
Predicting early-onset COPD risk in adults
aged 20–50 using electronic health records
and machine learning
Guanglei Liu1, Jiani Hu2, Jianzhe Yang2 and Jie Song2

1 School of Information Science and Engineering, Yunnan University, Kunming, Yunnan, China
2 Ailurus Biotechnology Ltd., Shenzhen, Guangdong, China

ABSTRACT
Chronic obstructive pulmonary disease (COPD) is a major public health concern,
affecting estimated 164 million people worldwide. Early detection and intervention
strategies are essential to reduce the burden of COPD, but current screening
approaches are limited in their ability to accurately predict risk. Machine learning
(ML) models offer promise for improved accuracy of COPD risk prediction by
combining genetic and electronic medical record data. In this study, we developed
and evaluated eight ML models for primary screening of COPD utilizing routine
screening data, polygenic risk scores (PRS), additional clinical data, or a combination
of all three. To assess our models, we conducted a retrospective analysis of
approximately 329,396 patients in the UK Biobank database. Incorporating personal
information and blood biochemical test results significantly improved the model’s
accuracy for predicting COPD risk, achieving a best performance of 0.8505 AUC, a
specificity of 0.8539 and a sensitivity of 0.7584. These results indicate that MLmodels
can be effectively utilized for accurate prediction of COPD risk in individuals aged 20
to 50 years, providing a valuable tool for early detection and intervention.

Subjects Bioinformatics, Public Health, Respiratory Medicine, Data Mining and Machine
Learning, Data Science
Keywords Chronic obstructive pulmonary disease, COPD, Machine learning, Risk prediction,
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INTRODUCTION
Chronic obstructive pulmonary disease (COPD) is a serious and complex disease that
affects an estimated 164 million people around the world. It is characterized by a
progressive decline in lung function, leading to breathlessness and limitations in physical
activity. COPD is primarily caused by smoking, although air pollution, occupational
exposure, and genetics can also be contributing factors. Early diagnosis of COPD could
facilitate preventive measures, such as smoking cessation or adjustment of environmental
exposures, and allow proper management of the disease (Singh et al., 2019).

Currently, screening programs exist for at-risk populations, such as those older than
45 years old with a history of smoking, and in most cases rely on self-reported smoking
history, lung function tests, and imaging scans. For example, in a study by Raju et al.
(2018), elderly patients over 65 years of age were monitored through annual screening
programs to determine the risk of developing COPD. Although this type of screening
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program is helpful, it does not account for the role of genetics and other patient data
points, and only identifies those at risk who are already symptomatic (Singh et al., 2019).

In recent years, machine learning (ML) models have emerged as a powerful tool for
identifying disease risks, including chronic obstructive pulmonary disease (COPD) (Ma
et al., 2020; Peng et al., 2020; Zhang et al., 2022a). Extensive research has demonstrated the
accuracy of ML models in predicting the development of COPD based on genetic
information and electronic medical records data (Peng et al., 2020; Zhang et al., 2022a).
In particular, studies by Peng et al. (2020) and Cosentino et al. (2023) showcased the
effectiveness of ML algorithms in detecting early signs of COPD from chest CT scans and
in predicting the case-control status of COPD from raw high-dimensional spirograms,
respectively (Sugimori et al., 2021). Makimoto’s study, focusing on CT-based quantitative
models to predict severe exacerbations of COPD (Makimoto & Kirby, 2023).

The application of polygenic risk scores (PRSs) in evaluating the risk of COPD has
attracted significant attention (Zhang et al., 2022b, 2022c). Zhang et al. (2022c) indicate
that the PRS derived from millions of COPD-related variants exhibits greater robustness
compared to individual significant variants. In a study conducted by Ma et al. (2020), the
integration of Single Nucleotide Polymorphisms (SNPs) and clinical information
demonstrated a robust predictive performance for COPD risk. Meanwhile, Peng et al.
(2020) collected medical records, clinical features, and blood biochemical inflammation
indicators. They analyzed and constructed multiple machine learning models, including
the C5.0 decision tree, classification and regression trees, and iterative binary classification
models. The research findings highlighted that the C5.0 decision tree classifier exhibited
the best performance, allowing respiratory physicians to quickly assess the severity of
COPD at an early stage (Peng et al., 2020). These studies exemplify the significant potential
of PRSs and machine learning to improve COPD risk prediction and facilitate early
intervention strategies for improved patient outcomes.

This study aims to develop and validate ML models to predict early-onset COPD
(defined as COPD onset before 50 years of age) from PRS and patient data available in
electronic medical records. We demonstrate the machine learning methods perform
accurate prediction in general. In particular, models trained on personal information and
blood biochemical results showed highest accuracy and sensitivity to predict COPD risks.
As there is limited research on this topic, particularly in younger patients, this study will
provide valuable information on COPD risk prediction and will help improve public
health outcomes (Saketkoo et al., 2014).

METHODS
Data source
For this study, the UK Biobank was used as the data source (Sudlow et al., 2015). The
sample was divided into a case group and a control group, the case group consisting of
individuals with specific diseases, and the control group consisting of completely healthy
individuals (Hobbs et al., 2017). This was done to more accurately compare the genomic
data of the two groups to find the genes associated with the disease and also to facilitate the
construction of machine learning-based classification models (Li et al., 2019). The data was
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then divided into a training set and an independent test set. Considering the imbalance
between positive and negative samples may have an impact on modeling and evaluation,
we created ten sub-training sets. Each set consisted of the same positive samples and
randomly sampled negative samples. The final model for one method was achieved by the
best performance among these 10 models. Furthermore, to maintain a fair and unbiased
comparison, we ensured the test set remained balanced (about 20% of all cases) (Dietterich,
1998). The data processing process can be seen in Fig. 1. In the final sub training set and
independent testing set, both case and control samples were controlled between the ages of
20 and 50.

Genome-wide association studies and polygenic risk score
Genome-Wide Association Studies (GWAS) was used to analyze the data (Visscher et al.,
2017). GWAS is a research method used to study the correlations between genes and
specific diseases, behavioral, or physiological traits (Hindorff et al., 2009). GWAS typically
uses large samples of tens of millions of genetic loci (called single nucleotide
polymorphisms, SNPs) analyzed to find SNPs associated with a disease or trait (McCarthy
et al., 2008). In this study, plink was used for genotype and sample filtering, while a
generalized linear model (‘-glm’ parameter) was used for GWAS research, with age and
gender as covariates (Purcell et al., 2007). The data used here for statistics are performed on
the complete training set. To predict the risk of the target disease, we employed the
Polygenic Risk Score (PRS), a composite genetic index calculated based on the identified
disease-associated SNPs (Visscher et al., 2017). We utilized significant correlation sites
derived from GWAS analysis of the training set data. To compute individual PRS values,
we assigned weights by summating the Odds Ratio (OR) values. Subsequently, we assessed
and compared the predictive performance of PRSs against other modeling methods on the
test set.

Population filtering
Population filtering was used to remove samples with incorrect gender labeling, high SNP
heterozygosity (PCA corrected heterozygosity > 0.1951), high feature missing rate
(missingness > 0.02), and high genetic relationship correlation � 0.05 (Jian, Boerwinkle &
Liu, 2014). To ensure a single genetic background in the study, and to retain as many study
individuals as possible, Anglo Whites were retained for analysis (Bycroft et al., 2018).
Additionally, SNPs with an allele frequency > 0.01, deletion rate > 0.05, and Ha-Wen
equilibrium test significance > 0.0001 were retained (Wigginton, Cutler & Abecasis, 2005).

Machine learning methods
We used the R language to perform the entire data cleaning and modeling process.
Drawing upon prior research, we utilized a diverse range of commonly employed machine
learning techniques for feature modeling (Alpaydin, 2014; Peng et al., 2020; Zhang et al.,
2022a), including neural networks (Ripley, 2013), Support Vector Machine (Karatzoglou
et al., 2004) (SVM), Bayesian Generalized Linear Model (Gelman & Hill, 2019), Random
Forest (Wright & Ziegler, 2017), C50 decision tree (Kuhn, Weston & Coulter, 2018),
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Figure 1 Data filtering process flowchart. Full-size DOI: 10.7717/peerj-16950/fig-1
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k-nearest neighbor (KNN) (Kuhn, 2008), AdaBoost (Chatterjee, 2016), and xgboost (Chen,
He & Benesty, 2016). To ensure robust evaluation and control over model performance, we
exclusively implemented five-fold cross-validation in the sub-training set (Kuhn, 2008).
The parameter optimization for relevant models was facilitated using the train tool from
the caret package (default optimization parameters) (Kuhn, 2008). Finally, we integrated
multiple sub-training set models to evaluate the final independent test set.

Feature and standards
The input features consisted of three types: genetic data, patient personal information data,
and blood biochemistry data. The genetic data were derived from GWAS-derived SNP loci
of significant association (Visscher et al., 2017). The personal information data of the
patient contained basic information, diet, work, exercise, and alcohol and tobacco habits
(Garcia-Gil et al., 2014). The blood biochemical data included the first blood biochemical
index when patient information was entered in the UKB information base (Bycroft et al.,
2018). The types of features used, as well as a brief definition and basic statistical summary
of these features/variables, can be found in Table S1. For continuous data, date information
was transformed into age-related integer values, while other integer data and numerical
figures remained the same (Wu et al., 2013). In the case of categorical data with rank
information, such data was converted into integer-type data based on the specified rank.
Data consisting of only two factors were converted into binary integer-type data and
multi-factor data kept factor data (Hastie, Tibshirani & Friedman, 2009). All numerical
data were normalized during modeling.

Performance evaluation
The choice of different classification thresholds can significantly impact outcomes.
To ensure robust and comparable indicators, we extensively evaluated performance and
compared models using the area under the curve (AUC), a comprehensive measure
(Hanley & McNeil, 1982). Additionally, sensitivity and specificity metrics were computed
to delineate specific model performance (Akobeng, 2007).

In our analysis, AUC serves as a global indicator of model performance across
thresholds. It represents the probability of the model correctly ranking a random positive
instance higher than a random negative instance.

To compute AUC, we employed receiver operating characteristic (ROC) curves,
plotting sensitivity against 1-specificity across various thresholds. The AUC represents the
area under this curve, offering an aggregate performance measure across all classification
thresholds.

Sensitivity (Sensitivity) characterizes the model’s ability to accurately identify positive
cases. It is calculated as the ratio of true positives to the sum of true positives and false
negatives.

Sensitivity ¼ True Positives
True Positivesþ False Negatives
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Specificity (Specificity) signifies the model’s precision in recognizing negative instances,
derived from the ratio of true negatives to the sum of true negatives and false positives.

Specificity ¼ True Negatives
True Negativesþ False Positives

For transparency and reproducibility, all code and results for performance testing and
model comparison are publicly available at https://github.com/AilurusBio/ukb_analysis.

RESULTS
The results of this study have revealed that machine learning can be used to predict the risk
of developing early-onset COPD in individuals aged 20 to 50. The initial dataset contained
343,558 alternative samples from the UK Biobank raw data, from which a case-control
group was created. Quality control measures were applied to both the samples and SNP
loci to ensure the reliability of the study’s findings. As shown in Fig. 1, after filtering for
genotype quality control, the experiment utilized 784,256 SNP loci, with 429,288
remaining for analysis. The original dataset comprised 502,492 samples, out of which only
a small number of individuals were diagnosed with COPD in their early years. Specifically,
14,607 individuals were diagnosed with COPD, as demonstrated by the age distribution
shown in Fig. 2. To uphold the study’s reliability, a meticulous selection process was
undertaken, identifying 445 early-onset cases and 328,951 controls from the available
samples. For independent testing, an equitable ratio of positive and negative samples,
totaling 178 instances, was maintained at a 1:1 ratio. This approach ensured a fair and
impartial assessment of the machine learning algorithm’s performance.

GWAS analysis provided insight into the regions/loci associated with COPD in the
genome. A total of 11 significant loci with a p-value of less than 1e−05 were identified and
visualized using a Manhattan plot (Fig. 3). Additionally, the annotation of SNP allowed
further analysis and identification of the degree of association of individual SNPs, with the
most significantly correlated located at rs2158937 of AC005176.2 gene (Table 1).

The classification performance of PRS models that uses only genetic characteristics and
weighting coefficients using OR values was evaluated in a test set. The results showed an
accuracy of 0.52061, a sensitivity of 0.5118 and a specificity of 0.5294, which is insufficient
for discrimination. However, better predictive ability was observed when data
supplemented with blood biochemistry and questionnaire features was used in machine
learning models. Table 2 shows the AUC performance of different machine learning
models across different types of features. It can be seen that the random forest model has
excellent predictive performance in various feature combinations in this task. The random
forest model has a best AUC performance of 0.8505, a sensitivity of 0.7584 and a specificity
of 0.8539 (Fig. 4, Table 2). The sensitivity, specificity, and balanced accuracy indicators of
all models can be found in Table S2. This suggests that combining personal patient
information and biochemistry characteristics improves the efficacy of machine learning
models to predict the risk of early-onset chronic obstructive pulmonary disease.

Furthermore, to reveal the metrics that are mostly contributing the COPD risk, we
analyzed the importance of input features for the optimal model, and revealed that
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Figure 2 Age distribution of patients with COPD. Full-size DOI: 10.7717/peerj-16950/fig-2

Figure 3 Manhattan plot of significant SNPs across the genome. Full-size DOI: 10.7717/peerj-16950/fig-3

Table 1 Variant information. The table displays the chromosome number (CHROM), position (POS),
identifier (ID), reference (REF) and alternate (ALT) alleles of each variant, as well as the odds ratio (OR),
P-value (P), gene name (GENE NAME), and distance to the nearest gene (DISTANCE).

CHROM POS ID REF ALT OR P GENE_NAME DISTANCE

19 40,132,472 rs2158937 C T 1.88713 9.0e−07 AC005176.2 0

14 72,769,920 rs117757342 A G 2.82681 2.0e−06 RGS6 0

18 9,406,015 rs79126399 A G 2.63550 2.3e−06 TWSG1 3,596

7 522,043 rs118051507 G A 2.79461 3.4e−06 AC147651.1 1,700

14 34,755,751 rs79434931 C T 2.76979 5.0e−06 EGLN3 0

16 1,200,232 rs62012311 C T 2.22736 5.3e−06 CACNA1H 3,008

2 175,349,076 rs115361661 C T 2.99481 8.4e−06 GPR155 0

7 46,167,359 rs73107888 G A 2.76816 8.5e−06 AC023669.2 17,175

1 102,471,839 rs1415094 T C 1.56340 9.0e−06 OLFM3 9,252

10 131,080,127 rs11016735 A G 2.27625 9.3e−06 RP11-168C9.1 0

21 23,757,543 rs35441718 C T 1.66449 9.5e−06 AP000705.7 0
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smoking status was strongly correlated with the prediction of COPD, as well as Townsend
deprivation index at recruitment and current tobacco smoking (Fig. 5).

DISCUSSION
The results of this study demonstrate that machine learning models can be used to
accurately predict the risk of developing early-onset COPD at age 20 to 50 years. The best
model achieved an AUC of 0.8505 and a specificity of 0.8539 (Fig. 4), which is significantly
better than previous studies that use only genetic characteristics for prediction (Singh et al.,

Table 2 Analysis of AUC performance of different machine learning models. Columns represent different machine learning models, including
artificial neural network (ANN), support vector machine, k-nearest neighbors (KNN), Random Forest (RF), AdaBoost, generalized linear model
with Bayesian regularization (Bayes.glm), xgBoost and the C5.0 decision tree algorithm. Rows represent different types of characteristic information,
including genetic information obtained by GWAS (G), personal information obtained by questionnaires (Q), and blood biochemical information
(B). The values in the table represent the AUC results of each model under the corresponding features, where a higher AUC indicates better
classification performance.

Features ANN SVM.Linear SVM.Radial KNN RandomForest AdaBoost Bayes.glm C5.0 xgBoost SVM.Poly

G 0.54684 0.54646 0.54659 0.56577 0.57045 0.55252 0.54431 0.53649 0.53611 0.54772

Q 0.7946 0.82212 0.84156 0.67542 0.848 0.82389 0.83045 0.83695 0.8384 0.84459

Q + B 0.77061 0.75319 0.82187 0.50619 0.85052 0.83626 0.80141 0.80457 0.82793 0.83411

G + Q + B 0.72327 0.76038 0.81113 0.50619 0.84951 0.82565 0.79447 0.8254 0.83171 0.823

Figure 4 Performance analysis of different machine learning models on receiver operating curve
(ROC). Full-size DOI: 10.7717/peerj-16950/fig-4
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2019). It should be noted that in this study, random forest has good performance in
multiple predictions, but this does not mean that the random forest model is the optimal
model for screening the early risk of the disease. Multiple machine learning models have
similar predictive performance, and these weak performance differences may be caused by
methods of adjusting hyperparameters or the quality of the dataset itself.

In addition, the importance analysis of the optimal model can provide interpretable
features regarding the COPD risk, smoking, and socioeconomic status. Smoking is the
most common cause of COPD and the harmful chemicals in tobacco smoke can cause
inflammation and damage to the airways and lungs, leading to the development of COPD
over time (Mathers & Loncar, 2006). Furthermore, exposure to other pollutants such as
biomass fuel and air pollution has also been linked to an increased risk of COPD
(Fullerton, Gordon & Calverley, 2009).

The finding that socioeconomic deprivation is also a significant risk factor for COPD is
concerning, as it suggests that individuals from lower socioeconomic backgrounds may be
at a greater risk of developing COPD due to factors such as increased exposure to
pollution, poor access to healthcare, and limited opportunities for education and
employment. Quitting smoking, reducing exposure to pollutants, and improving access to

Figure 5 Feature importance analysis in optimal machine learning model. Full-size DOI: 10.7717/peerj-16950/fig-5
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healthcare and education can help reduce the incidence and burden of COPD in high-risk
populations.

Despite the promising results of this study, there are several limitations that should be
noted. First, the data used in this study was from a single population, and the results may
not be generalizable to other populations. Second, the data used in this study was
retrospective, so the predictive performance of the model may be affected by recall bias.

CONCLUSIONS
In conclusion, this study demonstrates that machine learning models can be used to
accurately predict the risk of developing early-onset COPD in individuals aged 20 to 50
years. Our model achieved an AUC of 0.8505 and a specificity of 0.8539, indicating that it
is capable of accurately predicting COPD risk. The model was further improved when
personal information and blood biochemical test data were included in the analysis. These
findings suggest that ML models can be used to accurately predict COPD risk in
individuals aged 20 to 50 years, and may provide a valuable tool for early detection and
intervention. Further research is needed to investigate the potential of these models to
improve the accuracy of COPD risk prediction in other populations and to identify
additional factors that may influence the development of COPD.
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