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ABSTRACT
Objectives. Type 2 diabetes mellitus (T2DM) commonly complicates kidney stone
disease (KSD). Our objective is to investigate the variations in the urinary microbiota
between individuals with KSD alone and those with KSD plus T2DM. This exploration
could have implications for disease diagnosis and treatment strategies.
Methods. During lithotripsy, a ureterscope was employed, and 1 mL of urine was
collected from the renal pelvis after bladder disinfection. Sequencing targeting the V3–
V4 hypervariable region was performed using the 16S rRNA and Illumina Novaseq
platform.
Results. The Shannon index showed a significant decrease in the KSD plus T2DM
group compared to the KSD-only group (false discovery rate = 0.041). Principal
Coordinate Analysis (PCoA) demonstrated a distinct bacterial community in the KSD
plus T2DM group compared to the KSD-only group (false discovery rate = 0.027).
The abundance of Sphingomonas, Corynebacterium, and Lactobacillus was significantly
higher in the KSD plus T2DMgroup than in the KSD-only group (false discovery rate<

0.05). Furthermore, Enhydrobacter, Chryseobacterium, and Allobaculum were positively
correlated with fasting blood glucose and HbA1c values (P < 0.05).
Conclusions. The urinary microbiota in the renal pelvis exhibits differences between
patients with KSD plus T2DM and those with KSD alone. Further studies employing
animal models are necessary to validate these distinctions, potentially paving the way
for therapeutic developments based on the urinary microbiota.
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INTRODUCTION
Kidney stones are a common urinary system disorder that can lead to severe lower back
pain, kidney hydronephrosis, decreased kidney function, urinary tract infections, and
other discomforts or complications in patients. It can also recur frequently, significantly
impacting the quality of life. Kidney stones are a global health issue, with an estimated
prevalence of around 12% in adults worldwide (Alelign & Petros, 2018). In China, the
prevalence is on the rise. Wang et al. (2017) conducted statistical analysis of disease data
from 1990 to 2016 and found that the prevalence has shown a phased increase in the past
three decades, with rates of 5.96% from 1991 to 2000, 8.86% from 2001 to 2010, and
10.63% from 2011 to the present.

The exact causes of kidney stones remain unclear, but research has suggested an
association with environmental factors (Sakhaee, Maalouf & Sinnott, 2012), and the
microbiota has been a closely examined environmental factor in recent years (Phillips,
2009). Multiple studies indicate that patients have disruptions in their gut microbiota.
For example, Stern et al. (2016) reported a 3.4-fold increase in the Bacteroides in the gut
of patients compared to healthy individuals, while the Prevotella was 2.8 times lower in
patients than in healthy individuals. They also found that Bacteroides were an independent
risk factor for stone formation (Stern et al., 2016). Ticinesi and colleagues also found
differences in the gut microbiota of stone patients compared to healthy individuals, such
as lower microbial diversity in patients and lower relative abundance of Faecalibacterium,
Enterobacter, andDorea genera. Additionally, certain bacteria related to oxalate degradation
were decreased in relative abundance in patients (Ticinesi et al., 2018).

Urinary microbiota is another area of human microbiota research that has gained
attention in recent years. In 2012, researchers shattered the traditional notion of a ‘‘sterile
bladder’’ using expanded quantitative urine culture and high-throughput sequencing
techniques (Wolfe et al., 2012). The research revealed that the bladder, like other parts of
the body, harbors a microbiota, and its microbial structure is related to individual health
status (Pearce et al., 2014; Thomas-White et al., 2018). Since the bladder has a urinary
microbiota and is connected to the renal pelvis through the ureter, it is plausible that the
renal pelvismay also have a urinarymicrobiota. Therefore, our research team collected renal
pelvis urine samples in recent years after disinfecting the bladder and indeed confirmed
the presence of a urinary microbiota in the renal pelvi (Liu et al., 2020b). Given that
diabetes is a common complication in stone patients (Nerli et al., 2015), and that elevated
urinary glucose and uric acid due to diabetes can alter the renal pelvis microbial growth
environment (Daudon et al., 2006), our research team aims to investigate whether stone
patients with coexisting diabetes have an impact on the diversity and structure of the renal
pelvis urinary microbiota.
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METHODS AND MATERIALS
Patients
The study received ethical approval from the Ethics Review Board of the Second Peoples’
Hospital of Wuxi (No: 201802) and was conducted between October 2018 and April 2019.
All patients have informed consent and signed the subject informed consent form.

Inclusion criteria for kidney stone disease (KSD) patients
Patients who had been diagnosed with calcium stones through X-ray, ultrasound, or CT
scans and were willing to participate in the demographic survey.

Exclusion criteria for KSD patients
Patients whowere pregnant,menstruating, diagnosedwithmalignant tumors, autoimmune
diseases, urethritis, prostatitis, benign prostatic hyperplasia (Tsai et al., 2022), renal cysts,
bladder inflammation, urinary tract abnormalities, had undergone urinary catheterization
within the past 4 weeks, or had used antibiotics or probiotic products within the past 4
weeks.

Inclusion and exclusion criteria for patients with KSD and diabetes
(KSD + DM)
In addition to meeting the above inclusion and exclusion criteria, these patients also had
type 2 diabetes. The diagnostic criteria for diabetes were fasting blood sugar ≥7.0 mmol/L
or 2-hour postprandial blood sugar≥11.0 mmol/L (Alberti, Zimmet & Consultation, 1998).

All patients in the KSD cohort underwent ureteroscopic lithotripsy, a procedure during
which stones were collected. The composition of the stones was determined using Infrared
Spectrum analysis (Quest Diagnostics Inc., Secaucus, NJ, USA).

Urine sample collection
The urine specimen collection process was previously outlined in our study (Liu et al.,
2020a). In brief, a catheter is initially inserted through the cystoscope to obtain urine from
the bladder. Subsequently, three successive rinses of the bladder are performed using iodine
tincture. Finally, the bladder is thoroughly washed with saline solution until the withdrawn
fluid becomes clear. Following bladder disinfection, a catheter is introduced through the
ureteroscope to procure 1 mL of renal pelvis urine for bacterial DNA extraction.

Bacterial isolation and bioinformatics
Data were collected as previously described in Tsai et al. (2022). Specifically, the bacterial
DNA isolation, 16 S rRNA sequencing, and bioinformatics (Liu et al., 2023). The extraction
of bacterial DNA from urine, high-throughput sequencing, and bioinformatics analysis
have been comprehensively described in our previous research (Liu et al., 2022). Here,
we provide a brief overview: Following PCR amplification of bacterial DNA, extraction
was carried out using AMpure XP magnetic beads (Beckman Coulter, Indianapolis, IN,
USA). When conducting a microbiome study, it is essential to account for potential
sources of contamination and validate the accuracy of the sequencing method. In our
study, we included negative control and positive samples to assess environmental DNA
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contamination (Liu et al., 2022). Amplification was performed using primers 319F and
806R, targeting the highly sensitive V3–V4 region of the 16S rRNA gene. Sequencing was
conducted on the Illumina Novaseq platform.

Environmental contaminants of urine samples were conservatively removed as
previously described. Briefly, bacterial ASVs whose counts did not exceed five times
the maximum number of counts in the negative controls were considered as contaminates
and removed, as described (Liu et al., 2022). We also manually removed bacteria that have
been reported to be environmental contaminants from soil and water (Liu et al., 2022).

QIIME software was employed for sequence analysis, including quality adjustments,
demultiplexing, and taxonomic assignment. Operational taxonomic units were determined
using PiCRUSt based on the Greengenes database. Finally, diversity was assessed using
QIIME, with distance calculations based on 97% similarity and unweighted UniFrac.

This project utilized R Studio (version 8.14; Altamor Drive, Los Angeles) for analysis.
Specifically, Principal Coordinates Analysis (PCoA) was employed to assess the differences
in microbial structures between the two groups. Taxonomy relative abundances were
logarithmically transformed using Log2, followed by the application of the Wilcoxon
test to determine inter-group differences in bacteria. Additionally, Benjamin-Hochberg
correctionwas applied to adjust the p-values, where a corrected P-value (P < 0.05) indicated
statistical significance.

Statistical analysis
For continuous variables that conform to a normal distribution, we applied the t -test. In
cases where they did not adhere to a normal distribution, the Wilcoxon test was utilized
with Benjamin-Hochberg correction. A comparison of the differences in genera with an
abundance higher than 0.5% between groups were performed. Categorical variables were
subjected to the Pearson Chi-square test, and correlation analysis between two variables was
performed using Pearson’s analysis. Statistical significance was determined at a significance
level of P < 0.05.

RESULTS
A comparison between KSD+DM and KSD-only groups
Table 1 presents a summary of the participants’ demographic and clinical data. Here, age,
BMI, HbA1c, FBG, glomerular filtration rate, blood urea nitrogen, blood uric acid, and
blood creatinine were continuous variables followed a normal distribution, while stone
duration and urine white blood cells were continuous variables which are not followed a
normal distribution. Out of the 30 participants, 28 stones were identified as comprising
80% CaOx-monohydrate and 20% CaOx-dihydrate.

Both the KSD+DM and KSD-only groups exhibited an equal distribution of gender, as
well as similar smoking and drinking habits (P > 0.05). No significant differences were
observed between the two groups in terms of age, BMI, stone duration, glomerular filtration
rate, urine white blood cell count, nitrite positivity in urine, or leukocyte esterase positivity
(P > 0.05). As anticipated, HbA1c and fasting blood glucose levels were significantly
higher in the KSD+DM group compared to the KSD-only group (P < 0.05). Furthermore,
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Table 1 A comparison between KSD+DM and KSD-only groups.Demographics and clinical data of
participants.

Variables KSD +DM
(n= 30)

KSD
(n= 30)

t/Z/χ2 P-value

Female (n%) 15 (50.00%) 15 (50.00%) 0.000 1.000
Age (years) 56.20± 11.41 55.00± 11.69 0.373 0.713
BMI (kg/m2 ) 25.32± 2.06 24.65± 3.41 0.168 0.258
Smoking (n%) 3 (10.00%) 3 (10.00%) 0.000 1.000
Drinking (n%) 3 (10.00%) 3 (10.00%) 0.000 1.000
HbA1c (%) 7.66± 0.94 6.14± 0.94 1.922 0.009
Fasting blood glucose
(mmol/L)

8.88± 2.65 5.75± 1.19 3.830 0.001

Stone duration (days) 274.35± 550.42 393.30± 1145.72 −0.666 0.512
Comorbid condition
Hypertension (n%) 10 (33.33) 8 (26.67) 0.317 0.573
Dyslipidemia (n%) 11 (36.67) 14 (46.67) 0.617 0.432
Glomerular filtration rate
(ml/min/1.73m2)

83.20± 13.23 98.10± 18.54 −1.931 0.056

Urine white blood cells (/ul) 42.27± 39.10 111.33± 123.31 −1.223 0.002
Nitrite positive in urine (n%) 0 (0.00%) 0 (0.00%) / /
Leukocyte esterase positive (n%) 12 (40.00%) 18 (60.00%) 0.800 0.371
Blood urea nitrogen (mmol/L) 6.22± 1.62 4.92± 1.32 2.006 0.060
Blood uric acid (umol/L) 374.92± 87.13 270.25± 61.62 3.102 0.006
Blood creatinine (umol/L) 78.82± 21.01 66.13± 25.14 1.181 0.233

Notes.
For continuous variables that followed a normal distribution, we used the t -test. If they did not adhere to a normal distribu-
tion, we employed the Wilcoxon test. For categorical variables, we applied the Pearson Chi-square test.

blood uric acid levels were notably elevated in the KSD+DM group in comparison to the
KSD-only group (P < 0.05).

The bacterial diversity exhibited differences between KSD+DM and
KSD-only patients
As depicted in Fig. 1A, there was no statistically significant difference in the microbial
richness index Chao 1 between the KSD+DM and KSD-only groups (false discovery rate
>0.05); however, Fig. 1B demonstrated that the microbial diversity was notably higher
in the KSD+DM group compared to the KSD-only group (false discovery rate = 0.041).
Figure 1C demonstrates that the PCoA results showed a statistically significant R2 value
of 8% for distinguishing microbial structures between the groups (false discovery rate =
0.027). Due to hypertension and dyslipidemia being common comorbidities with kidney
stone disease (KSD) and type 2 diabetes mellitus (DM), we analyzed whether these two
comorbidities act as confounding variables in the urinary microbiota. The results revealed
that both of them are not confounding factors (P > 0.05; Fig. S1). Figure 1D reveals that
a total of 1,595 operational taxonomic units were detected in the urine of both groups. In
the KSD+DM group, 67.68% of these operational taxonomic units were shared with the
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KSD-only group, whereas the KSD-only group had 60.87% shared operational taxonomic
units.

Comparison of bacterial composition between groups
The top 10 bacterial genera in terms of relative abundance in this study included
Acinetobacter, Aureimonas, Bacillus, Bifidobacterium, Delftia, Planococcaceae incertae
sedis, Propionibacterium, Pseudomonas, Sphingomonas, and Staphylococcus (as shown in
Fig. 2A). The bacterial genera that exhibited significant differences between the two groups
included Sphingomonas, Corynebacterium, and Lactobacillus (P < 0.05; as shown in Fig.
2B).

Correlation of fasting blood glucose and HbA1c values with
differentially abundant bacteria between groups
The results of the correlation analysis between the relative abundance of 11 differentially
abundant bacteria and fasting blood glucose and HbA1c values in the KSD+DM group
revealed that the relative abundance of Enhydrobacter, Chryseobacterium, and Allobaculum
genera exhibited correlations with fasting blood glucose and HbA1c values (P < 0.05; as
shown in Table 2).

DISCUSSION
The coexistence of kidney stones and diabetes leads to significant changes in the diversity
and structure of urinary microbiota. Our findings indicate that individuals with both
conditions exhibit higher diversity in their urinary microbiota compared to those with
kidney stones alone. In a previous study conducted by our research team, we analyzed
the urinary microbiota of 70 female patients with type 2 diabetes and compared it to 70
age- and gender-matched healthy individuals using midstream urine samples. Our results
revealed a similar trend: the presence of diabetes was associated with increased microbial
diversity (Liu et al., 2017). However, it’s worth noting that this conclusion is not universally
consistent. Chen et al. (2019) and colleagues conducted a study comparing the urine of
32 diabetes patients with 26 healthy individuals and found that while the abundance of
bacteria decreased in diabetes patients, the overall diversity remained unchanged.

Furthermore, our study uncovered differences in the structural composition of urinary
microbiota between the two patient groups. This finding aligns with similar observations
reported by Chen and colleagues in their study on diabetes patients (Chen et al., 2019). In
our previous research, although we observed visual differences in microbiota composition
between the two groups, we did not achieve statistical significance (Liu et al., 2017).
Additionally, a case-control study conducted by Penckofer et al. (2020) did not report such
differences. Given that diet and ethnicity have been shown to influence gut microbiota
(David et al., 2014; Gaulke & Sharpton, 2018), it is crucial to conduct comparisons within
the same population to determine whether diabetes indeed leads to changes in urinary
microbiota. Moreover, it’s important to note that our study used renal pelvis urine samples,
while studies by Chen J, Penckofer S, and our earlier research utilized clean midstream
urine samples (Chen, Zhao & Vitetta, 2019; Liu et al., 2017; Penckofer et al., 2020). Alan J.
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Table 2 Correlation of fasting blood glucose and HbA1c values with differentially abundant bacteria
between groups.

Parameters Bacteria (KSD+DM vs KSD) r P-value

Fasting blood glucose Allobaculum (0.12 vs 0.00) 0.927 <0.001
Chryseobacterium (0.74 vs 0.19) 0.834 0.005
Enhydrobacter (0.86 vs 0.12) 0.784 0.012

HbA1c Allobaculum (0.12 vs 0.00) 0.893 0.001
Chryseobacterium (0.74 vs 0.19) 0.817 0.007
Enhydrobacter (0.86 vs 0.12) 0.864 0.003

Notes.
Pearson correlation analysis was performed. The data in parentheses represent the relative abundance of bacteria that show
inter-group differences (KSD+DM vs KSD).

Wolfe and his colleagues have confirmed that clean midstream urine does not accurately
represent the microbiota of the bladder or renal pelvis; it primarily reflects the ‘‘urethral
microbiota’’ (Brubaker et al., 2021; Wolfe & Brubaker, 2019; Wolfe et al., 2012). Therefore,
future research efforts should employ consistent methods for collecting renal pelvis or
bladder urine samples to ensure the comparability of results across different studies.

The taxonomic hierarchy of urinary microbiota in patients with both kidney stones
and diabetes has been altered. In our study, both the group with kidney stones only and
the group with both conditions exhibited Proteobacteria as the dominant phylum in their
urine, followed by Firmicutes and Actinobacteria. Interestingly, this finding contrasts with
Penckofer S’s study on the urinary microbiota of diabetes patients, where Proteobacteria
were not the dominant phylum (Penckofer et al., 2020). In our earlier midstream urine
study, we found that Proteobacteria were dominant in both diabetes patients and healthy
individuals, ranging from 51.63% to 58.01% (Liu et al., 2017). In a study of the US
population conducted by Pearce M M, Firmicutes were the primary phylum in bladder
urine microbiota, followed by Actinobacteria and Proteobacteria (Pearce et al., 2014).
This suggests that ethnicity plays a role in the distribution of bacterial phyla in urinary
microbiota. However, further research comparing populations from different countries is
required to confirm this observation.

In this study, it was observed that the relative abundance of Proteobacteria in patients
coexisting with kidney stones and diabetes was slightly lower than in those without diabetes.
In the context of gut microbiota, an increase in Proteobacteria has been recognized as one
of the characteristics associated with metabolic disorders (Shin, Whon & Bae, 2015). Both
kidney stones and diabetes are linked to metabolic disruptions. Therefore, the question
arises: why do Proteobacteria, a phylum known to include various harmful bacteria,
decrease when these twometabolic-related diseases coexist? To gain a clearer understanding
of the reasons behind this phenomenon, further confirmation through large-scale studies
is necessary.

In the earlier studies on urinary microbiota, the distribution of Proteobacteria remains
unclear. For instance, Jiang et al. found that Proteobacteria was the most abundant phylum
in three groups of patients, including those with kidney stone disease (KSD), patients with
urinary tract tumors, and healthy controls (Liu et al., 2017). Yang et al. (2023) reported
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an increase in Proteobacteria in patients with diabetic kidney disease compared to the
controls. Additionally, Pederzoli et al. (2020) observed an elevation of Proteobacteria in
patients with bladder cancer. Therefore, the role of Proteobacteria in urinary microbiota
cannot be generalized, and its distribution may vary among different diseases. Future
research, particularly large-sample multicenter studies, is needed to further explore this
aspect.

Subsequently, functional experiments should be conducted to elucidate the role of
Proteobacteria in urinary microbiota.

Notably, our study identified a significant increase in Lactobacillus in the urine of patients
with both kidney stones and diabetes, a phenomenon also observed in previous studies on
diabetes patients. In Penckofer et al. (2020), the detection rate of Lactobacillus in diabetes
patients’ urine was higher than that in healthy individuals, and its relative abundance
was positively correlated with HbA1c levels (Liu et al., 2017). Our previous study similarly
found higher relative abundance of Lactobacillus in the urine of diabetes patients compared
to healthy individuals. Like Penckofer et al. (2020), our earlier research revealed that the
relative abundance of Lactobacillus in diabetes patients’ urine increased with rising fasting
blood glucose levels (Liu et al., 2017). However, in our current study, we did not observe
a correlation between the relative abundance of Lactobacillus in the urine of patients with
both kidney stones and diabetes and diabetes diagnostic indicators such as fasting blood
glucose or HbA1c. This discrepancy may be attributed to the relatively small sample size
in our current study.

Furthermore, our study found a positive correlation between the presence ofAllobaculum
in the urine of patients with both kidney stones and diabetes and their fasting blood glucose
and HbA1c levels. Allobaculum plays a probiotic role in the gut microbiota, contributing
to anti-inflammatory responses, mucosal barrier protection, metabolic regulation, and
immunomodulation (Ma et al., 2020). Therefore, if the role of bladder bacteria mirrors
that of gut bacteria, the correlation between Allobaculum and fasting blood glucose and
HbA1c may reflect the body’s self-defense mechanisms. However, we also observed an
increase in the harmful bacterium Chryseobacterium with rising fasting blood glucose and
HbA1c levels. Although Chryseobacterium spp. has been linked to urinary tract infections
and septicemia (Acosta-Ochoa et al., 2013; Cascio et al., 2005), its role in the microbial
community is not well-documented. Thus, future research should consider conducting
animal experiments to validate these findings.

The bacteria discovered in this study, such as Sphingomonas, Propionibacterium, and
Corynebacterium, have been reported in several previous studies on urinary microbiota
(Ahn et al., 2022; Cappelli et al., 2023; Nickel et al., 2022; Perovic et al., 2022; Popovic et al.,
2018; Kim & Park, 2018). However, Methylophilus, identified in this study, has only been
reported in earlier studies on human skin and gut microbiota (Dekio et al., 2005; Jiang et
al., 2021b; Jiang et al., 2021b; Lee et al., 2021; Zheng et al., 2023). It is necessary to conduct
large-scale studies in the future to further clarify the bacterial composition in human urine,
which will play a crucial role in redefining urinary tract infections.
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Limitations to consider when interpreting our findings
One limitation of our study is the relatively small sample size. While our results offer
valuable insights, larger cohorts could provide a more comprehensive understanding of
the urinary microbiota in patients with kidney stones and diabetes. Future research with
more extensive participant groups may help validate and strengthen our findings. Another
consideration is the cross-sectional design of our study, which captures a snapshot of
the urinary microbiota at a single point in time. Longitudinal studies that track changes
over time would offer a more dynamic perspective on the interactions between kidney
stones, diabetes, and the urinary microbiota. Such studies could reveal how these factors
evolve and influence each other over extended periods. These limitations underscore the
need for further investigation and the cautious interpretation of our findings. In addition,
this study did not conduct animal model experiments to validate the mechanisms of
urinary microbiota, which is also a limitation of this study. The main reasons for not
conducting experiments on animal models to validate the mechanisms are as follows: (a)
It is challenging to avoid damaging the renal tubules when transplanting urinary microbial
communities into the kidneys or renal tubules of animal models; (b) the difficulty of
extracting human urinary microbiota and transplanting it into the kidneys or bladder of
animal models. This is because a significant proportion of bacteria in the human bladder
are anaerobic, and we have not found a method for complete anaerobic collection and
extraction of bladder microbial communities.

Recent studies have highlighted variations in the urinary microbiota in patients with
kidney stones and diabetes compared to healthy individuals (Chen et al., 2019; Liu et al.,
2020b; Penckofer et al., 2020; Xie et al., 2020). Given that both conditions can impact renal
function and alter urine composition, this study is the first to explore differences in urinary
microbiota in patients with both conditions compared to those with kidney stones alone.
Additionally, certain bacteria were found to be correlated with diagnostic indicators of
diabetes in these patients. To further confirm these findings and elucidate the causal
relationship between the diseases and urinary microbiota, future research should prioritize
larger sample size studies and conduct animal experiments.

CONCLUSION
In summary, our study underscores the importance of considering urinary microbiota in
kidney pelvis in the context of kidney stones and diabetes. The intricate interplay between
these conditions and the urinary microbiota opens up new avenues for research and
potentially novel approaches to managing and treating these health issues. As we continue
to unravel the complexities of the human microbiome, future studies are poised to provide
valuable insights into the pathophysiology of kidney stones, diabetes, and related metabolic
disorders.
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