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ABSTRACT
Background. Triple-negative breast cancer (TNBC) is an aggressive breast cancer
subtype with high heterogeneity, poor prognosis, and a low 10-year survival rate of
less than 50%. Although cellular senescence displays extensive effects on cancer, the
comprehensions of cellular senescence-related characteristics inTNBCpatients remains
obscure.
Method. Single-cell RNA sequencing (scRNA-seq) data were analyzed by Seurat
package. Scores for cellular senescence-related pathways were computed by single-
sample gene set enrichment analysis (ssGSEA). Subsequently, unsupervised consensus
clustering was performed for molecular cluster identification. Immune scores of pa-
tients in The Cancer Genome Atlas (TCGA) dataset and associated immune cell scores
were calculated using Estimation of STromal and Immune cells in MAlignantTumours
using Expression data (ESTIMATE) and Microenvironment Cell Populations-counter
(MCP-counter), Tumor Immune Estimation Resource (TIMER) and Estimating the
Proportion of Immune and Cancer cells (EPIC) methods, respectively. Immunother-
apy scores were assessed using TIDE. Furthermore, feature genes were identified
by univariate Cox and Least Absolute Shrinkage and Selection Operator (LASSO)
regression analyses; these were used to construct a riskmodel. Additionally, quantitative
reverse transcription-polymerase chain reaction (qRT-PCR) and transwell assay were
conducted for in vitro validation of hub genes.
Result. TNBC was classified into three subtypes based on cellular senescence-related
pathways as clusters 1, 2, and 3. Specifically, cluster 1 showed the best prognosis,
followed by cluster 2 and cluster 3. The levels of gene expression in cluster 2 were the
lowest, whereas these were the highest in cluster 3. Moreover, clusters 1 and 3 showed
a high degree of immune infiltration. TIDE scores were higher for cluster 3, suggesting
that immune escape was more likely in patients with the cluster 3 subtype who were
less likely to benefit from immunotherapy. Next, the TNBC risk model was constructed
and validated. RT-qPCR revealed that prognostic risk genes (MMP28, ACP5 and
KRT6A) were up-regulated while protective genes (CT83) were down-regulated in
TNBCcell lines, validating the results of the bioinformatics analysis.Meanwhile, cellular
experiments revealed that ACP5 could promote the migration and invasion abilities in
twoTNBC cell lines. Finally, we evaluated the validity of prognosticmodels for assessing
TME characteristics and TNBC chemotherapy response.
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Conclusion. In conclusion, these findings help to assess the efficacy of targeted therapies
in patients with different molecular subtypes, have practical applications for subtype-
specific treatment of TNBC patients, and provide information on prognostic factors, as
well as guidance for the revelation of the molecular mechanisms by which senescence-
associated genes influence TNBC progression.

Subjects Bioinformatics, Molecular Biology, Oncology
Keywords Triple-negative breast cancer, Cellular senescence, Single-cell RNA sequencing, Bulk
RNA sequencing, Tumor microenvironment

INTRODUCTION
Triple-negative breast cancer (TNBC), an aggressive breast cancer subtype, lacks the
expression of the progesterone receptor, human epidermal growth factor receptor 2
(HER2), and estrogen receptor (Shang & Xu, 2022). As a highly heterogeneous tumor,
TNBC shows distinct biological features of aggressiveness, high recurrence rate, and distant
metastasis (Gluz et al., 2009; Foulkes, Smith & Reis-Filho, 2010), which can be attributed to
germline alterations (BRCA1 mutations), differences in genetic characteristics, epigenetic
alterations, DNA repair defects, morphological features, and gene expression profiles (Nik-
Zainal et al., 2016; Jiang et al., 2019; Bareche et al., 2018; Pareja & Reis-Filho, 2018). Due
to this heterogeneity, large tumors may contain multiple cells with different molecular
characteristics anddisplaying different sensitivity to treatment (Dagogo-Jack & Shaw, 2018),
which has been demonstrated to be the main reason for drug resistance or lower efficiency
of immunotherapy in breast cancer therapy (Li et al., 2021). Relative to other subtypes,
TNBC has a poor prognosis with a low 10-year survival rate of less than 50% (Malorni et
al., 2012). Effective therapeutic targets for TNBC are scarce (Huang et al., 2021; Zhu, Yang
& Xu, 2022). Therefore, it is particularly crucial to assess the mechanisms underlying the
progression and onset of TNBC for immunotherapy and its diagnosis in clinical settings.

The main feature of cellular senescence is a complex secretory phenotype, known as
the senescence-associated secretory proteome (SASP), that by facilitate immune-mediated
clearance of senescent cells to keep tissue homeostasis and suppresses tumorigenesis,
as a powerful tumor-suppressing mechanism (Bartkova et al., 2006; Xue et al., 2007).
For example, excessive reactiveoxygenspecies caused by metabolic perturbation could
trigger mitogen-activated protein kinase (MAPK)/p38 pathways to facilitate cellular
senescence (Borodkina et al., 2016). Researches also uncovered that the MEK/MAPK
signaling pathway was involved in inducing senescence in human fibroblasts (Takasugi,
Yoshida & Ohtani, 2022). Previous studies suggested that cancer cells have devised various
ways to evade this mechanism (Hollstein et al., 1991; Jarrard et al., 1999; Foster et al., 1998).
When co-transplanted with completely malignant cells, the growth of senescent cells
increases along with the tumor formation rates in the xenografts (Bartholomew, Volonte &
Galbiati, 2009; Bhatia et al., 2008; Liu & Hornsby, 2007). The impact of senescent cells on
the evolution of precancerous tumor progression has been confirmed (Campisi et al., 2011;
Collado, Blasco & Serrano, 2007). Proliferation is induced in several precancerous cells in
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the presence of senescent fibroblasts, ultimately resulting in tumor formation (Krtolica et
al., 2001; Bavik et al., 2006; Castro-Vega et al., 2015). On the one hand, cellular senescence,
a fail-safe mechanism, inhibits tumorigenesis in a cell-autonomous environment by
preventing harmful cells from further proliferation. On the other hand, senescent cells
secrete excess growth factors and cytokines (Coppé et al., 2010), including interleukin 8 (IL-
6) and IL-6 (collectively referred to as SASP) (Lasry & Ben-Neriah, 2015), thus establishing
a microenvironment of immunosuppression, inflammation, and catabolism to promote
chemotherapeutic resistance and tumor growth (Coppé et al., 2008). Intriguingly, within
multiple element causing TNBC chemoresistance, therapy-induced senescence is well-
accepted (Chakrabarty et al., 2021). Despite these extensive effects of cellular senescence on
cancer, our understanding of cellular senescence-related characteristics of TNBC patients
remains rudimentary. In particular, whether these characteristics of cancer patients can be
used as biomarkers to guide clinical prognosis and treatment of TNBC remains elusive.

Given that cellular senescence signature is highly correlated with the progression
of cancer, an increasing number of studies have investigated it and demonstrated that
senescence related signature is significantly associated with the prognosis of tumor patients.
For example, in lung adenocarcinoma (LUAD), a comprehensive analysis constructed
a senescence-related signature score (SRS), which was elucidated as an independent
prognostic factor for LUAD patients and revealed that it was positively associated with
cancer-associated fibroblasts, NK cell infiltration, and cytokine release (Lin et al., 2021).
Among them, cancer-associated fibroblasts often present a senescence-associated secretory
phenotype (SASP) under stress conditions such as inflammatory factors, which promotes
tumor formation and chemoresistance through the release of cytokine IL-6, which also
reveals the relevant mechanism of cellular senescence-associated cancer progression from
the level of regulation of the immune microenvironment (Yasuda et al., 2021; Wu et al.,
2017). Another study revealed that SRS in colorectal cancer can be used to assess the
genomic mutation status of the tissues, especially the high SRS group showed significant
RPN2 mutations (Yue et al., 2021). RPN2 is commonly associated with cell proliferation,
migration, and epithelial-mesenchymal transition phenotypes, exacerbates malignant
cancer progression through the release of factors such as MMP-9, and inhibits cellular
autophagy through STAT3 and NF-κB pathways (Huang et al., 2019; Zhang et al., 2019;
Han et al., 2023). Although the clinical value of cellular senescence-related features has not
been explored in TNBC, the above reports still inform our study, and we hypothesize that
markers associated with senescence features and prognosis in TNBC could influence cancer
progression and prognosis in terms of tumor infiltration microenvironment homeostasis,
cytokine release, and genomic mutations.

Based on scRNA-seq and bulk RNA-seq data, we constructed a senescence classifier for
TNBC based on cellular senescence-related pathways. Significant differences in prognosis,
tumor microenvironment (TME), genome mutations and enriched metabolic pathways
were detected from the three subtypes. Next, the heterogeneity of malignant cells among
senescent and normal cells was further analyzed in TNBC. A cellular senescence-related
risk model for TNBC was constructed. In vitro experiments were also conducted to
confirm the expression levels of hub genes selected for the risk model and the functions
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of certain gene on TNBC progression. Additionally, we also verified the reliability of the
signature in assessing the regulatory role of the TNBC immune microenvironment and
the patient’s response to immunotherapy. Finally, the possibility of cellular senescence as
a clinicopathological feature to improve the prognosis and survival prediction of patients
with TNBC was explored. Collectively, our study provides a new direction to the diagnosis
and treatment of patients with TNBC.

MATERIAL AND METHODS
Data downloading and pre-processing
Single-cell sequencing dataset, GSE176078, comprising nine samples was extracted from
the NCBI data Gene Expression Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/). The
statistical power (Therneau, Hart & Kocher, 2023) of this experimental design, calculated in
RNASeqPower is 1.0. Single-cell data were subjected to filtering, quality control, clustering,
and dimensionality reduction using the ‘‘Seurat’’ (Gribov et al., 2010) package. Microarray
data of GSE58812 was extracted from GEO, and probes were transformed to ‘‘symbols’’
using the annotation file. In total, 107 qualified tumor samples and 16,416 genes were
obtained after excluding tumor samples and normal tissues without information on
clinical follow-up and overall survival (OS).

Clinical phenotypic data of TNBC were extracted from The Cancer Genome Atlas
(TCGA) database. Samples without information on survival time and statuses were
removed, and all those with patient survival time >0 days were retained. Subsequently,
expression profile data were downloaded from TCGA. Finally, 113 para-cancerous and
113 tumor samples were obtained. The statistical power of this experimental design,
calculated in RNASeqPower is 1.0. Furthermore, copy number variations (CNVs) on the
Masked Copy Number Segment type of TNBC were obtained from TCGA database and
integrated using ‘‘gistic2’’ (Mermel et al., 2011) software. Finally, the single nucleotide
variants (SNVs) in TCGA-TNBC dataset processed by ‘‘mutect2’’ software, were obtained
from TCGA database. Cellular senescence-related pathways were extracted from the
Molecular Signature Database (MSigDB: https://www.gsea-msigdb.org/gsea/index.jsp).
Sangerbox platform (http://vip.sangerbox.com/) was introduced to assist bioinformatics
analysis in this study (Shen et al., 2022).

Single-cell clustering and dimensionality reduction
First, 38,582 cells were obtained after filtering the single-cell RNA-seq data matrix
according to the cell criterion (<250 transcripts/cell) and gene criterion (<3 cells/gene).
The ‘‘PercentageFeatureSet’’ function was then used to determine the percentages of
mitochondria and rRNAs. Ultimately, 38,007 cells that met the following inclusion criteria
were obtained: One cell could express between 100 and 6,000 genes, the mitochondrial
content was less than 25%, and each cell had a unique molecular identifier (Yasuda et al.,
2021) of at least 100.

Variance stabilization transformation (VST) was used to identify variable characteristics
after the aforementioned data were log-normalized. High-variance genes were then discov-
ered by employing the ‘‘FindVariableFeatures’’ tool. Further, the ‘‘FindIntegrationAnchors’’
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function was utilized to remove batch effects using the canonical correspondence analysis
(CCA) method for 10 samples. The data were integrated using the ‘‘IntegrateData’’
function. The anchor (dim = 30) was determined by principal component analysis (PCA)
and dimensionality reduction after normalization using the ‘‘ScaleData’’ function for
all genes. The cells were clustered using ‘‘FindNeighbors’’ and ‘‘FindClusters’’ functions
with resolution = 0.1; this yielded 11 subpopulations. Finally, the TSNE dimensionality
reduction analysis was performed on 38,582 cells using the ‘‘RunTSNE’’ function.

With threshold parameters of logfc = 0.5 (fold-change), Minpct = 0.35 (minimum
percentage of differential gene expression), and adjusted P0.05, marker genes of
subpopulations were screened using the ‘‘FindAllMarkers’’ tool. Subsequently, changes
in cellular CNVs in single-cell data were predicted using the ‘‘copycat’’ (Gao et al.,
2021) package to distinguish tumor cells. Although cancerous and normal tissues were
differentiated during sampling, cancerous tissues might contain normal cells. Therefore, a
distinction between the two was necessary.

Gene set enrichment analysis (GSEA) and annotation
Cellular senescence-related pathways were obtained from the GSEA website (https:
//www.gsea-msigdb.org/gsea/index.jsp). We separately calculated the corresponding scores
of non-malignant and malignant cells in cellular senescence-related pathways by ssGSEA
using the ‘‘GSVA’’ package and normalized the enrichment scores for each pathway by
z-score. The scores of each sample of normal and tumor tissues in the bulk RNA-seq dataset
were analyzed by ssGSEA for these senescence-related pathways (Subramanian et al., 2005).
Finally, the significance of each senescence-related pathway in cancer and para-cancerous
tissues was assessed using ‘‘wilcox.test’’.

The genes related to the G1/S phase (p15-Cell cycle G1/S, MDM2-p21-Cell cycle G1/S,
and p27-Cell cycle G1/S; 27 genes in total) were extracted from the Kyoto Encyclopedia
of Genes and Genomes (KEGG) official website. Subsequently, the scores for G1/S
genes were calculated for each sample in TCGA dataset by ‘‘ssGSEA’’. Genes in the
HALLMARK_G2M_CHECKPOINT pathway were downloaded from MSigDB via GSEA
and the scores of G2 checkpoints were calculated for each sample in TCGA dataset by ‘‘ss-
GSEA’’. We downloaded REACTOME_TELOMERE_EXTENSION_BY_TELOMERASE
using GSEA and the primary role of this pathway was ‘‘Telomere Extension By
Telomerase’’. Finally, GSEA-derived enrichment scores in TCGA dataset for epithelial-
mesenchymal transition (EMT) were computed by ssGSEA for 200 genes in the
HALLMARK_EPITHELIAL_MESENCHYMAL_TRANSITION pathway for each
sample (Liberzon et al., 2015).

Univariate Cox and LASSO regression analyses
Univariate Cox analysis was conducted using the ‘‘coxph’’ function in the survival
package of R to screen the significant (p< 0.05) prognosis-related genes. LASSO-Cox
regression analysis was conducted for prognosis-related genes using the ‘‘glmnet’’ package
in R (Friedman, Hastie & Tibshirani, 2010). The changing trajectory of each independent
variable was analyzed. Increased lambda was positively related to increased number of
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independent variable coefficients tending to zero. Finally, by 10-fold cross-validation, a
model was constructed; for each lambda, the confidence intervals were calculated.

The risk-related prognostic score (Riskscore) was calculated for each sample according
to the equation for the sample risk score: Riskscore = 6βi×Expi, where Expi denotes the
level of gene expression of the corresponding gene signature and β is the corresponding
Cox regression coefficient. ROC analysis and z-score for RiskScore were computed using
the ‘‘timeROC’’ package in R. Samples with RiskScore lower than zero comprised the
low-risk group, while those with RiskScore greater than zero after z-score normalization
were classified into the high-risk group. Finally, the Kaplan–Meier curves were plotted.

Consensus clustering
Consensus clustering was conducted using the ‘‘ConsensusClusterPlus’’ package (Wilkerson
& Hayes, 2010). In total, 500 bootstraps were conducted using the ‘‘hc’’ algorithm with
‘‘canberra’’ as the metric distance; in the training set, 80% of the patients were in each
bootstrap process. After the number of clusters was selected to between 2 and 10,
‘‘ConsensusClusterPlus’’ in the TCGA clustered the 113 TNBC samples dataset. The
optimal classification was confirmed based on the consensus matrix and cumulative
distribution function (CDF).

Mutation analysis
Using hg38 as the reference genome, the CNV-related TCGA-TNBC results were integrated
by ‘‘gistic2′′software at a confidence level of 0.9. The downloaded SNV data from TCGA
were analyzed using the ‘‘maftools’’ (Mayakonda et al., 2018) package.

Immune cell scoring and immunotherapy
The scores of the relevant immune cells were calculated using the ‘‘MCPcounter.estimate’’
function of the ‘‘MCPcounter’’ package (Becht et al., 2016), Tumor Immune Estimation
Resource (TIMER) (Li et al., 2020) and Estimating the Proportion of Immune and Cancer
cells (EPIC) (Zhou et al., 2020) methods. Significant differences were determined using
‘‘kruskal.test’’. Immune cell infiltration was assessed using the ‘‘Estimation of STromal and
Immune cells in MAlignant Tumor tissues using Expression’’ (ESTIMATE) (Yoshihara et
al., 2013) which provides information on tumor purity, scores of immune cell infiltration,
and stromal cell levels in tumor tissues. Subsequently, the TIDE (Jiang et al., 2018) software
was used to assess the putative immunotherapeutic efficacy in the defined molecular
subtypes (http://tide.dfci.harvard.edu/). Higher TIDE score indicates less immunotherapy
benefit as it suggests a greater possibility of immune escape. The correlation and significance
of the risk score with the immune cell score were separately calculated using the ‘‘Hmisc’’
package’s ‘‘rcorr’’ function based on Pearson’s method.

Differential expression analysis
Differential expression analysis of cluster 1, 2 and 3 was performed in both GSE and Target
datasets in ‘‘limma’’ package (Ritchie et al., 2015). Finally, differentially expressed genes
(DEGs) were filtered under ‘‘|log2 (Fold Change)| > 1 and p< 0.05’’.
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Quantitative reverse transcription-polymerase chain reaction
Using TRIzol reagent (Thermo Fisher, Waltham, MA, USA), total RNA was collected
from MDA-MB-468, MDA-MB-231 and MCF10A cell lines with 260/280 the value was
between 1.8–2.0. High-Capacity cDNAReverse Transcription Kit (4368814, ThermoFisher,
Waltham,MA, USA) was conducted for reverse transcription. Using a LightCycler 480 PCR
System (Roche, Indianapolis, IN, USA), the RNA from each sample (2 µg) was subjected to
qRT-PCR with FastStart Universal SYBR®Green Master (Roche, Indianapolis, IN, USA).
The cDNA was a template with a reaction volume of 20 µl (0.5 µl of forward and reverse
primers, 2 µl of cDNA template, 10 µl of PCR mixture, and appropriate volume of water).
For the PCR reactions, cycling began with an initial DNA denaturation phase for 30 s (s)
at 95 ◦C, then a total of 45 cycles were run for 15 s at 94 ◦C, for 30 s at 56 ◦C, and for 20 s
at 72 ◦C. Each sample was performed for three separate analyses. Data from the threshold
cycle (CT) were normalized to the level of GAPDH by 2−11CT. The mRNA expression was
compared in the normal and control tissues. Sequences of primer pairs targeting (Shanghai
Gemma Gene Co., LTD, Shanghai, China) the genes are listed as follows:

Gene Forward primer sequence (5′-3′) Reverse primer sequence (5′-3′)
MMP28 TCCCACCTCCACTCGATTCAG GCCGCATAACTGTTGGTATCT
CT83 CTCCTAGCGAGCAGCATTCTG TTGATGACATTTCGCCAGTGT
ACP5 TGAGGACGTATTCTCTGACCG CACATTGGTCTGTGGGATCTTG
KRT6A GAGGGTGAGCTACGTCCTTG CAGCCGTATAGGTCTCTGTGT
GAPDH AATGGGCAGCCGTTAGGAAA GCCCAATACGACCAAATCAGAG

Cell culture and transient transfection
Breast cancer cell lines MDA-MB-468, MDA-MB-231, and non-tumorigenic epithelial
cell lines MCF10A were suspended in serum-free cell freeze and immediately frozen
in liquid nitrogen tanks. MDA-MB-468, MDA-MB-231 and MCF10A cell lines were
commercially obtained from Beijing Bena Biotechnology Co. (Beijing, China). Cells were
cultured in DEME F-12 medium (Gibco, Waltham, MA, USA). Lipofectamine 3000
(Invitrogen, Waltham, MA, USA) was used for transfecting the ACP5 siRNA (Sagon,
China) and negative control (NC) into the cells. The target sequences for ACP5 siRNA
were TCCTAAATCAAGCATCTTTCTGT (si ACP5).

Transwell assay
Migration and invasion of MDA-MB-468 and MDA-MB-231cell lines were detected. Cell
(5 × 104) inoculation onto chambers coated (for invasion) or uncoated with Matrigel
(BD Biosciences, USA) (for migration) was performed. The upper layer was added with
serum-free medium, while the lower layer was added with complete DMEMmedium. After
incubation for 24 h, migrated or invaded cells were fixed using 4% paraformaldehyde and
dyed by 0.1% crystalline violet. Cell number was counted using a light microscope. The
experiment was conducted in our own lab.
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Statistical analysis
All statistical analysis was done with R program (v4.2.0). The Wilcoxon test evaluated two-
group difference. Differences among three groups were analyzed by the Kruskal–Wallis test.
Cox analysis and survival analysis both used the log-rank test. For Wet experiments, the
number of each group was 3 independent experiments. Assay carried out by investigator’s
lab. Consumables in experiments we use are RNAase and DNAase free.

RESULTS
Nine annotated cell types displayed different senescence
characteristics
A cellular senescence-related classifier was constructed for TNBC. The prognoses of patients
with TNBC were verified using bulk RNA-seq and scRNA-seq data. The flow chart of the
study design is presented in Fig. S1.

First, 38,582 cells were obtained by screening the data from nine samples (Table S1,
Fig. 1A); these were clustered and 11 subpopulations were obtained (Fig. 1B). Subsequently,
these cells were subjected to TSNE dimensionality reduction analysis, and the 11
subpopulations were annotated based on some classical markers of immune cells (Fig. 1C
and Table S2). Among them, subpopulation C1 comprised CD8 T cells expressing CD8A,
CD3D, GZMA, and CD8B; C6 comprised CD4 T cells expressing CD4 and CD3D; C2
and C9 comprised macrophages expressing CD163 and CD68; C3 and C10 comprised
monocytes expressing S100A8; C5 comprised B cells expressing CD19, CD79A, andMS4A1;
C4 comprised plasma cells expressing CD79A and JSRP1; C0 comprised epithelial cells
expressing EPCAM; C3 and C8 contained fibroblasts expressing ACTA2, FAP, PDGFRB,
and NOTCH3, and C7 contained endothelial cells expressing PECAM1. We also screened
marker genes among these subpopulations and analyzed their corresponding expression
(Fig. 1D). For instance, CD24 and KRT19 were highly expressed in epithelial cells in C0
and were the marker genes of C0.

The proportion of these nine subpopulations in each sample was further analyzed
(Fig. 1E). Subsequently, changes in CNVs in single cells were predicted to distinguish
normal from tumor cells in each sample (Fig. 1F). In total, 7,709 cancer cells and 30,298
normal cells were identified. Subsequently, the proportion ofmalignant and non-malignant
cells in each sample was calculated (Fig. 1G). The cells in samples CID3946, CID44041,
and CID4465 were all non-malignant, while the other samples comprised both malignant
and non-malignant cells.

The senescence characteristics of single cells were further assessed. Cellular senescence-
related pathway scores were higher in malignant relative to the non-malignant cells (Fig. 2).

Validation of abnormal cellular senescence based on bulk RNA-seq
data
Cellular senescence-related pathways were highly expressed in malignant cells
at the single cell level relative to the non-malignant cells, with aberrant ex-
pression. Therefore, their expression in tumor and normal tissue samples was
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Figure 1 TSNE dimensionality-reduction results. (A) TNSE plots for the distribution of nine samples;
(B) TSNE plot for 11 immune cell subpopulations; (C) TSNE plot for cell distribution after annotation;
(D) dot plots of the top five marker genes’ expression in the annotated subpopulations; (E) proportions
and cell count of the annotated subpopulations in each sample; (F) distribution of malignant and non-
malignant cells predicted by ‘‘copykat’’; (G) proportion of malignant and non-malignant cells in each
sample.

Full-size DOI: 10.7717/peerj.16935/fig-1

further analyzed using a bulk RNA-seq dataset. GSEA results suggested that
REACTOME_CELLULAR_SENESCENCE, and P53_SIGNALING_PATHWAY
were significantly enriched in tumor tissues in TCGA dataset (Fig. 3A). ssGSEA
of the bulk RNA-seq dataset (Fig. 3B) revealed that the enrichment scores of
REACTOME_DNA_DAMAGE_TELOMERE_STRESS_INDUCED_SENESCENCE,
P53_SIGNALING_PATHWAY, REACTOME_CELLULAR_SENESCENCE, REAC-
TOME_DNA_DAMAGE_TELOMERE_STRESS_INDUCED_SENESCENCE were higher
in some cancer tissues relative to the para-cancerous tissues. Therefore, these three cellular
senescence-related pathways may exhibit regulatory complexity in cancerous tissues.

Construction of cellular senescence-related subtypes
Three cellular senescence-related pathways, including REACTOME_CELLULAR_
SENESCENCE, and P53_SIGNALING_PATHWAY, REACTOME_DNA_DAMAGE_
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Figure 2 Single-cell GSVA results of cellular senescence-related pathways in malignant and non-
malignant cells.

Full-size DOI: 10.7717/peerj.16935/fig-2

TELOMERE_STRESS_INDUCED_SENESCENCE, were significantly enriched in TNBC
tissues. Therefore, we further analyzed the genes enriched in these three pathways.

The above pathways comprised 253 genes, of which 186 were present in TCGA dataset.
Subsequently, a univariate analysis of these 186 genes yielded seven prognosis-related
genes, including ETS2, SERPINE1, FOS, SHISA5, IL1A, TP53AIP1, and IGFBP7 (Fig. 4A).
Mutations in these seven genes in TNBC were further examined. Among SNVs, ETS2
showed the highest mutation frequency (primarily mutation type: missense) (Fig. 4B).
Among CNVs, IGFBP7 had the highest frequency of acquired CNVs (CNV_gain), whereas
SHISA5 had the highest frequency of deletion mutations (CNV_loss) (Fig. 4C). The levels
of these seven genes in normal versus tumor tissues were analyzed by the ‘‘wilcox.test’’
(Fig. 4D). The expressions of SHISA5, SERPINE1, and IL1A were markedly high in tumor
tissues, whereas those of TP53AIP1, ETS2, and FOS were high in the normal tissues.

Consensus clustering of 113 TNBC samples in TCGA dataset was performed based on
these seven key prognosis-related genes. Stable clustering results were achieved at k = 3
(Figs. 4E–4F). Therefore, three subtypes (clusters) were obtained (Fig. 4G). Significant
differences in the prognostic characteristics among the subtypes were found (Fig. 4H).
Overall, cluster 1 showed the best prognosis, followed by clusters 2 and 3. These seven
genes showed the highest expression in cluster 3 (Fig. 4I).

Differential analysis of cellular senescence-related subtypes
The expression of genes in these three senescence-related pathways among the three clusters
was compared by ‘‘kruskal.test’’ (Fig. S2). Among the three pathways, genes in cluster 2
showed the lowest expression, while those in cluster 3 showed the highest expression.

The distribution of clinical characteristics across molecular subtypes was compared by
chi-square test to assess the differences among the three subtypes in TCGA. The survival
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Figure 3 Enrichment analysis for bulk RNA-seq data. (A) GSEA results in TCGA dataset; (B) Heat map
of the distribution of cellular senescence-related pathway ssGSEA scores in cancerous and para-cancerous
tissues in TCGA dataset.

Full-size DOI: 10.7717/peerj.16935/fig-3

statuses of these patients differed significantly among the three subtypes. In particular, the
proportion of dead patients was high in cluster 3.

Differences in mutations among cellular senescence-related subtypes were analyzed.
TCGA data suggested some differences in CNVs among the three subtypes (Figs. 5A and
5C). For instance, cluster 1 had the lowest degree of gene gain and lose. While cluster 3
exhibited the highest degree of CNV gain. Additionally, clusters 2 and 3 had similar CNV
loss on chromosomes 2, 3, 4 and 5. Furthermore, TP53, TTN, MUC16, SYNE1, and FAT3
had the highest SNV frequency (Fig. 5B).

Biological characteristics of cellular senescence-related subtypes
Cancer cells can induce cellular senescence through the inhibition of the cell cycle, and cell
cycle protein-dependent kinases (CDK inhibitory proteins), such as InK4a and p21, are
upregulated in senescent cells, which causes cell cycle arrest (Wang, Lankhorst & Bernards,
2022). A previous study Cuzick et al. (2011) identified 31 genes associated with cell cycle
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Figure 4 Analysis of cellular senescence-related prognostic genes. (A) Forest plot of prognosis-related
genes; (B) waterfall plot of SNVs in the seven prognosis-related genes; (C) Percentage plot of CNVs in the
seven prognosis-related genes; (D) The expression of the seven prognosis-related genes expressed in tu-
mor and normal tissues; (E) CDF curve of TCGA cohort; (F) CDF-delta area curves for TCGA cohort. The
Delta area curve for consensus clustering indicates the relative change in the area under the CDF curve for
each category number, k, relative to k-1. The horizontal axis represents the category number, k, and the
vertical axis represents the relative change in area under the CDF curve; (G) Heat map of sample cluster-
ing at consensus k = 3; (H) KM curve of the relationship between the prognoses of the three subtypes in
TCGA; (I) Heat map of the expression of seven prognosis-related genes among three subtypes in TCGA
dataset.

Full-size DOI: 10.7717/peerj.16935/fig-4

progression (CCP). We computed the CCP scores of each sample in TCGA dataset by
ssGSEA. clusters 1 and 2 had slightly higher CCP scores relative to cluster 3 (wilcox.test)
(Fig. 6A). No significant differences were observed among the three subtypes in the G1/S
phase (wilcox.test) (Fig. 6B), whereas the scores for G2 checkpoints were slightly lower in
cluster 3 relative to clusters 1 and 2 (wilcox.test) (Fig. 6C). Prognostic analysis suggested
that patients in cluster 3 showed a worse prognosis. Therefore, the cell cycle may be one
of the factors influencing cellular senescence. Other mechanisms may also regulate cellular
senescence along with the cell cycle.

Similarly, inhibition of telomerase induces cellular senescence (Wang, Lankhorst &
Bernards, 2022). Cancer cells usually circumvent telomere attrition by activating telomerase
activity. Telomere elongation scores for telomerase in cluster 3 were lower than those in
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Figure 5 Differential analysis of cellular senescence-related subtype mutations. (A) Comparison of
CNVs among subtypes; (B) Waterfall plots of the top 10 genes with the highest SNVs among subtypes; (C)
Peak plots of genes amplified (red) and missing (blue) among the three subtypes (G scores (top) and q-
values (bottom) relative to the entire graph for amplification of all markers on the analyzed region).

Full-size DOI: 10.7717/peerj.16935/fig-5

clusters 1 and 2, with the latter showing the highest score. Therefore, other mechanisms
may co-regulate cellular senescence with telomerase activity (wilcox.test) (Fig. 6D).

However, in addition to conveying the message ‘‘please kill me’’, the factors secreted
by senescent cells also affect surrounding cells (Yu et al., 2021). This effect can promote
tumor migration and metastasis by promoting EMT. Senescent tumor cells can promote
the production of blood and lymphatic vessels by recruiting specialized macrophages that
provide oxygen and nutrients necessary for growth to other tumor cells, thus promoting
tumor growth and metastasis. We calculated the EMT scores. Cluster 2 had a lower
EMT score than clusters 1 and 3, indicating that patients in cluster 3 were more likely to
experience metastasis (wilcox.test) (Fig. 6E).

Based on genes in the HALLMARK_HYPOXIA pathway, the hypoxia scores of the
samples were computed by ssGSEA. Angiogenesis scores of samples were also analyzed
based on 24 genes from the literature (Masiero et al., 2013) (wilcox.test) (Figs. 6F–6G).
Enrichment scores for 10 pathways associated with tumors in each sample in TCGA dataset
were computed by the ssGSEA method described previously (Sanchez-Vega et al., 2018).
Only two of the ten pathways (NOTCH and TGF-beta signaling) exhibited significant
differences (wilcox.test).

Finally, genes in the HALLMARK_INFLAMMATORY_RESPONSE pathway from
GSEA-based MSigDB were analyzed for inflammation-related scores by ssGSEA. Cluster 2
had a significantly lower inflammation-related score relative to clusters 1 and 3 (wilcox.test)
(Fig. 6H).

Cao et al. (2024), PeerJ, DOI 10.7717/peerj.16935 13/32

https://peerj.com
https://doi.org/10.7717/peerj.16935/fig-5
http://dx.doi.org/10.7717/peerj.16935


Figure 6 Biological characterization of cellular senescence-related subtypes in TCGA-TNBC dataset.
(A) CCP scores compared across three subtypes; (B) G1/S phase scores compared across three subtypes;
(C) G2M-phase immune checkpoint scores compared across three subtypes; (D) Telomere extension
scores of telomerase compared across three subtypes; (E) EMT scores among three different subtypes; (F)
Hypoxic scores among three different subtypes; (G) Angiogenesis scores among three different subtypes;
(H) Inflammatory factor scores among three different subtypes. (p> 0.05 denotes no significance; ****p<

0.0001, ***p< 0.001, **p< 0.01, and *p< 0.05).
Full-size DOI: 10.7717/peerj.16935/fig-6

Immune characteristics of cellular senescence-related subtypes
The relationship between cellular senescence-related subtypes and immunity was analyzed
to investigate the immune characteristics of these subtypes. The immune scores of patients
in TCGA dataset were calculated by ‘‘ESTIMATE’’. Significant differences were observed
among the three subtypes, with a high degree of immune infiltration in clusters 1 and
3 (kruskal.test) (Fig. 7A).Subsequently, the scores for the relevant cells were calculated.
Significant differences were noted for all cells except CD8 T cells and cytotoxic lymphocytes
(kruskal.test) (Fig. 7B). Similarly, T cells CD4, also displayed distinct difference among three
groups in TIMER and EPIC analysis (Figs. 7C–7D). Although the results were obtained
from different algorithms, these results all together suggested higher immune infiltration
status in clusters 3. The expression of immune checkpoint genes, including NRP1, CD200,
BTLA, LAIR1, and TNFRSF14 differed significantly among the three subtypes (kruskal.test)
(Fig. 7E).
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Figure 7 Immune characterization of cellular senescence-related subtypes in TCGA dataset. (A) Com-
parison of ESTIMATE-predicted immune scores among the three subtypes (kruskal.test); (B) Compar-
ison of MCPcounter-predicted cell scores among the three subtypes(kruskal.test); (C) Comparison of
TIMER-predicted cell scores among the three subtypes (kruskal.test); (D) Comparison of EPIC-predicted
cell scores among the three subtypes (kruskal.test); (E) Differences in immune checkpoint gene expression
among the three subtypes (kruskal.test); (F) TIDE analysis for differential scores among the three subtypes
(wilcox.test) (p> 0.05 denotes no significance; ****p< 0.0001, ***p< 0.001, **p< 0.01, and *p< 0.05).

Full-size DOI: 10.7717/peerj.16935/fig-7

Finally, the putative clinical efficacy of immunotherapy was assessed among these
molecular subtypes. High TIDE scores in cluster 3 in TCGA cohort suggested that patients
of this subtype were less likely to benefit from immunotherapy owing to a higher likelihood
of immune escape (wilcox.test) (Fig. 7F).
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Identification of prognosis-related genes and construction of the risk
model
Differential analysis was separately performed between cluster 1 and non-cluster 1; cluster
2 and non-cluster 2, and cluster 3 and non-cluster 3. Finally, 2 down-regulated and 34
up-regulated DEGs were screened between cluster 1 and non-cluster 1; 293 down-regulated
and 9 up-regulated DEGs between cluster 2 and non-cluster 2, and 26 down-regulated and
218 up-regulated DEGs between cluster 3 and non-cluster 3. Thus, a total of 391 DEGs
were screened.

Univariate Cox analysis of these 391 DEGs yielded 69 genes with high prognostic
significance (p< 0.05), including 63 ‘‘Risk’’ and six ‘‘Protective’’ genes (Fig. S3A). These
69 hub genes were subsequently screened by LASSO regression (Fig. S3B). Further, using
10-fold cross-validation, a model was constructed and confidence intervals for each lambda
were calculated (Fig. S3C). The model was optimum for lambda = 0.0782, whereby four
genes were obtained, including MMP28, CT83, ACP5, and KRT6A; these were selected as
the target genes for further analyses.

The four genes’ expression levels were utilized to determine the risk score for each
sample using the TCGA dataset as the training set. Then, using ROC analysis, the RiskScore
prognostic classification was carried out (Fig. 8A). The prognostic prediction classification
efficiency was analyzed separately for 1–5 years with obtained AUC values 0.91, 0.93, 0.74,
0.83 and 0.84, respectively , and the AUC values reached 0.7, indicating good predictive
performance. Samples with RiskScore greater than zero after z-score normalization were
classified into the high-risk group, whereas those with Riskscore lesser than zero comprised
the low-risk group, with a highly significant (p< 0.05) difference between them (Fig. 8B).

To validate the model’s robustness, the GSE58812 dataset was used for verification.
Specifically, the risk model was constructed using these four genes and ROC analysis for
prognostic classification was performed based on the RiskScore (Fig. 8C). The prognostic
predictive classification efficiency was analyzed for 1–5 years with obtained AUC values
0.98, 0.71, 0.62, 0.66 and 0.65, respectively. All AUC values were over 0.6, displaying good
predictive ability. Furthermore, a significant difference in prognosis was found between
the risk groups (p< 0.05) (Fig. 8D).

Validation of association between prognostic model signature and
TNBC malignant phenotype
In this study, molecular assays revealed that the expression of MMP28, ACP5 and KRT6A
was increased in MDA-MB-468 and MDA-MB-231 cell lines. In contrast, the expression
of CT83 was decreased in MDA-MB-468 and MDA-MB-231 cell lines (Figs. 9A–9D). This
result is consistent with previous analyses that high expression of prognostic risk factors
and low expression of protective factors associated with higher RiskScore. Given that
ACP5 is a key gene influencing high RiskScore, we inhibited the expression of ACP5 in
MDA-MB-468 and MDA-MB-231 cell lines, and by transwell assay, we could observe the
ability of ACP5 to promote the proliferation of triple-negative breast cancer cell lines. After
we inhibited the expression of ACP5 in MDA-MB-468 and MDA-MB-231 cell lines, the
invasion and migration ability of the cell lines were decreased (Figs. 9E–9G). This study not
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Figure 8 Construction and validation of the risk model. (A) ROC curves for the risk model constructed
using four genes from TCGA dataset analysis; (B) KM curves for the risk model based on TCGA dataset;
(C) ROC curves for the risk model constructed using four genes for the GSE58812 dataset; (D) KM curves
for the risk model based on the GSE58812 dataset.

Full-size DOI: 10.7717/peerj.16935/fig-8

only confirms the existence of ACP5 as a prognostic risk factor, but also demonstrates that
this gene regulates the TNBCmalignant phenotype at the cellular level, thereby influencing
TNBC malignant progression.

Immunological characteristics of RiskScore subgroups and
sensitivity analysis based on drug IC50
To elucidate differences in the immune microenvironment of patients between the risk
groups, differences in the relative cell abundances predicted by ‘‘MCPcounter’’ were
compared (wilcox.test) (Fig. 10A). T cells, cytotoxic lymphocytes, and monocytic lineage
differed significantly between the risk groups. Immune cell infiltration was also assessed
(wilcox.test) (Fig. 10B). ‘‘ImmuneScore’’ was higher in the high-risk group relative to the
low-risk group, suggesting that patients in the former had high immune cell infiltration.
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Figure 9 The validation of cellular regulation function of signature. (A–D) The mRNA expression lev-
els of MMP28, CT83, ACP5 and KRT6A in MCF-10A, MDA-MB-468 and MDA-MB-231 cell lines. (E)
Representative migration and invasion images of MDA-MB-468 and MDA-MB-231 cell lines after inhi-
bition of ACP5. (F–G) Quantitative analysis for migration and invasion ability. n = 3, *≤0.05, **≤0.01,
***≤0.001. The results are presented as mean± S.E.M.

Full-size DOI: 10.7717/peerj.16935/fig-9

Additionally, TIMER and EPIC analysis also revealed higher immune infiltration status in
high risk group (Figs. 10C–10D).

Subsequently, differences in response to immunotherapy between the risk groups
were analyzed in TCGA cohort. First, differences in immune checkpoint expression were
compared. Most immune checkpoint genes, including TNFRSF14, LAIR1, and CD244
showed differential expression between the risk groups, with high expression in the
high-risk group (wilcox.test) (Fig. 10E).

A significant positive correlation between the Riskscore and T cells, cytotoxic
lymphocytes, and monocytic lineage (Fig. 10F) was observed. Risk scores also correlated
positively with ‘‘ImmuneScore’’, ‘‘StromalScore’’, and ‘‘ESTIMATEScore’’ (Fig. 10G).
Drug sensitivity prediction revealed that low-risk group showed higher sensitivity to six
traditional drugs (MG-132, Sorafenib, A77004, Bortezomib, Shikonin and AZ628) by
wilcox.test (p< 0.05, Fig. 10H).
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Figure 10 Immunological characteristics of RiskScore subgroups and sensitivity analysis in TCGA-
TNBC cohort. (A) Differences in MCPcounter-predicted cell scores between risk groups; (B) Differences
in immune and stromal scores between risk groups; (C) comparison of TIMER-predicted cell scores
between risk groups; (D) comparison of EPIC-predicted cell scores between risk groups; (E) Differentially
expressed immune checkpoints between risk groups; (F) Correlation analysis of cell scores with risk
scores; (G) Correlation analysis of ImmuneScore, StromalScore, and ESTIMATEScore with risk scores;
(H) The box plot of estimated IC50 for drugs (wilcox.test; p > 0.05 denotes no significance, *p < 0.05,
**p< 0.01, ***p< 0.001, and ****p< 0.0001).

Full-size DOI: 10.7717/peerj.16935/fig-10
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Figure 11 Prognostic model and survival prediction. (A–B) Univariate and multivariate Cox analyses of
RiskScore and clinicopathological characteristics; (C) Nomogram model; (D) 1-, 3-, and 5-year calibration
curves for the nomogram; (E) Decision curve for the nomogram; (F) Relative to other clinicopathological
features, the nomogram exhibits the best capacity for survival prediction.

Full-size DOI: 10.7717/peerj.16935/fig-11

Combination of RiskScore and clinicopathological characteristics
improves the performance of the prognostic model and its survival
predictive accuracy
Univariate regression analysis based on RiskScore and other clinicopathological
characteristics suggested that the latter was the most significant prognostic factor (p-
value = 0.007, Fig. 11A) and remained so (p-value = 0.003, Fig. 11B). A nomogram
was constructed to quantify the survival probability of patients and risk assessment by
combining RiskScore and other clinicopathological characteristics (Fig. 11C). The results
confirmed the greatest impact of RiskScore on survival prediction. Subsequently, the
model’s prediction accuracy was assessed using a calibration curve (Fig. 11D). The findings
indicated that the calibration curves for 1-, 3-, and 5-year predictions nearly overlappedwith
the standard curves, pointing to the nomogram’s strong predictive ability. Furthermore,
decision curve analysis (DCA) was used to evaluate the model’s dependability. DCA results
highlighted that both RiskScore and nomogram had significantly more benefits than the
extreme curves with strong survival predictive power relative to other clinicopathological
features, especially for the 5-year survival (Figs. 11E–11F).

DISCUSSION
TNBC is a highly heterogeneous type of cancer (Bianchini et al., 2016). Recent studies have
classified TNBC based on different molecular or clinical subtypes and identified possible
therapeutic targets, primarily based on transcriptomic subtypes (Metzger-Filho et al.,
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2012; Garrido-Castro, Lin & Polyak, 2019; Hu et al., 2022). Cellular senescence promotes
tumor regression through cell-non-autonomous and -autonomous mechanisms. Drugs
inducing cancer cell senescence and modulating SASPs provide new targets for tumor
therapy (Calcinotto et al., 2019). However, no cellular senescence-based typing of TNBC
has been established to date. In this study, we proposed cellular senescencemolecular typing
for the first time, and identified seven genes related to TNBC prognosis through analyses
and established three molecular subtypes. Subsequently, DEGs among three molecular
subtypes was adopted for the construction of risk model. Finally, a nonogram for clinical
decision-making was designed.

Seven cellular senescence related genes exhibited different biological functions in TNBC
or other cancer development.ETS2 is a key ETS transcriptional familymember implicated in
invasion and metastasis in TNBC (Kollareddy & Martinez, 2021). A screening experiment
conducted against CDK10 confirmed the ETS2 transcription factor as an interacting
protein (Guen et al., 2017). This finding indicated that ETS2may also participate in cell cycle
process. Serpin family E member 1 (SERPINE1) is responsible for encoding plasminogen
activator inhibitor 1, which is a primary inhibitor of tissue plasminogen activator (Li et
al., 2018). SERPINE1 has been detected in various cancer and involved in cancer invasion,
migration, and angiogenesis (Seker et al., 2019; Yang, Ma & Zhu, 2019). Also, SERPINE1, a
paclitaxel-resistant oncogene, is a putative target for TNBC treatment (Zhang, Lei & Jing,
2020b). FOS, a key regulator of TNBC cell proliferation and viability, is related to a poor
patient prognosis (Zhang, Lei & Jing, 2020a). IL1A, a pro-inflammatory cytokine, enhances
cell growth and invasiveness of TNBC cells. Abnormal IL1A induction correlates with a
poor patient prognosis in TNBC (You et al., 2021). IGFBP7 was reported to suppress breast
tumor growth through the induction of apoptosis and senescence pathways (Benatar et al.,
2012). Overall, these findings disclosed the potential functions or the prognostic ability of
selected hub genes and supported the reliability of our results.

TNBC is the most aggressive and heterogeneous subtype of breast cancer, and consists
of several different microenvironmental phenotypes (Xiao et al., 2019; Gruosso et al.,
2019; Bareche et al., 2020). Previous studies have classified several molecular subtypes
for TNBC. For instance, Lehmann and co-workers carried out clustering analysis
and categorized TNBC patients into six subtypes, called basal-like 1, basal-like 2,
immunomodulatory, luminal androgen receptor, mesenchymal, and mesenchymal
stem-like subclusters (Lehmann et al., 2011). Next, a transcriptome-wide analysis of
Chinese TNBC samples clustered TNBC patients into four subtypes - BLIS, IM, LAR,
and MES (Tong et al., 2023). In this research, we classified TNBC patients into only three
clusters based on senescence related characteristics, and our immunological analysis
highlighted significant differences in TME among the three subtypes, which could support
TNBC cellular senescence-based therapy and support clinical decision-making. Changes
in the vital immune cells that make up the stroma around the tumor are correlated with
tumor growth. TME metabolism changes are the result of the aberrant metabolic status
of tumor cells (Hinshaw & Shevde, 2019). The immune score produced by the ESTIMATE
algorithm rates the immunological make-up and speed of tumor sample responses. Strong
correlations exist between prognosis and tumor purity, or the proportion of malignant cells
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in the tumor tissue (Aran, Sirota & Butte, 2015). Here, we used ‘‘ESTIMATE’’ to identify
three subtypes in TME. Significant differences were found among the three subtypes, with
patients in clusters 1 and 3 showing a high degree of immune infiltration. Actually,
senescent cells secrete various factors which make uo senescence-relevant secretory
phenotype, including pro-inflammatory factors (cytokines, chemokines, micro-RNAs)
to induce inflammatory state (Frasca et al., 2021).Therefore, in this work, TME-related
cellular senescence characteristics are of interest in determining treatment strategies for
TNBC and could be potential targets for individualized therapy.

We built a risk model based on genes in cellular senescence-related pathways and
calculated risk scores based on four significant genes, includingMMP28, CT83, ACP5, and
KRT6A, and validated the relative expression levels of the four genes in TNBC cells. A
previous study defined a subset of TNBC with poor prognosis based on the basal marker,
KRT16, the stem cell marker, WNT11, and the EMT marker, MMP28 (Yu et al., 2013),
corroborating the rationality and validity of our gene selection approach. We constructed
a risk model incorporating multiple genes, wherein MMP28 was a risk factor. EMT
scores were calculated. Patients in cluster 2 had lower EMT scores than those in clusters
1 and 3, suggesting that the former were more likely to experience metastasis. CT83 is
a gene specific to TNBC and its hypermethylation is oncogenic in breast cancer (Chen
et al., 2021). Overexpression of four genes, including ART3, FABP7, TTYH1, and CT83
correlated positively with patients’ life expectancy rates in TNBC (p< 0.05) (Zhong et al.,
2020). This is supported by our study revealing the down-regulated expression of this
gene in the high-risk group. A model comprising CT83 and FABP7 constructed using Cox
regression, Kaplan–Meier, and ROC analyses correlated significantly with OS in TNBC.
ACP5 has been shown to correlate with poor patient prognosis in cancers such as gastric and
rectal cancers, and to correlate with malignant tumor progression by affecting malignant
phenotypes such as cell proliferation and invasion (Bian et al., 2019; An et al., 2021). In
breast cancer-related studies, the TRAP/ACP5/uteroferrin/purple acid phosphatase/PP5
signaling axis can act as a driver mediating breast cancer invasion and mediate cancer
malignant progression at the cellular level (Krumpel et al., 2015). This informs the present
study, in which we reveal that this gene is up-regulated for expression in TNBC cells and
promotes cell migration and invasive ability, providing a reference for subsequent work to
uncover the mechanisms by which this gene affects TNBC progression at the cellular level.
Ultimately, we identified potential biomarkers implicated in the onset and progression of
TNBC. These genes may provide novel insights into the tumorigenesis of TNBC and serve
as independent prognostic factors for TNBC. Taken together, these findings demonstrate
the validity of the risk model developed in this study.

Some limitations exist in this study that should be stated prior to outlining the
conclusions. Firstly, we could not demonstrate the difference and role of these subtypes in
TNBC progression because of a lack of progression data such as tumor stage of the patients.
Second, we only verified the role of the key signature gene associated with RiskScore in
the regulation of the malignant phenotype of TNBC cells at the cellular level, but we did
not verify the molecular mechanisms of the signature gene, such as influencing cytokine
secretion to regulate cellular senescence, to corroborate the results of the bioinformatic
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analyses. Finally, rather than evaluating our cohort, the data were taken from available
databases. As a result, there was still little evidentiary impact. Prospective studies are thus
needed to validate the therapeutic and prognostic value of the established subtypes in
TNBC.

CONCLUSION
In summary, we elucidated the abnormalities among cellular senescence-related pathways
in TME of malignant cells of TNBC. Senescence-related subtypes and a risk model were
constructed based on the genes in these pathways. Also, we validated the oncogenic gene
ACP5’s ability to migrate and invade in TNBC cells. Additionally, a nomogrom was
designed for future clinical decision-making. All these findings provide a basis for the
revelation of the molecular mechanisms by which senescence-associated genes influence
TNBC progression and directions for TNBC therapy and prognosis.
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