model deviance
is higher in this area than in the other two sample locations.

FAPAR gap and trend analysis with land cover

Our spatial analysis of the relationship between the average FAPAR gap for the year 2021
and land cover stable and change classes shows that the largest negative gaps (actual
FAPAR lower than potential) are found in the stable classes ‘Lichens and mosses’
(LICMO) (90%), ‘Urban areas’ (URBAN) (86%), “Tree cover needleleaved deciduous’
(TREND) (67%), and ‘Shrub or herbaceous cover flooded’ (SHHFL) (61%); and in the
change classes ‘Cropland rainfed-Urban areas’ (CRPRF-URBAN) (82%), “Tree cover
needleleaved evergreen-Shrubland’ (TRENE-SHRUB) (72%), “Tree cover needleleaved
deciduous-Mosaic tree and shrub or herbaceous cover’ (TREND-MTSHH) (72%), and
“Tree cover needleleaved evergreen-Mosaic tree and shrub or herbaceous cover’ (TRENE-
MTSHH) (71%) (see Fig. 11). The largest positive gaps (actual FAPAR higher than
potential) are found in the stable classes “Tree cover broadleaved deciduous’ (TREBD)
(64%), ‘Shrubland” (SHRUB) (60%), and ‘Cropland, irrigated or post-flooding” (CRPIF)
(57%); and in the change classes “Tree cover broadleaved deciduous-Shrubland’ (TREBD-
SHRUB) (87%), ‘Shrubland-Tree cover broadleaved deciduous’ (SHRUB-TREBD) (84%),
‘Shrubland-Cropland rainfed” (SHRUB-CRPRF) (66%), and ‘Mosaic cropland or natural
vegetation-Tree cover broadleaved deciduous’ (MCRNV-TREBD) (53%). Especially
classes “‘Water bodies’ (WATER) and ‘Urban areas’ (URBAN) show a wider distribution of
the gap values, while classes ‘Lichens and mosses’ (LICMO) and ‘Tree cover needleleaved
deciduous’ (TREND) show a more narrow dispersion.
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Figure 9 Examples of FAPAR actual and potential time series 2000-2021 for the three query
locations in Fig. 8: The potential FAPAR shows the model deviance (standard deviation) as
shaded area. (A) Colombia (reforestation project Las Gaviotas; lat = 4.53477280, lon = -70.90632447),
(B) Brazil (lat = —3.89600839, lon = —53.41974961), (C) Somalia (lat = —0.39853, lon = 42.26388).
Full-size K&l DOT: 10.7717/peerj-16972/fig-9

Regarding the relation between the FAPAR long-term trend 2000-2021 and land cover
change grid, especially high positive values are found for stable classes ‘Cropland, irrigated
or post-flooding’ (CRPIF) and ‘Tree cover mixed leaf type’ (TREMX); and change classes
‘Mosaic cropland or natural vegetation-Tree cover broadleaved evergreen’ (MCRNV-
TREBE) and ‘Mosaic cropland or natural vegetation-Mosaic tree and shrub or herbaceous
cover (MCRNV-MTSHH) (see Fig. 12). Strong negative trends are found for stable classes
‘Sparse vegetation” (SPARV) and ‘Urban areas’ (URBAN); and change classes “Tree cover
broadleaved evergreen-Mosaic cropland or natural vegetation’ (TREBE-MCRNV) and
“Tree cover broadleaved evergreen-Cropland rainfed” (TREBE-CRPRF). Land cover classes
that show the largest percentage of positive trends within the class are ‘Cropland, irrigated
or post-flooding’ (CRPIF) (85%), ‘Tree cover mixed leaf type’ (TREMX) (82%), “Tree cover
broadleaved deciduous’ (TREBD) (80%), and ‘Tree cover needleleaved deciduous’
(TREND) (79%). Land cover classes that show the largest percentage of negative trends
within the class are ‘Sparse vegetation’ (SPARV) (33%) and ‘Urban areas’ (URBAN) (31%).
In total, we found that 19% of the global land area shows a decreasing trend, while 67%
shows an increasing trend.
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Figure 10 FAPAR actual, potential and gap examples of example locations. (A) Colombia-Las Gaviotas in Cumaribo (lat = 4.53477280,
lon = -70.90632447), (B) Brazil—Iriri River in State of Para (lat = —3.89600839, lon = -53.41974961), (C) Somalia—Kismaayo (lat = —0.39853,
lon = 42.26388). Full-size K&l DOT: 10.7717/peer;j-16972/fig-10
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Figure 11 Distribution of FAPAR gap (ridgeline plots) across stable land cover areas and top biggest land cover change classes. LICMO—
Lichens and mosses; BAREA—Bare areas; URBAN—Urban areas; TREND—Tree cover needleleaved deciduous; WATER—Water bodies; SPARV—
Sparse vegetation; SHHFL—Shrub or herbaceous cover flooded; TRENE—Tree cover needleleaved evergreen; TREMX—Tree cover mixed leaf type;
MTSHH—Mosaic tree and shrub or herbaceous cover; TREFL—Tree cover flooded; CRPRF—Cropland rainfed; MCRNV—Mosaic cropland or
natural vegetation; GRASS—Grassland; TREBE—Tree cover broadleaved evergreen; CRPIF—Cropland, irrigated or post-flooding; SHRUB—
Shrubland; TREBD—Tree cover broadleaved deciduous. Full-size K&l DOT: 10.7717/peerj-16972/fig-11

DISCUSSION

The key variables explaining spatial and temporal variation in FAPAR
The results of modeling actual FAPAR and variable importance assessment in our work
clearly show that the key variables that explain the variation in the monthly FAPAR are the
length of the growing season, the forest indicator and the annual precipitation. Our results
are in line with the findings of Hengl et al. (2018) on modelling FAPAR, who applied a
similar methodological approach to model FAPAR for the years 2014-2017 based on
machine learning and environmental covariate layers. Especially the fact that precipitation
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Figure 12 Summary of FAPAR long-term trend analysis across land cover stable and change areas,
shown as percentage within each class. TREBE—Tree cover broadleaved evergreen; SPARV—Sparse
vegetation; TREFL—Tree cover flooded; BAREA—Bare areas; LICMO—Lichens and mosses; URBAN—
Urban areas; WATER—Water bodies; GRASS—Grassland; SHRUB—Shrubland; MCRNV—Mosaic
cropland or natural vegetation; CRPRF—Cropland rainfed; MTSHH—Mosaic tree and shrub or herbaceous
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Figure 12 (continued)
cover; TRENE—Tree cover needleleaved evergreen; SHHFL—Shrub or herbaceous cover flooded; TREND
—Tree cover needleleaved deciduous; TREBD—Tree cover broadleaved deciduous; TREMX—Tree cover
mixed leaf type; CRPIF—Cropland, irrigated or post-flooding.

Full-size K&l DOT: 10.7717/peerj-16972/fig-12

is one of the key explanatory variables is confirmed in our study; however, we
systematically extended the number of covariate layers and also achieved an overall higher
model accuracy.

In our initial data exploration of the monthly aggregated FAPAR and its relationship
with EVI, land surface temperature, and water vapor, we found expected relationships
between FAPAR and the corresponding variables, such as a decrease in land surface
temperature with increasing FAPAR. EVI has been widely used as a measure of vegetation
density and an indicator of primary productivity (Brown et al., 2020; Jay et al., 2016),
therefore a close relationship with FAPAR was expected. However, the wide range of
present values in all density plots (see Fig. 3) indicates that the estimation of monthly
FAPAR from other biophysical MODIS variables is complex. Both monthly FAPAR, EVI
and LST seem to be unique biophysical variables and are all important for global modeling
efforts.

Accuracy of the biophysical models explaining FAPAR

Our results further show that FAPAR can be modeled to a maximum R? of about 0.9
(based on strict cross-validation). This means that there is still a significant part of the
variation (about 10%) that we could not map on this scale of work. Our validation of the
aggregated monthly FAPAR against ground reference measurements shows agreement
with the validation of GLASS FAPAR V6 by Ma et al. (2022) against ground
measurements, who reported an R” of 0.8, but for their 8-day product. The validation of
our FAPAR model predictions show high agreement with ground reference measurements
as well (R? = 0.75). The close match between the weekly and monthly model accuracies is
possibly due to the relatively smooth variation of FAPAR.

Validation of FAPAR values in Ma et al. (2022) using ground reference measurements
(GBOV) showed an overestimation of FAPAR at low values. This is also in agreement with
Brown et al. (2020), who reported an overestimation of FAPAR derived from remote
sensing of sparse vegetation. Additionally, the results of the validation of Ma et al. (2022)
confirm the overestimation of FAPAR at forest sites, which may be related to the
saturation of FAPAR in dense canopies.

The ensemble and the individual base models showed comparable model performance
in our study. The ensemble approach, however, offers the main advantage of providing the
model deviance, i.e., the standard deviation of the base models, per pixel. In addition, using
an ensemble model could potentially increase the spatial consistency of uncertainty as
some base learners may perform better or worse in specific feature spaces than others, as
has been shown for land cover classes by Witjes et al. (2022). While the tested
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hyperparameter sets were limited, we achieved high accuracy. Nonetheless, testing a wider
range of values could potentially improve results even further.

Visual inspection of the differences between potential and actual FAPARs (around the
world) largely matches our expectations. This indicates that our models can be considered
stable and could potentially also be used to predict future FAPAR values, e.g., given
different climate change scenarios or similar (as in Bonannella et al. (2023)). Similarly, in
future research, it will be interesting to model and understand the key drivers of the change
in FAPAR in a complex Earth system with changing climate, changing policies, and
shifting vegetation.

Mapping gaps between actual vs. potential FAPAR
Our results of comparing actual vs. potential FAPAR show that the biggest gaps between
the two are found for the following land cover classes:

e Potential FAPAR bigger than actual (negative gap): urban, needle-leave deciduous trees,
flooded shrub or herbaceous cover, and lichen and mosses.

e Potential FAPAR smaller than actual (positive gap): broad-leaf deciduous trees,
shrubland, irrigated or post-flooded cropland and broad-leaf evergreen trees.

In the above section, we only list statistics based on the annual average of 2021, and
monthly values might differ. Analysis of monthly values and mapping of gaps is complex.
More robust visualization tools and analyzes are needed to further detect gaps and patterns
over time in these complex data.

Also note that in this article we used the concept of “Potential Natural Vegetation”,
which requires some discussion. With PNV concept we often assume that “natural” is the
optimal state of the ecosystem. In reality, there will be many situations (especially where
people intensively irrigate the land and make intensive fertilizer applications), where a
human-managed or human-designed landscape can show much higher productivity than a
“natural” one. Similarly, the actual FAPAR greater than its potential value does not
necessarily refer to land recovery or improvement in land degradation status (Bai et al,
2008; Cherlet et al., 2018). We also observed, for example, that savannas often have a lower
potential FAPAR than the actual one. While there is controversy about the term of what is
considered “natural”, we believe that it is still a useful exercise to quantify the indirect
effects of removing the impacts of urbanization, intensive fertilization, and irrigation on
potential FAPAR.

Relationship between long-term trends and gaps in FAPAR in relation
to land cover changes

In the last 20+ years, researchers have, without doubt, discovered that the planet is
becoming greener. Especially China and India are showing a large overall increase in
greenness due to extensive agricultural applications (Chen et al., 2019). However, Gao et al.
(2023) have analyzed NDVT time-series data for 1982-2015 and have found notable
increases in interannual variability (IAV) of NDVI over the northern high latitudes,
Eastern Europe, and Central Australia, indicating that parts of the world are becoming
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more sensitive to climatic, environmental and anthropogenic changes. The greening of the
Earth in the last two decades is likely driven by CO, fertilization (Chen et al., 2022), N
deposition, climate change, and change in land cover (Zhu et al., 2016). However,
croplands in China and India appear to have a decrease in the IAV of vegetation greenness,
suggesting more controlled management practices through inter-cropping, irrigation and
fertilization. Likewise, there is an increase in frequency, severity, duration, and scope of
global droughts, so it is likely that the greening of the planet will not continue to
compensate for the increased IAV and may even reverse in the coming years (Chen et al,
2022).

Our results also show that, for most of the planet (67%), there seems to be a positive
increase in FAPAR over the time period 2000-2021. The results of matching the FAPAR
trends (betas) with land cover change categories show that stable vegetation cover classes
with the largest percentage of negative trends are: sparse vegetation, rain-fed cropland, and
mosaic croplands. This could be expected, since these land cover types are potentially
especially sensitive to changing climate, such as increased droughts. The most negative
mean beta found was —0.14. The highest percentages of negative gaps are found in urban
areas and in the vegetation classes: lichens and mosses, needle-leaf deciduous trees, and
flooded shrub or herbaceous cover.

In summary, the planet over the 2000-2021 time period has on average been getting
greener, but there are many local areas, especially in the tropics and areas of savanna and
steppe, where there are distinct decreases in FAPAR over the last 20+ years. Attention
needs to be paid to these areas to support land owners and governments in their efforts to
restore, reverse and reduce degradation. Despite a general trend toward greening, we can
see large gaps in the actual FAPAR around the world.

Limitations of this study

Although the FAPAR product by Ma et al. (2022) is to our knowledge the most
comprehensive and longest period product at 250 m spatial resolution, the data set also
comes with some limitations:

1. The resolution of images is relatively coarse, which means that many land use systems,
especially in regions where crop fields are relatively small, are combined/mixed-in, making
it difficult to untangle driving factors. Moving to using Landsat as the primary source of
the FAPAR assessment could help produce data with a minimum number of “mixels”
(pixels of mixed land use) and increase compatibility with the best global land cover
products, e.g., Zhang et al. (2021).

2. It is well known that optical remote sensing sensors have limited accuracy in tropics due
to clouds and saturation over dense canopies; hence there is possibly a significant
difference in accuracy of all products we produced across the globe, with the tropics
probably being the most difficult to track. To avoid effects of clouds and water vapor on
estimates of FAPAR we used the p0.95 monthly values; however, in some tropical areas are
>80% of time under cloud cover and, hence, probably not even the p0.95 monthly value
helps.

Hacklander et al. (2024), PeerdJ, DOI 10.7717/peerj.16972 30/42


http://dx.doi.org/10.7717/peerj.16972
https://peerj.com/

Peer/

3. GLASS FAPAR V6 is derived itself from a machine learning model (Bi-LSTM) based on
remote sensing data, and hence introduces an inevitable uncertainty that will propagate to
the prediction of potential FAPAR. However, comparison with GBOV ground reference
measurements showed that our model predicts actual FAPAR with relatively high
accuracy, despite the fact that we did not use surface reflectance values/indices.

Verger et al. (2023) have recently produced smoothed and gap-filled time series of global
FAPAR at a spatially coarser resolution of 1 km. This data set overlaps a great deal with the
work of Ma et al. (2022) and could potentially also be used to perform a similar analysis.
However, we focused in our study on finer resolution data in order to attempt to capture
small-scale changes, for example, of land use systems with individual land parcels that are
relatively small in size and fractured. In future work, modeling potential FAPAR at even
finer spatial resolutions of 30 m will be useful to match the recent highest resolution
dynamic land cover products (Potapov et al., 2022; Zhang et al., 2021).

Regarding our modeling results, we highlight the following limitations of the
methodology and interpretation of the results:

1. Our cross-validation results indicate that there is still a large component of variation
(about 10%) in monthly FAPAR that we can not explain. This is probably a limitation of
the moderate spatial resolution we worked with, including using covariates at coarser
resolution (1 km) than the FAPAR product. In addition, variable importance can be
related to the training sample distribution, possibly under-representing areas of some of
the land form or lithologic variables, which are less present on the globe.

2. Although the EML model deviance can give an indication of the uncertainty of the
prediction, the lack of ground-truth data on potential FAPAR requires the results to be
interpreted cautiously. A more robust framework is needed to calculate the probability
distributions of FAPAR per pixel (Andriuzzi et al., 2022).

3. For the prediction of potential FAPAR, we make use of a cross-walk table from the ESA
CCI land cover towards the BIOME 6000 classification. This may introduce a bias in the
prediction. Furthermore, it results in distinct potential FAPAR boundaries between
adjacent biomes, which are unlikely to be so distinctly present in reality.

4. We refer here to the potential FAPAR as the FAPAR under no-human pressure by
removing the impact of urbanization and intensive agriculture. This refers to the least
human pressure under current conditions of the month we predict on. We again highlight
the “shifting baseline syndrome” (Papworth et al., 2009), where despite using a global
coverage of training points, the results may also be subjected to this syndrome. We cannot
preempt that there is human pressure present in areas that are not indicated by our
variables, and there may be legacy effect of preceding human pressure (since likely most of
the globe has been subjected to human influence at some point).

5. Climate data sets we used are only an approximation of true conditions; climate depends
also on present vegetation type and will change if there is a forest where there has been
none before, and vice versa; therefore, separation of climate and vegetation is not trivial.
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Here we assumed that climate is an independent variable for FAPAR modeling, but this is
likely an oversimplification, especially at finer resolutions.

6. FAPAR does not just depend on the current month climate/precipitation, but also on
preceding conditions, e.g., the cumulative precipitation of 2-3 months before. We have so
far ignored this aspect in this study, as it would increase the computational complexity and
would require additional testing.

7. The most important variables in our results were not human pressure variables, which
overall have small influence on the prediction, although clearly shown in irrigated areas.
The forest cover indicator, on the other hand, had a high importance for the prediction of
potential FAPAR.

8. Vegetation cover variables based on ESA CCI land cover change maps are at 300 m
resolution. We noticed that GLASS FAPAR V6 picked up a deforestation signal at some
sites in Brazil (Fig. 9), but ESA CCI land cover did not show a change, which also affects
the model training.

Finally, there are two global vegetation modeling paradigms in the literature: (1) the
Dynamic Global Vegetation Models (DGVMs), and (2) data science models based on
fitting ML models to training data. DGVMs such as the Lund-Potsdam-Jena-DGVM,
have been used to simulate potential primary productivity by excluding the land-use
component from the process-based model (Haberl et al., 2007). DGVMs are generally
restricted by the simplified mechanistic rules set in the model and the definitions of
vegetation (Scheiter, Langan ¢ Higgins, 2013). Data-driven ML approaches can be used to
estimate the possible potential state of vegetation based on correlations with biophysical
variables (Hengl et al., 2018). In this article, we used a data-driven approach, but this comes
at the cost that it is purely correlative, e.g., based on an extrapolation of observed
relationships and not on modeling actual processes.

Implications of this study and next steps
With the FAPAR analysis produced and a global monthly map of the potential FAPAR, we
have tried to contribute to international programmes such as Land Degradation Neutrality
(UNCCD) and the Sustainable Goals of the United Nations (UN SDGs). We have released
our data as open, and our code (used to produce models, visualizations, and predictions)
via GitHub (https://github.com/Open-Earth-Monitor/Global FAPAR_250m). We hope
that this will inspire other groups to review our results and expand our research in new
directions. We especially hope that national and local agencies will find these data as a
good reference for spatial planning and that many small medium enterprises will see an
opportunity for practical applications and products.

Although this work has taken significant time and computing resources, many sections
of modeling and assessment could be further improved. Some potential extensions of this
research include:

1. For a more thorough understanding on the impact of modifying the human pressure
variables for the potential FAPAR prediction results, a sensitivity analysis of the model
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could be performed, i.e., analysing the effect each of them has individually but also in
synergy with each other. The interaction between human pressure variables and climate
variables could be investigated to better understand the magnitude of uncertainty in
potential FAPAR.

2. In future studies, it would be interesting to investigate ways to quantify the “shifting
baseline syndrome”, and to include these estimates in the modeling of potential FAPAR.
As an example approach, we could think of finding ways to model FAPAR for historic
times and use these values as a reference (Enquist et al., 2020). In addition, it would be
interesting to compare our results with an approach not reliant on any hard class
distinction of biomes or land cover types to account for the spatial gradient change of
vegetation cover. One way could be to include fractions of plant functional types, for
example recently made available by ESA CCI (Harper et al., 2023).

3. Due to limited computing resources, we had to subset the globe to a set of training points
as input for modeling. It would be interesting to increase the size of the training points and
compare the results with our current model. In our approach we made use of a linear
regressor as meta-learner. The deployment of other meta-learners, such as logistic
regressors, could potentially improve results further. In addition, to get a more robust way
to estimate uncertainty of the EML predictions, it would be interesting to test the
conformal prediction (Johansson et al., 2014) for this purpose.

4. For the land cover change analysis, we compared the years 2000 and 2020 to derive
change classes. Some areas might experience multiple changes within this time series,
which could be further investigated in following studies.

5. To derive robust conclusions on the degree of land degradation, additional information
from environmental variables should be included to supplement the data on land
productivity, such as land cover change or soil organic carbon. Shao et al. (2024), for
example, made use of specific variables, such as wind speed, known to drive land
degradation in their local study area. Our analysis of land productivity could be used as one
of the variables in such frameworks that make use of the “convergence of evidence” to
indicate potential degradation areas (Gianoli, Weynants ¢» Cherlet, 2023).

6. Although our results give estimates of the gap between actual and potential FAPAR for
current times, this approach could also be applied to future climate simulations. With
estimates of future potential FAPAR, we could include this information already today in
restoration, mitigation, and adaptation planning.

CONCLUSION

Land degradation is a global challenge threatening functioning of ecosystems and human
livelihoods. To identify and mitigate these challenges, highly-resolved information of the
current potential states of vegetation is usually required. The potential vegetation FAPAR
at 250 m resolution we produced in this article gives an indication of conditions in the
absence of urbanization or intensive agriculture. We applied a data-driven framework
using ensemble machine learning to estimate the gap of actual and potential FAPAR.
Our results show that FAPAR can be explained with high accuracy (R* = 0.89) using
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environmental and human pressure variables. We demonstrate the application of this
framework for the year 2021. The resulting predictions of potential FAPAR not only
highlight the gaps, but also show that the model captures irrigation areas, where we expect
the actual FAPAR to be higher than the potential FAPAR.

With the produced map of the FAPAR gap, and in combination with estimates of the
long-term trend, we identified areas of large negative FAPAR gaps as well as decreasing
actual FAPAR values over time and vice versa. Trend analysis showed that while large areas
of increased FAPAR can be observed, sparsely vegetated areas and vegetation depending
on precipitation display largely negative trends. Our assessment specifically showed large
negative FAPAR gaps (actual lower than potential) for classes urban, needle-leave
deciduous and flooded shrub or herbaceous cover, while strong negative FAPAR trends
were found for classes urban, sparse vegetation and rainfed cropland. On the other hand,
classes irrigated or post-flooded cropland, tree cover mixed leaf type, and broad-leave
deciduous showed largely positive trends. In further research, other variables that support
the indication of land degradation in a specific context should be integrated into this
framework (such as water table, soil organic carbon or land cover change). This
methodology could be applied as a general framework for estimating and visualizing land
degradation. Applying this framework to the entire time series of 2000-2021, we could
track changes in the FAPAR gap spatially and temporally.

Although our approach requires significant computational resources, it seems to
produce stable results for the whole land mask. Its main advantages are: (1) a single model
is fitted for the complete space-time cube so that predictions are consistent; (2) potential
land degradation is assessed from two aspects, i.e., as a declining trend in FAPAR and as a
difference between actual and potential vegetation, allowing land managers to consider
multiple land restoration options. In subsequent work, this methodology could also be
tested and applied to future simulations of potential FAPAR based on different climate
change scenarios, which would allow us to include this information already today in our
restoration planning.
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