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Mathematical models of collective cell movement often neglect the effects of spatial
structure, such as clustering, on the population dynamics. Typically, they assume that
individuals interact with one another in proportion to their average density (the mean-field
assumption) which means that cell-cell interactions occurring over short spatial ranges are
not accounted for. However, in vitro cell culture studies have shown that spatial
correlations can play an important role in determining collective behaviour. Here, we take
a combined experimental and modelling approach to explore how individual-level
interactions give rise to spatial structure in a moving cell population. Using imaging data
from in vitro experiments, we quantify the extent of spatial structure in a population of 3T3
fibroblast cells. To understand how this spatial structure arises, we develop a lattice-free
individual-based model (IBM) and simulate cell movement in two spatial dimensions. Our
model allows an individual's direction of movement to be affected by interactions with
other cells in its neighbourhood, providing insights into how directional bias generates
spatial structure. We consider how this behaviour scales up to the population level by
using the IBM to derive a continuum description in terms of the dynamics of spatial
moments. In particular, we account for spatial correlations between cells by considering
dynamics of the second spatial moment (the average density of pairs of cells). Our
numerical results suggest that the moment dynamics description can provide a good
approximation to averaged simulation results from the underlying IBM. Using our in vitro
data, we estimate parameters for the model and show that it can generate similar spatial
structure to that observed in a 3T3 fibroblast cell population.
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Abstract6

Mathematical models of collective cell movement often neglect the effects of spatial structure, such7

as clustering, on the population dynamics. Typically, they assume that individuals interact with one8

another in proportion to their average density (the mean-field assumption) which means that cell-cell9

interactions occurring over short spatial ranges are not accounted for. However, in vitro cell culture10

studies have shown that spatial correlations can play an important role in determining collective11

behaviour. Here, we take a combined experimental and modelling approach to explore how individual-12

level interactions give rise to spatial structure in a moving cell population. Using imaging data from in13

vitro experiments, we quantify the extent of spatial structure in a population of 3T3 fibroblast cells.14

To understand how this spatial structure arises, we develop a lattice-free individual-based model15

(IBM) and simulate cell movement in two spatial dimensions. Our model allows an individual’s16

direction of movement to be affected by interactions with other cells in its neighbourhood, providing17

insights into how directional bias generates spatial structure. We consider how this behaviour scales18

up to the population level by using the IBM to derive a continuum description in terms of the19

dynamics of spatial moments. In particular, we account for spatial correlations between cells by20

considering dynamics of the second spatial moment (the average density of pairs of cells). Our21

numerical results suggest that the moment dynamics description can provide a good approximation to22

averaged simulation results from the underlying IBM. Using our in vitro data, we estimate parameters23

for the model and show that it can generate similar spatial structure to that observed in a 3T324

fibroblast cell population.25
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1 Introduction29

Collective cell movement is integral to tissue repair [Martin, 1997, Shaw and Martin, 2009], embryonic30

development [Kurosaka and Kashina, 2008], the immune response [Rørth, 2009] and cancer [Friedl and31

Wolf, 2003]. Interactions occurring between individual cells have implications for movement of the cell32

population as a whole. However, the manner in which these individual-level events affect the collective33

dynamics is not always well understood [Tambe et al., 2011, Vedel et al., 2013, Agnew et al., 2014].34

Cells interact over short length scales in various ways, for example via cell-secreted diffusible chemical35

signals [Mason et al., 2001, Raz and Mahabaleshwar, 2009]. When detected by neighbouring cells these36

signals can have a repulsive or attractive effect on an individual’s direction of movement [Painter and37

Hillen, 2002], or affect the rate at which a cell will move [Cai et al., 2006]. Physical forces, such as38

cell-cell adhesion [Trepat et al., 2009,Tambe et al., 2011], and crowding effects also influence movement39

[Abercrombie, 1979, Plank and Simpson, 2012]. These interactions may generate spatial structure in a40

cell population which will in turn affect the collective dynamics [Plank and Law, 2015]. For instance, cell41

clustering can arise due to attractive forces such as cell-cell adhesion [Green et al., 2010, Agnew et al.,42

2014]. On the other hand, repulsive forces such as chemorepellant signals can cause cells to segregate [Kay43

et al., 2012,Keeley et al., 2014].44

Individual-based models (IBMs) have proven effective for simulating the movement of large numbers45

of cells and can give insights into how interactions give rise to spatial structure [Grimm et al., 2006]. In46

a lattice-free framework, cells are represented as individual agents undergoing movement through contin-47

uous space and features including proliferation [Plank and Simpson, 2012], cell-cell adhesion [Johnston48

et al., 2013] and directional bias [Dyson and Baker, 2015] can be incorporated into the model. Equivalent49

lattice-based models, where agent locations are restricted to discrete sites on a pre-defined lattice, often50

require less computational power than their lattice-free counterparts. However, at high cell densities51

agents become aligned along the lattice resulting in unrealistic spatial configurations of cells that do52

not correspond well to those observed experimentally [Plank and Simpson, 2012]. In lattice-free models,53

different approaches can be employed to account for crowding effects and volume-exclusion, the concept54

that the cells themselves take up space in the domain and may obstruct the movement of neighbouring55

cells. For instance, each individual may occupy a spherical region with fixed diameter through which the56

movement of other agents is restricted [Bruna and Chapman, 2012,Dyson and Baker, 2015].57

IBMs for cell movement in two spatial dimensions generate simulation data that can be compared to58

experimental images of moving cells studied in vitro. In two-dimensional cell migration assays, such as59

circular barrier assays [Simpson et al., 2013b] and scratch assays [Johnston et al., 2014], cells are seeded60

into a well and allowed to attach to the well surface. The movement of cells across the surface can then61

be monitored by imaging the well at regular discrete time intervals. Analysis of this time-lapse imaging62

data provides information about the properties of individual cells as well as the spatial distribution of63

the population over time [Simpson et al., 2010].64

Using an IBM to obtain a reliable description of average cell behaviour can become computationally65

expensive because this involves carrying out many simulation repeats. In addition, IBMs are not partic-66

ularly amenable to further mathematical analysis. This has motivated the development of more mathe-67

matically tractable approximation schemes which can provide greater insight into how population-level68

behaviour arises from interactions in the underlying stochastic process [Deroulers et al., 2009]. Models69

that aim to capture collective movement at the population level, such as the Fisher-Kolmogorov equa-70
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tion [Fisher, 1937,Kolmogorov et al., 1937], typically do not account for spatial structure. The majority71

of models invoke a mean-field assumption which assumes that cells interact with one another in propor-72

tion to their average density [Anderson and Chaplain, 1998, Deroulers et al., 2009, Tremel et al., 2009].73

Thus, they do not always provide an accurate representation of cell behaviour, particularly in highly74

clustered (or segregated) populations where interactions between neighbouring cells are often stronger75

(or weaker) than in populations where there is no spatial structure [Simpson et al., 2013a, Markham76

et al., 2014].77

An alternative approach incorporates spatial correlations by employing the dynamics of spatial mo-78

ments. The dynamics of individual cells, pair of cells, triplets of cells, and so on, can be considered in79

order to explore how spatial structure changes over time. In ecology, spatial moment models have been80

developed to study the effects of spatial patterns in animal and plant communities [Bolker and Pacala,81

1997, Lewis and Pacala, 2000, Dieckmann and Law, 2000]. Models incorporating birth, death [Bolker82

and Pacala, 1997,Law et al., 2003], growth [Adams et al., 2013] and movement [Murrell and Law, 2000]83

have been considered, as well as interactions between different types or species, for example predator-84

prey relationships [Murrell, 2005]. More recently, moment dynamics approaches have also been applied85

to collective cell movement, such as in lattice-free models with chemotactic interactions [Newman and86

Grima, 2004,Binny et al., 2015] and cell-cell adhesion [Middleton et al., 2014], and a lattice-based model87

for interacting cell populations [Johnston et al., 2015].88

A closure assumption is required in order to solve a dynamical system of spatial moments. The89

mean-field assumption closes the system at first order so ignores the spatial information held in higher90

moments. In order to retain information about spatial structure a second-order closure, at least, is needed.91

A number of different second-order closures are possible [Murrell et al., 2004,Raghib et al., 2011], however92

the Kirkwood Superposition Approximation is often applied in the context of cell movement [Kirkwood,93

1935, Kirkwood and Boggs, 1942, Markham et al., 2014]. Other schemes which do not rely on a closure94

assumption have also been developed, for example perturbation approximations [Bruna and Chapman,95

2012] and methods that deal with spatial moments at all orders [Ovaskainen et al., 2014].96

In this paper we extend the model described in our recent work [Binny et al., 2015] from one to two97

spatial dimensions, making it more amenable for use in conjunction with experimental data. To explore98

whether our model can provide insights into the behaviour of moving cells studied in vitro, we analyse99

imaging data generated from experiments with populations of motile 3T3 murine fibroblast cells.100

We present a lattice-free IBM for collective cell movement in which an individual’s rate and direction101

of movement are determined by interactions with cells in its neighbourhood. This neighbour-dependent102

directional bias allows us to explore how attractive or repulsive interactions between cells give rise to103

spatial structure in the population. The first spatial moment, the average density of individual cells,104

holds no spatial information. Therefore, in order to account for spatial correlations we consider the105

second spatial moment, an average density of pairs of cells. We use our IBM to derive a population-level106

description for the second moment dynamics and solve this for a distribution of cells that is homogeneous107

in space. Our results suggest that the spatial moment model can provide a good approximation to the108

underlying stochastic process.109

Motile cells possess dynamic cytoskeletons which allow them to change their shape and flex around110

neighbouring cells [Abercrombie, 1979, Le Clainche and Carlier, 2008]. To try and capture this trait111

we also make use of the neighbourhood-dependent directional bias as a mechanism for incorporating112

crowding effects, rather than defining cells as hard spheres with a fixed exclusion area. Using our in vitro113
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data, we estimate parameters for the model and quantify the spatial structure in a moving population114

of fibroblast cells.115

2 Experimental methods116

2.1 Cell culture117

Murine fibroblast 3T3 cells were cultured in Dulbecco’s modified Eagle medium (Invitrogen, Australia)118

with 5% foetal calf serum (FCS) (Hyclone, New Zealand), 2 mM L-glutamine (Invitrogen), 50U/ml119

penicillin and 50µg/ml streptomycin (Invitrogen), in 5% CO2 and 95% air at 37 ◦C. Monolayers of 3T3120

cells were cultured in T175 cm2 tissue culture flasks (Nunc, Thermo Scientific, Denmark). Prior to121

confluence, cells were lifted with 0.05% trypsin (Invitrogen). Viable cells were counted using the trypan122

blue exclusion test and a haemocytometer.123

Two cell suspensions were created at approximate average cell densities of 20,000 cells/ml and 30,000124

cells/ml. The experiments were performed in triplicate for each initial cell density. Cells were seeded in125

a 24 well tissue culture plate (each well of diameter 15.6 mm) and incubated overnight in 5% CO2 and126

95% air at 37 ◦C to allow them to attach to the base of the plate. Initially, cells were approximately127

uniformly distributed in each well.128

2.2 Imaging techniques and analysis129

Time-lapse images of the cells were captured, over a period of 12 hours at 3 hour intervals, using a light130

microscope and Eclipse TIS software at 100x magnification. For each sample, a 4500 µm x 450 µm image131

was reconstructed from overlapping adjacent images captured at approximately the centre of the well.132

The locations of the n cells in each image were manually determined by superimposing markers onto133

cells and recording the Cartesian coordinates of markers using ImageJ image analysis software. These134

coordinates were used to calculate a pair-correlation function (PCF) for each image following the method135

in Section 3.2.136

3 Mathematical modelling of cell movement137

3.1 Individual-based model138

We extend our previous model [Binny et al., 2015] to consider the collective movement of n individuals in139

two-dimensional continuous space, with periodic conditions at the boundaries. The following framework140

is analogous to the one-dimensional model described in [Binny et al., 2015] and we refer the reader there141

for a more comprehensive description of the concepts outlined below.142

The location of a cell i is represented by a coordinate xi ∈ R2 and the state of the system at time t143

comprises the locations of all n individuals. Cell i moves as a Poisson process over time with movement144

rate per unit time ψi(x), i.e. the probability of an event occurring in a short time δt is ψi(x)δt+O(δt2).145

The movement rate ψi(x) is dependent on the state of the system at time t so the Poisson process is146

inhomogeneous over time. When cell i undergoes a movement event, it moves a displacement r to a new147

location xi + r drawn from a probability density function (PDF) µ(xi,xi + r).148
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We use the Gillespie algorithm to simulate this stochastic process [Gillespie, 1977]. The IBM can149

be tailored to suit different cell types and experimental conditions by choosing different functions for ψi150

and µ(xi,xi + r). In the following description we choose functions suitable for simulating movement of151

fibroblast cells.152

The movement rate ψi comprises an intrinsic movement rate m and a density-dependent component153

that sums contributions from n neighbouring cells at xj to individual i’s motility:154

ψi = max
(
0, m+

n∑
j=1
i 6=j

w(xj − xi)
)
, (1)

which ensures that ψi ≥ 0. The kernel w(z) weights the strength of interaction between a pair of cells155

displaced by z and for simplicity we choose it to be a Gaussian function156

w(z) = α exp

(
− |z|

2

2σ2
w

)
. (2)

The parameter α determines the interaction strength while σ2
w determines the range over which interac-157

tions occur.158

We now describe a mechanism which allows a cell’s direction of movement to be determined by the159

degree of crowding in its neighbourhood. This mechanism is comparable to that of [Binny et al., 2015]160

but with some differences that are required for extension to two spatial dimensions. The neighbour-161

dependent bias b(x) accounts for the effect of n neighbouring cells located at xj on the direction of162

movement of an individual at x163

b(x) =

n∑
j=1

∇v(xj − x). (3)

The kernel v(z) weights the strength of interaction between a cell pair displaced by z. For simplicity, we164

choose v(z) to be a Gaussian function165

v(z) = β exp

(
−|z|

2

2σ2
v

)
, (4)

which means the interaction will be strong for a pair of cells located close together and negligible if they166

are far apart. Interaction strength and range are determined by β and σ2
v , respectively. The neighbour-167

dependent bias b(x) is a vector holding information about both the extent and direction of crowded168

regions in the neighbourhood of a cell at x. We use the angle arg(b(x)) to describe the direction of169

b(x). When β > 0, arg(b(x)) is the direction in which the lowest degree of cell crowding arises locally.170

Conversely for β < 0, arg(b(x)) is the direction of greatest local crowding. The magnitude |b(x)| provides171

a measure of the extent of crowding.172

When a cell moves, its direction of movement θ ∈ [0, 2π] is drawn from a PDF g(θ; b) which depends173

on the neighbour-dependent bias b(x). The function g(θ; b) is a von Mises distribution with mean arg(b)174

and concentration |b|:175

g(θ; b) =
exp
(
|b|cos

(
θ − arg(b)

))
2πI0(|b|)

, (5)

where I0 is the modified Bessel function of order 0. Thus, a cell is most likely to move in the direction176

arg(b) and the strength of this directional bias increases with |b|, as shown in Fig. 1.177

The distance moved by a cell is drawn from a non-negative normal distribution with mean step length178

1/λµ and variance σ2
µ. Therefore, the probability of an individual at x moving to a new location at y is179
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distributed according to180

µ(x,y) = N exp

−
(
|y − x| − 1

λµ

)2
2σ2

µ

 g
(
arg(y − x); b(x)

)
. (6)

This means that a cell at x is biased to move away from close-lying neighbours when β > 0. From181

a biological perspective this repulsive force could correspond to, for example, movement in response182

to a cell-released chemorepellant [Cai et al., 2006] or physical forces due to deformation of the cell183

membrane under direct contact with other cells [Trepat et al., 2009]. When β < 0 the bias is towards184

crowded regions, such as might arise in the presence of a cell-released chemoattractant [Painter and Hillen,185

2002]. The bias strength increases with increasing neighbourhood cell density. Setting β = 0 results in186

g
(
arg(y − x); b(x)

)
= 1/(2π) and the cell is equally likely to move in any direction, i.e. movement is187

unbiased. The PDF µ(x,y) has dimension L−2 and normalising by the constant N satisfies the constraint188 ∫
µ(x,y)dy = 1 for any fixed x.189

3.2 Pair-correlation function190

The second spatial moment, the average density of pairs of cells, can be expressed as a pair-correlation191

function (PCF) C(r), written in terms of a separation distance r [Illian et al., 2008]. The PCF is192

normalised by dividing by the first moment squared such that C(r) = 1 in the complete absence of193

spatial structure, i.e. the distribution of cells is completely random (a Poisson spatial pattern). For194

C(r) > 1, pairs of cells are more likely to be found in close proximity than if they were distributed195

according to a Poisson pattern. We describe such a configuration of cells as a cluster spatial pattern. In196

contrast, for C(r) < 1, cell pairs separated by short displacements are less likely to arise, generating a197

regular spatial pattern.198

We compute a PCF C(r) from a particular arrangement of agents in a domain of width Lx and height199

Ly. A reference agent at xi is selected and the distance r = |xj − xi| to a neighbour at xj is calculated200

for n− 1 neighbours. A periodic PCF can be calculated by allowing a distance r to be measured across201

periodic boundaries. A different reference agent is then chosen and the process repeated until each agent202

has been selected as a reference once. A PCF is constructed by counting the distances that fall into an203

interval [r− δr
2 , r+ δr

2 ], i.e. binning distances using a bin width δr. To ensure C(r) = 1 in the complete204

absence of spatial structure we normalise by n(n− 1)(2πrδr)/(LxLy).205

The choice of δr is important because very small values can yield a PCF dominated by fluctuations206

while values that are too large result in an overly-smooth function which may mask spatial structure207

[Binder and Simpson, 2015].208

3.3 Spatial moment model209

The IBM can be used to derive a population-level model in terms of the dynamics of spatial moments210

[Plank and Law, 2015]. Mathematical descriptions of spatial moments and derivations of the rate of211

change equations for the first moment Z1(x, t) and second moment Z2(x,y, t) are given in [Binny et al.,212

2015] and still hold for movement in two dimensions. Spatial moments are functions of time as well213

as space but, for brevity, from here on we omit the time argument from the notation. Briefly, for the214
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dynamics of the first spatial moment the corresponding description for ψi is215

M1(x) = m+

∫
w(y − x)

Z2(x,y)

Z1(x)
dy, (7)

the expected movement rate of a cell at x. In (1) a maximum formula ensured a non-negative movement216

rate but is not incorporated here because we only consider solutions in which negative expected movement217

rates do not arise. When a cell at x moves, its new location y is drawn from a PDF218

µ1(x,y) = N exp

−
(
|y − x| − 1

λµ

)2
2σ2

µ

 g
(
arg(y − x); b1(x)

)
. (8)

The neighbour-dependent bias for a cell at x is219

b1(x) =

∫
∇v(y − x)

Z2(x,y)

Z1(x)
dy. (9)

The equation for the dynamics of the first spatial moment is220

dZ1(x)

dt
= −M1(x)Z1(x) +

∫
µ1(u,x)M1(u)Z1(u)du, (10)

where the first and second terms on the right-hand side correspond to movement out of x and into x,221

respectively. The first moment is constant with respect to time because there are no birth/death events222

and there is no net flux across the boundaries.223

For the dynamics of the second moment the expected movement rate of a cell at x in a pair with a224

cell at y is given by225

M2(x,y) = m+

∫
w(z− x)

Z3(x,y, z)

Z2(x,y)
dz + w(y − x), (11)

where Z3(x,y, z) denotes the third spatial moment, the average density of triplets of cells. When a cell226

at x moves, its new location y is drawn from a PDF µ2(x,y, z), where the third argument accounts for227

the fact that x is in a pair with a cell at z:228

µ2(x,y, z) = N exp

−
(
|y − x| − 1

λµ

)2
2σ2

µ

 g
(
arg(y − x); b2(x, z)

)
. (12)

The neighbour-dependent bias for a cell at x in a pair with a cell at y is given by229

b2(x,y) =

∫
∇v(z− x)

Z3(x,y, z)

Z2(x,y)
dz +∇v(y − x). (13)

Finally, the equation for the dynamics of the second moment is230

dZ2(x,y)

dt
= − (M2(x,y) +M2(y,x))Z2(x,y)

+

∫
µ2(u,x,y)M2(u,y)Z2(u,y)du

+

∫
µ2(u,y,x)M2(u,x)Z2(u,x)du. (14)

Movement out of x, conditional on the presence of a cell at y, is accounted for in the first negative term231

in (14). The first integral term describes movement into x from a starting location u, conditional on the232

presence of a cell at y. The remainder are symmetric terms for movement out of and into y.233
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A closure for the third spatial moment is required to solve equation (14) and we use the Kirkwood234

superposition approximation [Kirkwood, 1935,Kirkwood and Boggs, 1942] given by235

Z̃3(x,y, z) =
Z2(x,y)Z2(x, z)Z2(y, z)

Z1(x)Z1(y)Z1(z)
, (15)

however other choices of closure are possible [Murrell et al., 2004]. This closes the dynamical system236

at second order, therefore we retain information on spatial structure that would be ignored by instead237

employing a first-order closure, such as the mean-field assumption.238

4 Results239

4.1 Comparing IBM simulation data and moment dynamics approximations240

To explore whether our model is capable of generating spatial structure in a simulated cell population we241

average results from repeated simulations of the IBM and compute a periodic PCF CIBM (r) as outlined242

in Section 3.2. We compare this to numerical solutions of our spatial moment model to examine whether243

it provides a good approximation to the underlying stochastic process. The equation for the dynamics244

of the second moment (14) is solved for a spatially homogeneous distribution of cells, which means that245

we assume the probability of finding an individual in a given small region is independent of its location246

in space. This allows the equation to be rewritten in terms of displacements between pairs of cells, as247

outlined in the appendix. The PCF CSM (ξ) is given by Z2(ξ)/Z2
1 such that CSM (ξ) = 1 in the complete248

absence of spatial structure. The second spatial moment is radially symmetric about the origin of ξ.249

Therefore, in the results below we show only a radial section of CSM (ξ) which we denote CSM (r), where250

r = |ξ|. Cells are initially distributed across a domain of width Lx and height Ly, according to a spatial251

Poisson process with intensity n/(LxLy). In the spatial moment model this corresponds to Z2(ξ) = Z2
1252

at t = 0. The system is allowed to reach steady state before results from each model are compared.253

Parameters used in this section are summarised in Table 1.254

In the complete absence of interactions, an individual’s direction of movement is unbiased and its255

movement rate is solely determined by the intrinsic component. It is straightforward to show analytically256

that the steady-state solution for Z2(ξ) is a constant under these conditions. Numerical solutions and257

averaged IBM simulations confirm this.258

The effect of the neighbour-dependent directional bias, in the absence of neighbour-dependent motility259

(i.e. α = 0), is shown in Fig. 2. The PCF quantifies differences in the spatial structure, depending on the260

strength and nature of cell-cell interactions, which may not be readily apparent from a qualitative visual261

inspection of the cell locations (Fig. 2 insets). Regular spatial patterns are generated by the directional262

bias when β > 0 while β < 0 gives rise to clustering. The spatial moment model performs very well as an263

approximation to the IBM except when there is strong clustering (Fig. 2D). This can likely be attributed264

to limitations of the moment-closure assumption. The Kirkwood Superposition Approximation provides265

a reasonable approximation to the third moment for Poisson spatial patterns and regular patterns, but266

performs quite poorly for cluster spatial patterns where it can cause the model to underestimate the267

second moment [Raghib et al., 2011,Murrell et al., 2004,Dieckmann and Law, 2000].268

Figure 3 shows the spatial structure generated by the mechanism for neighbour-dependent motility269

when there is no local directional bias (i.e. β = 0). Neighbourhood interactions give rise to regular270

spatial patterns when α > 0 and cluster spatial patterns when α < 0. Again, we see good agreement271
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between CSM (r) and CIBM (r) except for large magnitudes of α < 0 where the pattern is clustered and272

the moment model under-predicts spatial structure (Fig. 3D). While the limitations associated with the273

moment closure may play a role, there is another factor that could also be contributing to the poor fit274

here. We have chosen values of α such that the probability of ψi > 0 is high. However ψi = 0 can275

arise by chance in an IBM simulation and while such occurrences are relatively rare they can have a276

self-propagating effect, leading to strong clustering. The spatial moment model does not account for277

these chance events so this might explain why spatial structure is underestimated more dramatically278

even for relatively weak clustering.279

Our numerical results show that the same spatial structures can be generated by either neighbour-280

dependent mechanism acting in isolation. When both mechanisms affect movement together, the choice281

of α and β determines whether they work cooperatively, to promote spatial structure to an even greater282

extent, or in opposition.283

4.2 Model validation using experimental data284

We will now use in vitro experimental data to validate our model. We begin by exploring whether the285

directional bias mechanism is capable of generating spatial structure that is qualitatively similar to that286

observed in 3T3 fibroblast cell populations studied in vitro and aim to estimate parameters which yield287

a reasonable qualitative match to our data.288

Movement rates for 3T3 fibroblast cells are discussed in the literature [Ware et al., 1998,Vedel et al.,289

2013]. We choose a biologically relevant rate of 50 µm/hour for the speed at which an isolated cell moves290

(i.e. in the absence of neighbourhood interactions). Cell speed is not itself a parameter of our model, but291

can be decomposed into two constituent parts for input into the model: a mean step length 1/λµ = 10 µm292

and an intrinsic movement rate m = 5 hour−1. For the movement PDF µ(x,y) we set σµ = 2.5 µm which293

is biologically reasonable as it ensures cells are more likely to take short steps than undergo large jumps294

across the space. We employ the directional bias mechanism to incorporate volume exclusion effects by295

interpreting 2σv as the approximate range over which a cell interacts with neighbours and treating this296

as a proxy for the average diameter of a cell. From the literature, the average cell diameter for 3T3297

fibroblast cells is approximately 20 µm which yields σv = 10 µm [Simpson et al., 2013a, Vedel et al.,298

2013]. Here, we consider the directional bias mechanism in the absence of neighbour-dependent motility299

(i.e. we set α = 0). With these parameter choices in place, interaction strength β is the only parameter300

that we need to estimate.301

Images are taken at the centre of the well to avoid edge effects and when analysing our in vitro302

data, we assume that cells are distributed homogeneously across this region. An average cell density303

is estimated from each image, by dividing the number of cells in an image (which ranged between 80304

and 318 cells) by the image area. In Section 4.1 we implemented periodic boundary conditions in our305

IBM simulations such that cells located near a boundary of the domain could interact with those at an306

opposite boundary. Therefore it was reasonable to calculate a periodic PCF from the configurations of307

cells that arose. However, for our experimental data, the motility of a cell located near the edge of an308

image will not be affected by a cell at an opposite edge. Therefore, to calculate an accurate average pair309

density for the short displacements we are primarily interested in, we choose to generate a non-periodic310

PCF Cexp(r) from the experimental images.311

To obtain an estimate for β we consider a single experimental image of dimensions 4500 µm x 450312
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µm with 286 cells, as shown in Fig. 4A with markers superimposed over cell locations. We use our313

IBM to simulate movement in this 4500 µm x 450 µm region using the parameters discussed above (and314

summarised in Table 1) and explore different values of β. In each simulation, 286 cells are initially315

distributed according to a spatial Poisson process and we compute a PCF once the system has converged316

to steady state. Figure 4B shows a snapshot from an IBM simulation at t = 15 hours. The presence317

of spatial structure is not obvious from visual inspection of Figs. 4A-B alone but calculating a PCF318

(Fig. 4C) indicates a regular spatial pattern over displacements < 50 µm. We find that for β = 1000319

µm the PCFs predicted by our IBM and spatial moment model provide a very good visual match to320

that computed from the in vitro data for this sample. Unlike CIBM (r) and CSM (r), the PCF computed321

from each experimental image does not tend to 1 for large displacements because it is computed from322

non-periodic distances and owing to the image dimensions. However, we see good agreement at short to323

moderate displacements. To validate our estimate, we compare PCFs obtained using the same parameter324

choices and β = 1000 µm for the average cell densities in each of the other images (Figures given in the325

Supplementary Material). For all samples we see a reasonable qualitative agreement between the PCFs326

predicted by the model and the PCF generated from the in vitro data.327

The PCFs Cexp(r) and CIBM (r) employ a bin width δr which provides a reasonably smooth function328

for the majority of experimental samples yet contains sufficient information about spatial structure to329

allow us to carry out our analysis. Smaller values of δr give a better match to CSM (r), however Cexp(r)330

becomes dominated by fluctuations.331

From our numerical results we know that both the mechanisms for neighbour-dependent motility and332

directional bias are capable of generating spatial structure. In the absence of directional bias, large values333

of α are required to generate the extent of spatial structure observed in the in vitro data. When carrying334

out IBM simulations under these conditions, individuals experience strong neighbourhood interactions335

and, as a result, movement rates ψi are often considerably higher than the average movement rates of336

fibroblast cells discussed in the literature [Ware et al., 1998, Vedel et al., 2013]. For example, using the337

same parameter choices as for Fig. 4 but in the absence of directional bias (β = 0), an interaction338

strength of α = 1000 hour−1 generates spatial structure which is a reasonable qualitative match to the339

in vitro data. However, 23% of individuals undergo movement with a rate ψi > 100 hour−1, which340

corresponds to a biologically unreasonable cell speed of 1000 µm/hour. Therefore, we do not consider341

neighbour-dependent motility in isolation here. When both mechanisms are acting together, numerous342

combinations of α and β exist that would give rise to similar spatial structure.343

Numerical and analytical results suggest that there is a relationship between the average cell density344

and the extent of spatial structure in the moving cell population. Increasing the average cell density345

causes a decrease in the extent of spatial structure, i.e. for a regular spatial pattern average pair densities346

at short displacements increase towards 1. However, for the average cell densities studied here, it is not347

immediately obvious whether our in vitro experimental data supports the suggestion that a significant348

relationship exists. We now explore this idea in more depth by using the area between the PCF to349

calculate a summary statistic which quantifies the extent of spatial structure, as shown in Fig. 5. We350

consider two metrics and compute each for PCFs generated from the IBM, spatial moment model and351

in vitro data. The first metric measures spatial structure as
∫ R
0

(1− C(r))dr (Fig. 5A). Positive values352

indicate a regular spatial pattern while negative values indicate a cluster spatial pattern. The second353

is given by
∫ R
0
|1 − C(r)|dr (Fig. 5B). Both metrics are calculated for R = 80 µm and have units µm.354

The average cell densities obtained from the in vitro data lie within a relatively small range and so the355
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overall change in the metric is small. Nevertheless, for both metrics our model predicts that increasing356

average cell density decreases the extent of spatial structure. To investigate whether our in vitro data357

supports this we carry out a simple linear regression, yielding p-values of 0.0211 and 0.0435 for the first358

(Fig. 5A) and second metric (Fig. 5B), respectively. Thus, using either metric and despite the noise in359

our in vitro data, the results suggest that a significant relationship does indeed exist between average360

cell density and spatial structure.361

5 Discussion362

IBMs of collective movement allow us to explore how interactions between individuals give rise to spatial363

structure and how, in turn, this self-generated spatial structure affects the population dynamics. How-364

ever, IBMs are limited when it comes to explaining population-level behaviour as they can be difficult to365

analyse mathematically. To move beyond these limitations, population-level models can be derived from366

IBMs but often employ a mean-field assumption which neglects spatial correlations between cells. We367

have derived a population-level description in terms of spatial moment dynamics to account for spatial368

correlations and give insight into how neighbour-dependent directional bias generates spatial structure369

in a moving cell population. Extending our original model [Binny et al., 2015] from one to two spatial370

dimensions makes it more amenable for use alongside experimental data. Our results verify that the371

spatial moment model can provide a good approximation to averaged simulations of the underlying IBM372

when cells are distributed homogeneously through space.373

Volume exclusion effects can be incorporated into lattice-free models of interacting agents, for example374

using a hard sphere approach where neighbours are explicitly excluded from a region surrounding an375

individual. Instead, we employ the mechanism for neighbour-dependent directional bias as a means of376

accounting for crowding effects. Using an interaction kernel concentrated around short pair displacements377

allows us to reduce the likelihood of two cells being found in very close proximity, although it does not378

altogether rule out the possibility.379

In vitro studies have shown that cell motility can be heavily influenced by the average density of380

cells, particularly at high densities where crowding effects come into play, affecting the movement rate381

or direction of individuals [Lee et al., 1994, Tremel et al., 2009, Vedel et al., 2013]. In addition, spatial382

correlations between cells can have major implications for motility, for example cell populations with383

clustering exhibit different behaviour to those that adopt regular spatial patterns [Green et al., 2010,Kee-384

ley et al., 2014]. We carried out in vitro experiments with motile 3T3 fibroblast cells for model validation385

and to explore the extent to which spatial structure is generated in fibroblast cell populations. It is not386

obvious from visual inspection of the imaging data alone whether spatial structure is present, however387

calculating a PCF indicates a regular spatial pattern. The spatial structure arises over displacements388

< 50 µm and is likely predominantly a consequence of space being excluded by the cells, however chemo-389

tactic interactions, such as chemokine signalling, may also contribute to a lesser extent [Vedel et al.,390

2013]. We consider whether our model’s mechanism for neighbour-dependent directional bias can gener-391

ate a similar spatial structure. The majority of model parameters are obtained by selecting biologically392

relevant values from the literature and we use our in vitro data to provide an estimate for the interaction393

strength β. This parameter was estimated from a single experimental image and for validation we use the394

same estimate for the average cell densities in each of the other images. A visual comparison of the PCFs395

suggests that our parameterised model can successfully predict the spatial structure of 3T3 fibroblasts396
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at various average cell densities. We do not consider the neighbour-dependent motility mechanism in397

the absence of directional bias because the spatial structure observed in vitro could only be generated398

if a large proportion of cells moved at biologically unreasonable rates. However, it is possible that both399

mechanisms acting together could give rise to the observed spatial structure and further information400

would be required to distinguish the relative contributions of each effect occurring in vitro.401

We choose to calculate a non-periodic PCF from each experimental image to obtain an accurate402

average pair density at short displacements. Because we do not apply edge corrections and owing to403

the image dimensions, the PCF often has values less than 1 for large displacements. However, we would404

expect that a PCF calculated either for a very large number of cells (at the same average density) or405

by averaging results from many identically-prepared repeated experiments, would give C(r) ≈ 1 for406

large displacements. A number of methods to account for edge effects are discussed in the literature,407

for example the use of buffer zones, toroidal edge corrections or employing weighting factors [Haase,408

1995, Law et al., 2009]. However, in some cases, applying an edge correction may yield results that do409

not provide an accurate representation of the spatial structure in the population. For instance, when410

analysing spatial patterns that are clustered or regular, the use of a toroidal correction can lead to an411

unknown extent of bias in the resulting distribution of distances [Haase, 1995]. To avoid this uncertainty,412

we have chosen to work with the actual pair distances between cells in the experimental images and not413

correct for edge effects.414

We have further validated our model by considering in more detail the relationship between average415

cell density and the extent of spatial structure in a cell population. Numerical and analytical results from416

our model suggest that increasing the average cell density decreases the extent of spatial structure. There417

is considerable noise in the in vitro data because we choose to analyse PCFs generated from individual418

images as opposed to working with averaged results. In addition, the data considers a relatively small419

range of average cell densities. Nevertheless, our experimental data also supports the idea that such a420

relationship exists. The most likely explanation for this effect is that as average cell density increases,421

there is less free space available and cells are forced into closer proximity. Because of their deformable422

plasma membranes, pairs of cells can arise at displacements less than the average diameter of a cell. This423

increases the average pair density at short displacements, thus reducing the extent of spatial structure.424

Because we do not employ a hard sphere volume-exclusion method, instead representing cells by points425

in space, our model will predict a Poisson spatial pattern for very high average cell densities (far greater426

than those in our data). In reality, the fact that 3T3 fibroblasts have a minimum area they can occupy427

means that this would never be observed in vitro.428

The spatial moment model is only an approximation to the IBM because it invokes a closure as-429

sumption which closes the dynamical system at second order and ignores higher order moments. The430

performance of our model depends on the suitability of this closure as an approximation to the third431

moment. Different closures are proposed in the literature and we use the Kirkwood Superposition Ap-432

proximation, which is a relatively simple closure that is often applied in cell movement models. This433

closure is known to perform reasonably well for regular and Poisson spatial patterns but causes the model434

to underestimate the second moment for cluster patterns. A number of other closures also share this435

limitation. The asymmetric power-2 closure, which expresses the third moment in terms of weighted436

sums of lower order moments, can prove more successful for cluster spatial patterns. However it is not437

always obvious which weighting constants are most appropriate and the closure has the potential to pre-438

dict negative average densities of triplets [Dieckmann and Law, 2000,Murrell et al., 2004,Raghib et al.,439
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2011].440

We have chosen to use kernels suitable for modelling fibroblast movement but different kernels could441

be employed for applications in other contexts. However, there is a numerical constraint associated with442

choosing the movement PDF µ. If using a PDF that has large positive values concentrated at pair dis-443

placements very close to zero, the spatial moment model cannot always accurately capture the full extent444

of the directional bias at these short displacements. This, in turn, causes the model to underestimate445

the extent of spatial structure. Choosing a movement PDF with positive values at displacements further446

from zero, such as the PDF employed here, overcomes this issue. Expressing and solving the moment447

dynamics equations in polar coordinates may also allow for greater flexibility in the choice of movement448

PDF.449

There are a number of possible extensions to the work presented here. For example, the model450

could be extended to a birth-death-movement process to investigate how cell proliferation and cell death451

contribute to the collective dynamics. Models of spatial moment dynamics that incorporate density-452

independent or density-dependent birth, death and movement have previously been discussed in the453

literature (see for example [Dieckmann and Law, 2000,Murrell, 2005]) but it would be useful to explore454

the role that neighbour-dependent directional bias plays in this setting. We have applied our model to455

cell movement, however the types of interaction experienced by cells are also relevant in other contexts.456

For instance, our model could be applied in an ecological context to consider the effect of directional457

bias on moving animal populations.458

References459

[Abercrombie, 1979] Abercrombie, M. (1979). Contact inhibition and malignancy. Nature,460

281(5729):259–262.461

[Adams et al., 2013] Adams, T. P., Holland, E. P., Law, R., Plank, M. J., and Raghib, M. (2013). On462

the growth of locally interacting plants: differential equations for the dynamics of spatial moments.463

Ecology, 94(12):2732–2743.464

[Agnew et al., 2014] Agnew, D. J. G., Green, J. E. F., Brown, T. M., Simpson, M. J., and Binder,465

B. J. (2014). Distinguishing between mechanisms of cell aggregation using pair-correlation functions.466

Journal of Theoretical Biology, 352:16–23.467

[Anderson and Chaplain, 1998] Anderson, A. R. A. and Chaplain, M. A. J. (1998). Continuous and468

discrete mathematical models of tumor-induced angiogenesis. Bulletin of Mathematical Biology,469

60(5):857–99.470

[Binder and Simpson, 2015] Binder, B. J. and Simpson, M. J. (2015). Spectral analysis of pair-correlation471

bandwidth: application to cell biology images. Royal Society Open Science, 2:140494.472

[Binny et al., 2015] Binny, R. N., Plank, M. J., and James, A. (2015). Spatial moment dynamics for473

collective cell movement incorporating a neighbour-dependent directional bias. Journal of The Royal474

Society Interface, 12(106):20150228.475

13

PeerJ reviewing PDF | (2015:09:6576:1:0:NEW 18 Dec 2015)

Manuscript to be reviewed



[Bolker and Pacala, 1997] Bolker, B. and Pacala, S. W. (1997). Using moment equations to understand476

stochastically driven spatial pattern formation in ecological systems. Theoretical Population Biology,477

52(3):179–97.478

[Bruna and Chapman, 2012] Bruna, M. and Chapman, S. J. (2012). Excluded-volume effects in the479

diffusion of hard spheres. Physical Review E, 85(1):011103.480

[Cai et al., 2006] Cai, A. Q., Landman, K. A., and Hughes, B. D. (2006). Modelling directional guidance481

and motility regulation in cell migration. Bulletin of Mathematical Biology, 68(1):25–52.482

[Deroulers et al., 2009] Deroulers, C., Aubert, M., Badoual, M., and Grammaticos, B. (2009). Modeling483

tumor cell migration: from microscopic to macroscopic models. Physical Review E, 79(3):031917.484

[Dieckmann and Law, 2000] Dieckmann, U. and Law, R. (2000). Relaxation projections and the method485

of moments. In Dieckmann, U., Law, R., and Metz, J., editors, The Geometry of Ecological Inter-486

actions: Simplifying Spatial Complexity, chapter 21, pages 412–455. Cambridge University Press,487

Cambridge.488

[Dyson and Baker, 2015] Dyson, L. and Baker, R. E. (2015). The importance of volume exclusion in489

modelling cellular migration. Journal of Mathematical Biology, 71(3):691–711.490

[Fisher, 1937] Fisher, R. A. (1937). The wave of advance of advantageous genes. Annals of Eugenics,491

7(4):355–369.492

[Friedl and Wolf, 2003] Friedl, P. and Wolf, K. (2003). Tumour-cell invasion and migration: diversity493

and escape mechanisms. Nature Reviews Cancer, 3(5):362–74.494

[Gillespie, 1977] Gillespie, D. T. (1977). Exact stochastic simulation of coupled chemical reactions. The495

Journal of Physical Chemistry, 81(25):2340–2361.496

[Green et al., 2010] Green, J. E. F., Waters, S. L., Whiteley, J. P., Edelstein-Keshet, L., Shakesheff,497

K. M., and Byrne, H. M. (2010). Non-local models for the formation of hepatocyte-stellate cell498

aggregates. Journal of Theoretical Biology, 267(1):106–20.499

[Grimm et al., 2006] Grimm, V., Berger, U., Bastiansen, F., Eliassen, S., Ginot, V., Giske, J., Goss-500

Custard, J., Grand, T., Heinz, S. K., Huse, G., Huth, A., Jepsen, J. U., Jørgensen, C., Mooij, W. M.,501

Müller, B., Peer, G., Piou, C., Railsback, S. F., Robbins, A. M., Robbins, M. M., Rossmanith, E.,502
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Figure 1: Examples of probability density function g(θ; b) (blue solid line) for movement in a direction

θ ∈ [0, 2π]. The neighbour-dependent bias b is a vector indicating the direction (arg(b)) in which the

greatest/lowest degree of crowding arises in a cell’s neighbourhood, as well as the extent to which it

occurs (|b|). Insets are schematics illustrating g(θ; b) (grey solid line), where black arrows indicate the

direction (arg(b)) in which an individual (black dot) is most biased to move. (A) Unbiased movement;

(B) weak directional bias b = (0.25, 0.5)T ; (C) strong directional bias b = (0.5, 1)T .

Table 1: Table of model parameters in order of appearance, with values used in the numerical results.

Value

Symbol Description Units Fig. 2 Fig. 3 Fig. 4

m intrinsic movement rate hour−1 10 10 5

α strength of interaction for

movement rate

hour−1 0 1; 10; -1.5; -2 0

σw spatial range of interac-

tions for movement rate

µm 0.5 0.5 10

β strength of interaction for

directional bias

µm 0.1; 1; -0.03; -0.05 0 1000

σv spatial range of interac-

tions for directional bias

µm 0.5 0.5 10

λµ rate parameter of PDF for

movement distance

µm−1 5 5 0.1

σµ spatial range of PDF for

movement distance

µm 0.05 0.05 2.5

δr bin width for PCF µm 0.12 0.12 8

∆ grid spacing for discreti-

sation of spatial displace-

ment ξ

µm 0.1 0.1 5

ξmax maximum distance of ξ1,

ξ2 for computing Z2(ξ)

µm 4 4 150
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Figure 2: Spatial structure for 200 cells undergoing collective movement with neighbour-dependent

directional bias (α = 0 hour−1) in a 20 µm x 20 µm domain at time t = 25 hours. The PCF CIBM (r)

(blue solid line) provides a quantitative measure of the spatial structure in the simulated

cell population and is computed (using a bin width δr = 0.12 µm) by averaging results

from 500 repeated simulations of the IBM. For ease of visualisation, a snapshot of the

configuration of cells in a single simulation at t = 25 is shown in the inset. The spatial

structure approximated by the spatial moment model (solved using ∆ = 0.1 µm and ξmax = 4

µm) is expressed as a PCF CSM (r) (red dashed line). Parameters are α = 0 hour−1, σw = σv = 0.5

µm, m = 10 hour−1, λµ = 5 µm−1, σµ = 0.05 µm; (A) β = 0.1 µm; (B) β = 1 µm; (C) β = −0.03 µm;

(D) β = −0.05 µm.
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Figure 3: Spatial structure for 200 cells undergoing collective movement with neighbour-dependent motil-

ity (β = 0 µm) in a 20 µm x 20 µm domain at time t = 25 hours. The PCF CIBM (r) (blue solid line)

provides a quantitative measure of the spatial structure in the simulated cell population

and is computed (using a bin width δr = 0.12 µm) by averaging results from 500 repeated

simulations of the IBM. For ease of visualisation, a snapshot of the configuration of cells

in a single simulation at t = 25 is shown in the inset. The spatial structure approximated

by the spatial moment model (solved using ∆ = 0.1 µm and ξmax = 4 µm) is expressed as

a PCF CSM (r) (red dashed line). Parameters are β = 0 µm, σw = σv = 0.5 µm, m = 10 hour−1,

λµ = 5 µm−1, σµ = 0.05 µm; (A) α = 1 hour−1; (B) α = 10 hour−1; (C) α = −1.5 hour−1; (D) α = −2

hour−1.
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Figure 4: Spatial structure in 3T3 fibroblast cells for 286 cells in a 4500µm x 450µm region. (A) Sample

image (obtained from a well containing cell suspension of approximate initial density 30,000 cells/ml)

showing superimposed markers (white dots). Scale bar corresponds to 100µm; (B) Cell locations (blue

dots) at t = 15 hours from a single IBM simulation. Parameters are α = 0 hour−1, β = 1000 µm,

σw = σv = 10 µm, m = 5 hour−1, λµ = 0.1 µm−1, σµ = 2.5 µm; (C) PCF CIBM (r) (blue solid line)

obtained from averaging results from 200 simulations of the IBM at t = 15 hours. PCFs computed from

the IBM using values of β within the range ±75% of β = 1000 µm, lie within the region indicated by

the blue shaded area. PCF Cexp(r) (green squares-dotted line) generated from experimental image, for

δr = 8 µm. PCF CSM (r) (red dashed line) approximated by spatial moment model at t = 15 hours, for

∆ = 5 µm and ξmax = 150 µm.
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Figure 5: Relationship between average cell density and the extent of spatial structure. Metrics calculated

from IBM (blue triangles), spatial moment model (red circles) and in vitro data (green squares) for the

average cell densities in each of the images. A regression line (black line) is fitted to the experimental

data. (A) Metric calculated by integrating (1−C(r)) over displacements 0 ≤ r ≤ 80 µm, i.e. summing the

green-shaded area and subtracting the grey-shaded area (inset Fig.). (B) Metric calculated by integrating

|1− C(r)| over displacements 0 ≤ r ≤ 80 µm, i.e. summing the green-shaded area (inset Fig.).
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