
Submitted 2 May 2023
Accepted 16 January 2024
Published 28 February 2024

Corresponding author
Daniel S. Maynard,
dan.s.maynard@gmail.com

Academic editor
Daniel Fischer

Additional Information and
Declarations can be found on
page 19

DOI 10.7717/peerj.16896

Copyright
2024 Specker et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Treemendous: an R package for
integrating taxonomic information across
backbones
Felix Specker1,2, Andrea Paz1, Thomas W. Crowther1 and Daniel S. Maynard1,3

1 Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
2Department of Biosystems Science and Engineering, ETH Zürich, Zürich, Switzerland
3Department of Genetics, Evolution and Environment, University College London, London, United Kingdom

ABSTRACT
Standardizing and translating species names from different databases is key to the
successful integration of data sources in biodiversity research. There are numerous
taxonomic name-resolution applications that implement increasingly powerful name-
cleaning and matching approaches, allowing the user to resolve species relative to
multiple backbones simultaneously. Yet there remains no principled approach for
combining information across these underlying taxonomic backbones, complicating
efforts to combine and merge species lists with inconsistent and conflicting taxonomic
information. Here, we present Treemendous, an open-source software package for
the R programming environment that integrates taxonomic relationships across four
publicly available backbones to improve the name resolution of tree species. Bymapping
relationships across the backbones, this package can be used to resolve datasets with
conflicting and inconsistent taxonomic origins, while ensuring the resulting species are
accepted and consistent with a single reference backbone. The user can chain together
different functionalities ranging from simple matching to a single backbone, to graph-
based iterative matching using synonym-accepted relations across all backbones in
the database. In addition, the package allows users to ‘translate’ one tree species list
into another, streamlining the assimilation of new data into preexisting datasets or
models. The package provides a flexible workflow depending on the use case, and
can either be used as a stand-alone name-resolution package or in conjunction with
existing packages as a final step in the name-resolution pipeline. The Treemendous
package is fast and easy to use, allowing users to quickly merge different data sources
by standardizing their species names according to the regularly updated database. By
combining taxonomic information across multiple backbones, the package increases
matching rates and minimizes data loss, allowing for more efficient translation of tree
species datasets to aid research into forest biodiversity and tree ecology.

Subjects Biodiversity, Bioinformatics, Ecology, Taxonomy, Data Science
Keywords Biodiversity research, Forest inventory, Nomenclature, R language, Taxonomic
databases

BACKGROUND
Large-scale biodiversity research often requires combining different data types, such as
occurrence, genetic, and trait information, from across a variety of public and private

How to cite this article Specker F, Paz A, Crowther TW, Maynard DS. 2024. Treemendous: an R package for integrating taxonomic in-
formation across backbones. PeerJ 12:e16896 http://doi.org/10.7717/peerj.16896

https://peerj.com
mailto:dan.s.maynard@gmail.com
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj.16896
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0
http://doi.org/10.7717/peerj.16896

sources (Thomas, 2009). Disagreeing taxonomic backbones or different spelling variants
of species can pose major difficulties and force researchers to spend many hours on
manual annotations. In order to streamline biodiversity research, maintaining a consistent
taxonomy of species names and offering tools to overcome the associated challenges
is crucial (Grenié et al., 2021). A plethora of tools have been published in recent years,
including online access to several databases, list matching, and data wrangling for a diversity
of taxa and data types (Grenié et al., 2021). However, when homogenizing the different
datasets, loss of data is still a problem if using exact matching or selecting a single backbone
out of the various recognized ones. Using combinations of different tools to overcome this
challenge can be time-consuming, difficult to reproduce, and computationally intensive.

Taxonomic name resolution can be divided into three general parts: (1) name parsing,
where input names are preprocessed to fix formatting issues and obtain a standardized
input format (e.g., a Latin binomial or trinomial); (2) name matching, where the parsed
names are cross-referenced with a taxonomic list, often with the aid of so-called ‘‘fuzzy
matching’’ to account for spelling mistake and variations; and (3) name resolution, where
thematched names are resolved to an accepted species, based on the relationships present in
a focal backbone. Over the last decade, numerous high-quality name resolution packages
have become available, with each one typically focusing on a different aspect of this
workflow. For example, the Global Name Parser (Mozzherin, Myltsev & Patterson, 2017)
focuses on Step 1, parsing scientific names into the different semantic elements, including
annotations, taxonomic ranks, authorship, and so on, along with the associated metadata.
Alternatively, Taxamatch (Rees, 2014) focuses on Step 2, providing a set of fast and efficient
name-matching algorithms to handle misspellings while hierarchically matching genus,
species, authorship, and rank to a focal backbone. Finally, applications such as taxonomic
name resolution service (TNRS) have extensive functionality for all three steps, providing
multiple different backbones for name resolution and identification of accepted species,
and even identifying the optimal match across these different backbones (Boyle et al., 2013).

What remains an open challenge, however, is the ability to combine and resolve
conflicting information across backbones or species lists. When integrating new data into
an analytical workflow or database, the user is frequently confronted with the need to
merge new names into an existing taxonomic list, which is often inconsistent with any
given backbone. In many cases, these lists include names with fundamentally different
taxonomic origins, such as historical datasets with outdated or idiosyncratic taxonomic
lists that are often specific to local regions. The assembly of massive, highly curated
backbones has helped to overcome this challenge by comprehensively identifying and
cataloging homotypic synonyms, infraspecific names, name variants, and misspellings, and
linking them into an accepted Latin binomial and author.While such databases have proved
indispensable in biodiversity research, there now exist numerous competing backboneswith
varying levels of accepted species and synonyms. To illustrate, the Kew Gardens’ ‘‘World
Checklist of Vascular Plants’’ contains upwards of 343,000 plant species and 1,020,000
synonyms (Govaerts et al., 2021); compared to ‘‘World Flora Online’’ with 382,000 species
and 1,420,000 synonyms (Borsch et al., 2020). While similar, these backbones disagree
on over 40,000 species (>10%) and contain a difference of at least 400,000 synonyms

Specker et al. (2024), PeerJ, DOI 10.7717/peerj.16896 2/23

https://peerj.com
http://dx.doi.org/10.7717/peerj.16896

(>25%). Indeed, recent comparisons across taxonomic checklists suggest agreement in
approximately 60% of taxonomic names (Schellenberger Costa et al., 2023), which, for
any taxonomic list of considerable size, leads to substantial mismatches and omissions
regardless of the target backbone selected.

The compilation of these high-quality curated backbones has thus created a new problem
for the end user: the current name-resolution workflow requires one to identify the ‘‘best’’
backbone for their specific problem, despite the fact that their data are unlikely to be fully
compatible with any given backbone. To address this, applications such as U.Taxonstand
(Zhang & Qian, 2023), TNRS (Boyle et al., 2013) or the earlier taxize (Chamberlain & Szöcs,
2013) can be used to query multiple different backbones, either iteratively searching for
additional matches for names not found in the first backbone, or by providing an internally
suggested best match based on expert knowledge from the application designers. This
approach certainly increases the success rate, but it does not consider relationships among
synonyms across the backbones when resolving names. To illustrate the challenge, suppose
that a user has a species list containing species A and B that they wish to harmonize with
Backbone 1. The user first queries this backbone, and finds that A is an accepted species,
but B has no match. The user then queries Backbone 2 for species B, and finds it is a
synonym for the accepted species C. The user is thus left with two accepted species, A
and C. But if species C is present in Backbone 1 as a synonym of A, then this approach
is inconsistent with the first target backbone by falsely giving two unique species. This
problem not only hinders the merging of species lists, but it complicates future integration
of new data since the resulting list is not easily reproducible and depends on idiosyncratic
user-defined matching routines. In order to overcome this limitation, taxonomic name
resolution services need to provide a principled approach to mapping the connections
among names across backbones, enabling one to incorporate all available information
when translating a species list into a target backbone.

Here, we introduce the package Treemendous, which presents a novel fourth step in
the name-resolution pipeline that incorporates relationships across backbones when
resolving species names. It does so by implementing a graphical approach to link all
synonyms and species across multiple backbones to find the shortest path between taxa in
an input dataset and an accepted species in a target backbone. In addition to leveraging
information across backbones to improve matching success, this approach also allows one
to directly ‘‘translate’’ one species list into another reference list, even if the reference list is
inconsistent with any given backbone. The package also provides basic name-cleaning and
name-matching functionality, allowing it to serve as a standalone package, but more ideally
it is intended to be used in tandemwith other name-parsing and name-cleaning packages as
a downstream fourth step in the name-resolutionworkflow.Our focus here is on trees rather
than all plants primarily for data quality and data size limitations, but the functionality
of the program can be extended to any taxonomic group with user-supplied backbones.
The package accordingly comes with the database Treemendous.Trees, consisting of tree
species compiled from four publicly available databases. We first provide a description of
the package and associated database Treemendous.Trees and how it was created, followed

Specker et al. (2024), PeerJ, DOI 10.7717/peerj.16896 3/23

https://peerj.com
http://dx.doi.org/10.7717/peerj.16896

by a description of the core functions of the package along with a worked-out example of
the package functionality.

PACKAGE DESCRIPTION
The Treemendous package is developed using the R statistical software (R Core Team, 2022)
and is relying heavily on the collection of well-maintained packages available through
tidyverse (Wickham et al., 2019). Figure 1 shows the major components of the Treemendous
package. The functionality of the package is divided into twomain steps: First, the names are
matched against the database Treemendous.Trees using either the function matching()

or the function sequential_matching(). The latter is used when the input names should
be matched sequentially against Treemendous.Trees, i.e., according to a user-specified
ordering of backbones. Optionally, the user can try to increase the proportion of matched
species to a single backbone using enforce_matching(). Afterwards, the matched names
can then be resolved using resolve_synonyms(), replacing synonyms with their respective
accepted species names. Additionally, translate_trees() allows users to translate an
input species list into a custom target database, making use of the synonym-accepted
relations in Treemendous.Trees. Finally, an overview of the process information can
be obtained with the function summarize_output(). In the following sections, the
databases and main functions are described in greater detail, along with several examples
demonstrating common usage.

The core novel functionality of this package is found in the enforce_matching(),
resolve_synonyms(), and translate_trees() functions, with the additional upstream
functions providing basic usage for Steps 1–3 of a name resolution workflow. These
downstream functions can also be applied to previously parsed and cleaned data (though
note that one of thematching functionsmust first be applied before resolving or translating),
allowing the user to integrate the novel aspects of this package into previous name resolution
pipelines.

Access & Installation
Treemendous is an open-source package hosted on GitHub and is freely available at
https://github.com/speckerf/treemendous. The package can be installed in R using the
devtools package (Wickham et al., 2021a) by calling
devtools::install_github(”speckerf/treemendous”).

Alternatively, this package is available as a stand-alone docker image, containing all
packages and dependencies; see https://github.com/speckerf/treemendous for installation
details.

Dependencies
All R package dependencies are installed (if missing) along with the base installation of
Treemendous. Every function in Treemendous requires the input to be a tibble (Müller
& Wickham, 2022). String manipulations are performed using stringr (Wickham, 2019b)
and stringi (Gagolewski, 2022). The package purrr (Henry & Wickham, 2020) is used for
functional programming. The package readr (Wickham, Hester & Bryan, 2022) is used to

Specker et al. (2024), PeerJ, DOI 10.7717/peerj.16896 4/23

https://peerj.com
https://github.com/speckerf/treemendous
https://github.com/speckerf/treemendous
http://dx.doi.org/10.7717/peerj.16896

preprocessing summarize_output()

Input: Species List Output: Species Listresolve_synonyms()

matching()

sequential_matching()

enforce_matching()

WCVP, GBIF

WCVP

GBIF

WCVP, GBIF

WFO

BGCI, WFO, WCVP, GBIF

Input: Acer langii
Acer boscii

Acer lobatum
Output: Acer negundo

Overview

Enforce Matching Example

Figure 1 Overview of the functionality of the Treemendous package. First, the species names are
matched using either matching() or sequential_matching(). Optionally, enforce_matching() can be called
afterwards. Synonyms can be resolved using resolve_synonyms(). The function summarize_output()
summarizes the process information.

Full-size DOI: 10.7717/peerj.16896/fig-1

import the data for the Treemendous.Trees database. Throughout the whole package,
dplyr (Wickham et al., 2022) and tidyr (Wickham & Girlich, 2022) are extensively used for
working with tibbles. Progress bars are implemented in progress (Csárdi & FitzJohn,
2019) and speed-ups are achieved using memoise (Wickham et al., 2021b), which can save
outputs of utility functions to memory and reload them upon the second function call with
equivalent arguments. The pipe operator provided via magrittr (Bache & Wickham, 2022)
is used to increase the readability of the code, and assertthat (Wickham, 2019a) is used to
increase code safety.

THE TREEMENDOUS.TREES DATABASE
The treemendous package uses an internal database called Treemendous.Trees for its
functionality. Treemendous.Trees contains 401,482 different tree species names assembled
from four different publicly available databases. This includes synonyms and spelling
variants, which are present in the underlying databases. Further, because tree identification
is implemented at the genus level, the database contains a significant number of species
that may not meet the requirements of being a tree by some definitions (e.g., are a small
woody shrub or woody vine), but which are included in the backbone because they occur
in a genus containing a tree. This inclusive approach allows this package to be flexibly
applied to scenarios with differing definitions for trees vs. other woody plants.

To construct Treemendous.Trees, we used the GlobalTreeSearch database published
by the Botanical Gardens Convention International(BGCI) (Beech et al., 2017) to compile
a list of taxonomical genera containing at least one tree species (n= 4,189). All genera
were used to extract potential tree species from the publicly available databases of World
Flora Online(WFO) (Borsch et al., 2020), the World Checklist of Vascular Plants(WCVP)
(Govaerts et al., 2021) and the Global Biodiversity Information Facility(GBIF) (GBIF
Secretariat, 2021). After filtering these databases by the list of tree genera, we kept all entries
with rank ‘Species’ and with the corresponding taxonomical status being ‘Accepted’,
‘Synonym’, ‘Homotypic Synonym’ or Heterotypic Synonym’. Synonyms in these databases
always contain information about which species is their corresponding accepted name.

We then ensured the database is self-contained, meaning that for every synonym
the corresponding accepted species are included in Treemendous.Trees. First, for all
accepted species names, synonyms with a genus different from the list of tree genera were
added. Second, for all synonym species names, the corresponding accepted specie(s) were

Specker et al. (2024), PeerJ, DOI 10.7717/peerj.16896 5/23

https://peerj.com
https://doi.org/10.7717/peerj.16896/fig-1
http://dx.doi.org/10.7717/peerj.16896

Table 1 Crosstabulation of the taxonomic status of the species of Treemendous.Trees from the three
backbones ofWorld Flora Online (WFO), TheWorld Checklist of Vascular Plants (WCVP) and the
Global Biodiversity Information Facility (GBIF). In each database, a species name can be present and
considered as accepted or not accepted or missing. A total of 124,044 species are accepted in all three
databases. Note: The total number of accepted species in each database is higher than the estimated global
number of tree species because some genera might contain both tree and non-tree species. 140 species are
absent from these three backbones, but present in BGCI (Botanic Gardens Conservation International),
which considers all species as being accepted.

GBIF Accepted Not accepted (Missing)
WFO WCVP

Accepted Accepted 101,348 1,710 25,934
Not Accepted 2,275 837 3,433
(Missing) 1,830 382 2,635

Not Accepted Accepted 739 288 1,020
Not Accepted 5,905 39,332 108,555
(Missing) 1,228 5,433 17,406

(Missing) Accepted 6,249 167 3,371
Not Accepted 1,182 2,914 14,174
(Missing) 18,040 37,252 0

included as well, even if their genus was not in the BGCI list of tree genera. Table 1 shows
the taxonomical status of the species from WFO, WCVP and GBIF, which have been
included in Treemendous.Trees.

Currently, the database and corresponding backbones are periodically updated and
assigned a corresponding GitHub release number, allowing the user to track versions and
facilitate reproducibility.

Datasets
BGCI. The Botanic Gardens Conservation International (BGCI) network is formed
by botanic gardens from more than 100 countries. In 2017, BGCI published the
GlobalTreeSearch database (Beech et al., 2017) with represents the most widely adopted
and curated global list of tree species. The database uses the tree definition of the IUCN’s
Global Tree Specialist Group: ‘‘A woody plant with usually a single stem growing to a height
of at least two metres, or if multi-stemmed, then at least one vertical stem five centimetres
in diameter at breast height.’’ The BGCI dataset contains 4,189 distinct genera and 57,921
tree species names. All these names are considered to be accepted species names and treated
as such by the Treemendous package. BGCI regularly updates their list, with the version 1.7
(https://tools.bgci.org/global_tree_search.php) (April, 2023) in Treemendous version 1.1.1.

WFO. TheWorld Flora Online (WFO) is a portal of scientifically verified biodiversity data
on bryophytes, pteridophytes, gymnosperms and angiosperms (Borsch et al., 2020). The
WFO published an actively curated Taxonomic Backbone, which is a synonymized checklist
of more than a million plant species. Every synonym in this checklist comes along with
information about its accepted species name. In total, we extracted 346,427 (potential) tree
species as previously described, of which 144,318 are considered to be accepted species.
Obviously, this also includes many species which are not strictly considered trees, but

Specker et al. (2024), PeerJ, DOI 10.7717/peerj.16896 6/23

https://peerj.com
https://tools.bgci.org/global_tree_search.php
http://dx.doi.org/10.7717/peerj.16896

rather shrubs and other plants. WFO regularly updates their species list, with the version
v.2023.06 (http://www.worldfloraonline.org/downloadData) (June, 2023) in Treemendous
version 1.1.1.

WCVP. The World Checklist of Vascular Plants (WCVP) is a global consensus view of all
known vascular plant species (flowering plants, conifers, ferns, clubmosses and firmosses)
(Govaerts et al., 2021). It is managed by the Royal Botanic Gardens, KEW, and contains
around a million taxonomical names at the species level, with information about the
synonymy of names. In total, we extracted 344,165 (potential) tree species as previously
described, of which 140,368 are considered to be accepted species.

WCVP regularly updates their species list, with the version v9 (http://sftp.kew.org/pub/
data-repositories/WCVP/Archive/) (June, 2022) in Treemendous version 1.1.1.

GBIF. The Global Biodiversity Information Facility (GBIF) is an international network
and was created in 1999 after the OECD had stated the need for a central and free provider
of biodiversity data (Muller, 2004). The GBIF Backbone Taxonomy (GBIF Secretariat,
2021) unifies various data sources and provides a single backbone for all life on earth,
containing more than six million records. The backbone is created by using the Catalogue
of Life (Bisby et al., 2012) as a starting point and trying to integrate more than 500
different data sources (GBIF Secretariat, 2021). In total, we extracted 371,483 (potential)
tree species as previously described, of which 161,347 are considered to be accepted
species. GBIF regularly updates their backbone, with the version from December 2022
(https://hosted-datasets.gbif.org/datasets/backbone/) in Treemendous version 1.1.1.

In order to display the current versions of all the backbones, please type
?Treemendous.Trees.

FUNCTIONS FOR STANDARDIZING SPECIES NAMES
When using the Tremendous package, the process of name resolution is divided into
multiple steps. First, the species names are matched using either matching() or
sequential_matching(). Optionally, enforce_matching() can be called afterwards.
These functions provide matches in the target database/s regardless of the status of the
match as an accepted name or synonym. If the user wants only accepted names to be
returned, then synonyms can be resolved using resolve_synonyms() after using the
matching functions. Please keep in mind that a species name can have multiple matches if
there are authorship ambiguities or infraspecific matches (e.g., it matches to a species and
also a variety).

The function highlight_flags() can be used to get information on flagged records.
The function summarize_output() summarizes the process information.

matching(): The function requires the user to provide the species names as a tibble
(https://tibble.tidyverse.org/), containing the genus and the specific epithet as two different
columns; column names should be Genus and Species. Optionally, the user can specify
the backbone, which can be any subset of c("BGCI", "WFO", "WCVP", "GBIF") and
will filter the Treemendous.Trees database by the selected backbones. If no backbones

Specker et al. (2024), PeerJ, DOI 10.7717/peerj.16896 7/23

https://peerj.com
http://www.worldfloraonline.org/downloadData
http://sftp.kew.org/pub/data-repositories/WCVP/Archive/
http://sftp.kew.org/pub/data-repositories/WCVP/Archive/
https://hosted-datasets.gbif.org/datasets/backbone/
https://tibble.tidyverse.org/
http://dx.doi.org/10.7717/peerj.16896

matching()

Species within Genus Matching

Yes

No

Yes

No

Yes

No

No

Yes

Yes

Yes

No

No

Matched

direct_match()

genus_match()

direct_match()

fuzzy_match_genus()

suffix_match()

fuzzy_match()

Unmatched

Species Names

Backbone(s)

Figure 2 Overview of the matching() function: The process is split into six functions, which match the
names against the full database Treemendous. Trees or based on specific backbones.

Full-size DOI: 10.7717/peerj.16896/fig-2

are specified, the whole Treemendous.Trees database consisting of species from all four
backbones is used for matching.

An overview of the functions called by matching() is shown in Fig. 2. First,
direct_match() is called, and if the exact same name (genus and specific epithet)
is present in the database then a match is produced. If there was no direct match,
genus_match() checks, if the genus exists in the database. If the genus was not present,
fuzzy_match_genus() is called, and this function, tries to inexactly match genus names
using the package fuzzyjoin (Robinson, 2020) based on an optimal string alignment distance
of one, as implemented in stringdist (van der Loo, 2014). In addition to insertions, deletions
and substitutions, the metric also considers transpositions (e.g., Quercus↔ Quecrus) as
operations of distance one. If more than one genus matches, they are sorted alphabetically
and the first match is picked, but the user is informed and encouraged to curate the
ambiguous entries by hand. The maximal genus edit distance is set to one by design,
because typos in genus names can be considered much rarer compared to the specific
epithet and because genus names are usually quite short.

After the genus name has been matched, three functions are called within the matched
genus. First, direct_match_species_within_genus() checks if the specific epithet is
present in the matched genus. If not, suffix_match_species_within_genus() tries to
capture gender-specific endings or other common suffixes. More specifically, the following
suffixes are substituted c("a", "i", "is", "um", "us", "ae"). Next, the remaining
unmatched species names are fuzzy matched with a maximal optimal string alignment
distance of two.

The function matching() returns a tibble, with the new columns Matched.Genus and
Matched.Species containing the matched names, or NA if there was no match. Further,
a logical column is added for every function called to allow the user to inspect which
functions were used for every name during the process. When a logical column shows
NA, this function was not called for the given name because it was already matched with a
preceding function. Please note that, in order to obtain only accepted names, the function
resolve_synonyms() must be called (Figs. 3A, 3B).

sequential_matching(): If the user wants to enforce an ordering upon the individual
backbones, the function sequential_matching() can be used and the ordering is

Specker et al. (2024), PeerJ, DOI 10.7717/peerj.16896 8/23

https://peerj.com
https://doi.org/10.7717/peerj.16896/fig-2
http://dx.doi.org/10.7717/peerj.16896

Figure 3 Example of species name resolution using three different backbones in A–C, and a detailed
example of the internal process behind the enforce_matching() function in D. The GBIF backbone is
not included in the figure as it behaves exactly as theWFO backbone in this case. Input species names
are shown in blue, while output names are shown in green and intermediate names in grey. The four in-
put species are Parinari racemosa, Atuna racemosa, Atuna excelsa andMaranthes corymbosa. (A) For the
WFO backbone, all species have direct matches. After matching, resolve_synonyms() is used to obtain
accepted species names according to the target backbone,WFO. (B) For theWCVP backbone all species
have direct matches. After matching, resolve_synonyms() is used to obtain accepted species names ac-
cording to the target backbone,WCVP. (C) For the BGCI backbone, the three species do not have direct
matches and thus enforce_matching() is used. Because the resulting species are all accepted in BGCI, the
subsequent use of resolve_synonyms() is not necessary. (D) When using enforce_matching(), input names
not present in the target backbone (BGCI in this case, see (C)) can be matched using the information of
synonym-accepted relations from the other backbones, at a depth of 1 in the case of Parinari racemosa,
2 in the case of Atuna excelsa, and 3 in the case of Atuna racemosa. According toWCVP, Parinari race-
mosa is considered a synonym ofMaranthes corymbosa (see B), which is in our target database, BGCI. The
species Atuna racemosa can be matched to our target database, BGCI, via the intermediate species names
Atuna excelsa and Parinari racemosa, becauseWFO connects these species names (see A). The species
name Atuna excelsa can be matched to BGCI via the intermediate species name Parinari racemosa, because
WFO connects these species names (see A). Both these species can then be matched toMaranthes corym-
bosa, a species present in our target backbone, BGCI, through their connection inWCVP.

Full-size DOI: 10.7717/peerj.16896/fig-3

specified with the argument sequential_backbones. This function is a wrapper around
matching() and calls it sequentially for every backbone in sequential_backbones. To
ensure that the correct information on the functions used for all unmatched species,
matching() is called again with all backbones together. Otherwise, the information would
still correspond to the last backbone in sequential_backbone. Please note that in order
to obtain only accepted names the function resolve_synonyms() must be called.

enforce_matching(): This function provides the first novel extension of this package.
After having called either matching() or sequential_matching(), the user can optionally
call enforce_matching(), trying to increase the proportion of matched species according
to a single target backbone (see Fig. 3C). The functionmakes use of all the relations between

Specker et al. (2024), PeerJ, DOI 10.7717/peerj.16896 9/23

https://peerj.com
https://doi.org/10.7717/peerj.16896/fig-3
http://dx.doi.org/10.7717/peerj.16896

synonyms and accepted species present in the backbones WFO, WCVP and GBIF. Using the
package igraph (Csardi & Nepusz, 2006), an undirected graph g is created, with vertices
representing species names, and edges indicating that two species names are considered
synonymous according to a backbone. Additionally, two species names that can bematched
via fuzzy-matching (maximum string-dist of one) are also connected with an edge.

Next, the algorithm iteratively tries to find a path from the input species to a species
in the target backbone (see Fig. 3D). For multiple matches, the algorithm always selects
the first match, i.e., the target vertex with lower ID_matched in Treemendous.Trees

to ensure reproducibility. By default, the function allows a maximum depth of three
steps to search for a match in the target backbone (see Fig. 3D), with the output field
enforced_matching_dist denoting the depth of the match for each species (1, 2, or
3). Filtering by this column allows the user to be more restrictive (depth = 1), at the
cost of incorrectly missing some matches, or be increasingly permissive with the matches
(depth = 2 or 3), at the cost of potentially lumping species together. Depending on the
application, these different scenarios may be more or less preferable and can be selected
on a case-by-case basis. Note that as soon as a first match is found, the algorithm does not
continue to look for matches at greater depths. Please note that in order to obtain only
accepted names the function resolve_synonyms() must be called.

Although enforce_matching() represents a very powerful tool, the user is encouraged
to manually check that these matches are also reasonable for their individual use case, and
to explore the output of highlight_flags() (described below) to investigate input taxa
with questionable or conflicting results.

resolve_synonyms(): This function works in tandem with the three matching functions
to resolve synonyms to an accepted Latin binomial in the desired focal backbone, while
leveraging synonym relationships across all backbones. As many of the species names in
Treemendous.Trees are not considered to be accepted, but synonyms, the user might want
to resolve these names according to a certain backbone. Three backbones (WFO, WCVP,
GBIF) provide information about the accepted species name, while the species of BGCI are
considered to only represent accepted names. The function resolve_synonyms() requires
that the names werematched beforehand, using either matching(), enforce_matching(),
or sequential_matching(), and it takes the result of these functions as an input (see Figs.
3A, 3B).

Because there is no consensus about which species is accepted among the databases,
the user has to specify an order in these backbones. By default, the order is c(‘BGCI’,
‘WFO’, ‘WCVP’, ‘GBIF’), which can be modified by providing a different order via the
argument backbones. By design, every species considered a synonym according to WFO,
WCVP or GBIF, has the corresponding accepted species as part of the database.

translate_trees(): This function provides the second major contribution of this package,
allowing the user to translate the species names of an input dataset into an existing
custom target backbone, which need not be consistent with any underlying backbone.
Essentially, the function is a wrapper around matching() and enforce_matching(),
which at runtime merges the built-in Treemendous.Trees database with the provided
custom backbone. This allows the function enforce_matching() to use the information of

Specker et al. (2024), PeerJ, DOI 10.7717/peerj.16896 10/23

https://peerj.com
http://dx.doi.org/10.7717/peerj.16896

synonym-accepted relations in Treemendous.Trees, even when a custom target backbone
is provided. In more detail, we first match the input names to the target names, including
suffix and fuzzy matching. For all unmatched species, we match these to the species names
present in the graph g representing synonym-accepted relations of Treemendous.Trees,
thereby getting the entry vertices in g. Further, we find all vertices in the graph g, which can
be matched to the new target database—essentially representing the target vertices in the
graph g. Then, the function enforce.matching tries to find a path between the entry and
the target vertices with a maximum depth of three (by default). By taking a graph-based
approach, this function allows users to match a focal list of species to a target list of species,
even if that target list is not fully consistent with any of the individual backbones (e.g., it
contains species names that are not present in any one backbone).

highlight_flags(): The Treemendous package currently only uses Latin binomials as
inputs and outputs, but the underlying database was constructed using taxonomic authority
and infraspecific information to identify the types of linkages. The highlight_flags()
function uses this metadata to flag resolved matches that have conflicting or potentially
dubious results. In particular, the backbones WFO, WCVP or GBIF often contain multiple
entries for the same Latin binomial, which, in the absence of authority information, would
resolve to different Latin binomials using resolve_synonyms(). In other cases the input is
both an accepted binomial and a synonym, or has multiple possible infraspecific matches.
In these cases, the resulting matches will have a corresponding flag pointing the user to
both the database/s and the type of conflict that was found.

Specifically, the highlight_flags() function returns three different flags for each
backbone: infraspecific_ambiguity, authorship_ambiguity, and infraspecific_link. The
infraspecific_link flag indicates that the input name was successfully resolved to a single
Latin binomial, but at some point in the chain this involved linking a trinomial to a
corresponding Latin binomial, which may or may not be appropriate depending on the
taxon. For example, using WFO as the focal backbone, Abies shastensis is resolved at the
species level to Abies magnifica, but it also returns an infraspecific_link flag because this
result was linked through Abies magnifica var. shastensis. The infraspecifc_ambiguity flag
indicates that the input binomial has a corresponding trinomial that would resolve to a
different Latin binomial. For example, inWFO,Abies balsameawould raise this flag because
Abies balsamea var. fraseri is a synonym of the accepted species Abies fraseri. Ignoring or
deleting infraspecific epithets can thus create substantial name-resolution errors, and the
user is advised never to naïvely truncate these beforehand. However, if the input data were
incorrectly shortened from trinomial to binomial names at some previous point, this flag
identifies instances where such shortening could lead to an incorrect binomial. Lastly, the
authorship_ambiguity flag points out instances where a single input binomial corresponds
to multiple binomial entries at taxonomic rank ‘‘species’’ in the related backbone. If
resolving these entries would lead to different Latin binomials, the flag is raised, suggesting
possible homonym issues at the species level. It’s important to note that the algorithm
keeps the accepted name (e.g., Ilex subrotundifolia in WFO) and only selects the first entry
in the backbone when neither of the homonyms is deemed accepted (e.g., Abies excelsa in

Specker et al. (2024), PeerJ, DOI 10.7717/peerj.16896 11/23

https://peerj.com
http://dx.doi.org/10.7717/peerj.16896

WCVP), and is thus taxonomically arbitrary in that case. These entries should be treated
with caution and should be manually verified.

Users are strongly encouraged to use this function after their matching and synonym
resolving steps and determine whether they want to investigate these issues further. See
?highlight_flags for more details and examples.

EXAMPLE USAGE
Package Installation

library(devtools)

install_github("speckerf/treemendous")

Species List Preparation
All functions of Treemendous require the species name to be split into two columns,
Genus and Species, with the former being capitalized. Assume you have two species, Acer
platanoides and Fagus sylvatica, you can create the input tibble by calling:

Species list preparation

library(tidyverse)

species <- c('Acer platanoides', 'Fagus sylvatica')

input <- species %>%

tibble::as_tibble_col(column_name = 'binomial') %>%

tidyr::separate(col = 'binomial', into = c('Genus', 'Species'))

input

A tibble: 2 x 2

Genus Species

<chr> <chr>

1 Acer platanoides

2 Fagus sylvatica

Other useful functions for creating the input tibble include:

readr::read_csv('path') # import data

dplyr::select(Genus, Species) # select columns

dplyr::distinct(Genus, Species) # remove duplicate binomials

dplyr::rename('Genus' = 'old_genus_name',

'Species' = 'old_species_name') # rename columns

dplyr::mutate(Genus = stringr::str_to_title(Genus)) # capitalize Genus

dplyr::mutate(Species = stringr::str_remove(Species, ".*?\\s"))

remove everything before first space

tidyr::drop_na(c('Genus', 'Species')) # remove rows with NA's

Specker et al. (2024), PeerJ, DOI 10.7717/peerj.16896 12/23

https://peerj.com
http://dx.doi.org/10.7717/peerj.16896

dplyr::arrange(Genus, Species) # sort names

dplyr::bind_rows(x, y) # concatenate two tibble's

FIA: Standardize species names from the U.S. Forest Inventory and
Analysis program.
Along with the package comes an example dataset fia with 2,171 different tree species
names (Gray et al., 2012). Assume thatwewant to standardize these species names according
to a certain backbone (use the backbone argument). The function summarize_output()

can be used to get a summary of the process.

library(treemendous)

result <- fia %>% matching(backbone = 'BGCI')

summarize_output(result)

[1] "matched: 1822 / 2171 were matched with 1822 distinct matched names."
[2] "direct_match: 1779 / 2171"
[3] "indirectly matched: 43 / 392"
[4] " genus_match: 313 / 392"
[5] " fuzzy_match_genus: 2 / 79"
[6] " direct_match_species_within_genus: 1 / 315"
[7] " suffix_match_species_within_genus: 11 / 314"
[8] " fuzzy_match_species_within_genus: 31 / 303"

From 2,171 species names in total, we were able to match 1,822 according to the
backbone BGCI, with 1,779 names matching exactly, and 43 species names matching using
fuzzy- and suffix-matching. Besides information about the matching process, the output
contains the old names (prefix Orig.) as well as the matched names (prefix Matched.) as
follows:

result %>%

dplyr::slice_head(n=3) %>%

dplyr::select(1:5)

A tibble: 3 x 5

Orig.Genus Orig.Species Matched.Genus Matched.Species matched

<chr> <chr> <chr> <chr> <lgl>

1 Abies amabilis Abies amabilis TRUE

2 Abies balsamea Abies balsamea TRUE

3 Abies bracteata Abies bracteata TRUE

We can further increase the number of matched species by using the functions
matching() followed by enforce_matching(). Here, we specify the backbone BGCI.

Specker et al. (2024), PeerJ, DOI 10.7717/peerj.16896 13/23

https://peerj.com
http://dx.doi.org/10.7717/peerj.16896

result <- fia %>%

matching(backbone = 'BGCI') %>%

enforce_matching(backbone = 'BGCI')

result %>% summarize_output()

[1] "matched: 2097 / 2171 were matched with 2036 distinct matched names."
[2] "direct_match: 1779 / 2171"
[3] "indirectly matched: 43 / 392"
[4] " genus_match: 93 / 117"
[5] " fuzzy_match_genus: 2 / 24"
[6] " direct_match_species_within_genus: 1 / 95"
[7] " suffix_match_species_within_genus: 11 / 94"
[8] " fuzzy_match_species_within_genus: 31 / 83"
[9] "number of species matched via enforce_matching(): 275 / 349"

Now, we are able to match 2,097 species names in total, with 275 species being matched
via enforce_matching(). Note that the number of matched distinct species names is
lower with 2,036, because several input species were matched to the same species in the
target database BGCI.

If we choose a different backbone than BGCI, then species can matched names that are
not accepted (synonyms), we can further resolve synonyms after matching the species
names with the function resolve_synonyms(). Now, the output contains additionally
the accepted species names (prefix Accepted.), as well as a column Accepted.Backbone,
which states according to which backbone the synonym was resolved.

result <- fia %>%

matching('WFO') %>%

resolve_synonyms('WFO')

result %>%

dplyr::slice_head(n=3) %>%

dplyr::select(dplyr::matches('Orig|Matched|Accepted'), -'matched')

A tibble: 3 x 7
Orig.Genus Orig.Species Matched.Genus Matched.Species Ac~.Genus Ac~.Species
<chr> <chr> <chr> <chr> <chr> <chr>
1 Abies amabilis Abies amabilis Abies amibilis
2 Abies balsamea Abies balsamea Abies balsamea
3 Abies bracteata Abies bracteata Abies bracteata
i 1 more variables: Accepted.Backbone <chr>
Abbreviated names: Ac~.Genus = Accepted.Genus, Ac~.Species = Accepted.Species

Note that a warning message is produced, ‘‘Please consider calling highlight_flags() to
investigate potential ambiguities upon resolving synonyms to accepted names’’. This indicates
when potential ambiguities have been identified in your dataset, and it is suggested to use
highlight_flags() to know more and decide if you want to check them manually. The
highlight_flags() function should be used separately from the others as it will only

Specker et al. (2024), PeerJ, DOI 10.7717/peerj.16896 14/23

https://peerj.com
http://dx.doi.org/10.7717/peerj.16896

return species that have some flag and not the full dataset. Here, we specify flags related to
the WFO backbone:

flags <- result %>% highlight_flags('WFO')

In summary, 574 out of 2171 matched species have raised a flag.

flags %>%

dplyr::slice_head(n=3) %>%

dplyr::select(dplyr::matches('Acc|ambiguity|link'))

A tibble: 3 x 6
Accepted.Genus Accepted.Species Accepted.Backbone WFO_authorship_ambiguity
<chr> <chr> <chr> <lgl>
1 Abies amabilis WFO TRUE
2 Abies balsamea WFO FALSE
3 Abies concolor WFO FALSE
i 2 more variables: WFO_infraspecific_ambiguity <lgl>,
WFO_infraspecific_link <lgl>

We can see the full breakdown of these flags as follows:

flags %>% dplyr::select(dplyr::contains("WFO")) %>% dplyr::summarize_all(.funs = sum)

A tibble: 1 x 3
WFO_authorship_ambiguity WFO_infraspecific_ambiguity WFO_infraspecific_link
<int> <int> <int>
1 142 462 37

As we can see, the bulk of these flags denotes an infraspecific_ambiguity, which can
generally be ignored, provided that the user did not manually truncate any trinomials
to binomials for input, but should otherwise be investigated for those entries where this
was done. The 37 infraspecific_link flags are likewise typically not problematic, as these
simply highlight when the input binomial differs from the output binomial via a trinomial
link at some point in the graph. The remaining 142 authorship_ambiguity are the most
problematic, as these indicate taxa that have multiple conflicting matches. These should
be manually explored and used with caution.

Instead of using a single backbone, the user can also decide to use any subset of the
backbones c(‘BGCI’, ‘WFO’, ‘WCVP’, ‘GBIF’) or use all of them by simply calling
matching() without any argument. While matching() considers all backbones being
equally important, the function sequential_matching() can be used to call matching()
for individual backbones sequentially. For every species, the matched backbone is
provided in the column Matched.Backbone.

Specker et al. (2024), PeerJ, DOI 10.7717/peerj.16896 15/23

https://peerj.com
http://dx.doi.org/10.7717/peerj.16896

result <- fia %>%

sequential_matching(sequential_backbones = c('BGCI', 'WFO', 'WCVP'))

Remember that matching() and sequential _matching()match any species in the
database and thus can provide matches to synonyms rather than accepted species. To get
only accepted species returned use resolve_synonyms() after the matching function.

Translate species names between two databases
Oftentimes, researches require integrating multi-modal data from different sources for
their analyses. Here, we demonstrate the use of the function translate_trees(), which
allows a user to directly translate names from an input database to a target database.
First, we resolve both databases individually according to the single backbone(WFO) and
compare the resolved names. Then, we use translate_trees() to translate the input
species names into the target names.

input <- tibble::tibble(

Genus = c('Aria', 'Ardisia', 'Malus'),

Species = c('umbellata', 'japonica', 'sylvestris')

)

target <- tibble::tibble(

Genus = c('Sorbus', 'Ardisia', 'Malus'),

Species = c('umbellata', 'montana', 'orientalis')

)

input %>%

matching(backbone = 'WFO') %>%

resolve_synonyms('WFO') %>%

dplyr::select(1:6)

A tibble: 3 x 6
Orig.Genus Orig.Species Matched.Genus Matched.Species Ac~.Genus Ac~.Species
<chr> <chr> <chr> <chr> <chr> <chr>
1 Ardisia japonica Ardisia japonica Ardisia japonica
2 Aria umbellata Aria umbellata Aria umbellata
3 Malus sylvestris Malus sylvestris Malus sylvestris
Abbreviated names: Ac~.Genus = Accepted.Genus, Ac~.Species = Accepted.Species

target %>%

matching(backbone = 'WFO') %>%

resolve_synonyms('WFO') %>%

dplyr::select(1:6)

Specker et al. (2024), PeerJ, DOI 10.7717/peerj.16896 16/23

https://peerj.com
http://dx.doi.org/10.7717/peerj.16896

A tibble: 3 x 6
Orig.Genus Orig.Species Matched.Genus Matched.Species Ac~.Genus Ac~.Species
<chr> <chr> <chr> <chr> <chr> <chr>
1 Ardisia montana Ardisia montana Ardisia japonica
2 Malus orientalis Malus <NA> <NA> <NA>
3 Sorbus umbellata Sorbus umbellata Sorbus umbellata
Abbreviated names: Ac~.Genus = Accepted.Genus, Ac~.Species = Accepted.Species

Resolving both sets individually leads to a mismatch—Malus orientalis andMalus
sylvestris were resolved to two different names. Now let’s see whether translate_trees()
can be used to match all three species:

translate_trees(df = input, target = target) %>%

dplyr::select(1:4)

A tibble: 3 x 4
Orig.Genus Orig.Species Matched.Genus Matched.Species
<chr> <chr> <chr> <chr>
1 Ardisia japonica Ardisia montana
2 Aria umbellata Sorbus umbellata
3 Malus sylvestris Malus orientalis

Essentially, all three species names can be translated from the input set to the target
set. Incorporating the knowledge of the desired target names, the function leverages the
information about synonym-accepted relations in the three backbones WFO, WCVP and
GBIF and is able to translateMalus sylvestris intoMalus orientalis.

DISCUSSION
The Treemendous package provides an efficient and reproducible approach to resolving
species names and translating names between two disparate datasets. Although there are
numerous taxonomic resolution packages, this approach is unique in that it leverages
relationships across multiple backbones to increase the proportion of matched species
consistent with a target backbone. In contrast to other applications, Treemendous adopts a
graph-based approach that incorporates linkages and information across all backbones
to further resolve species not present in a target backbone. By leveraging information
across backbones, this package helps the user resolve or translate species lists that are
inconsistent with any given backbone, improving matching success.

Treemendous is intended to provide a novel fourth step in the name-resolution
pipeline, providing functionality not currently found in existing name-resolution
packages. While this package also provides basic functionality for name cleaning and
fuzzy-matching, it is intended to be used in tandem with—rather than in place of—
existing packages. For example, pre-processing can also be done using packages and
tools that specialize in one of these up-stream steps (e.g., Global Name Parser, TNRS, or
Taxamatch), with resolve_synonyms() or translate_trees() subsequently applied
to the parsed and cleaned Latin binomials after calling one of the matching functions. As
such, Treemendous has the functionality to be used as a stand-alone package, but more
ideally as the fourth step in resolving conflicting taxonomic lists.

Specker et al. (2024), PeerJ, DOI 10.7717/peerj.16896 17/23

https://peerj.com
http://dx.doi.org/10.7717/peerj.16896

A key challenge in taxonomic name resolution is the trade-off between false negatives
(failing to successfully identify a match) and false positives (incorrectly identifying a
match). The standard approach of most name-resolution applications is to tune this
trade-off by toggling the number of allowable spelling mismatches when implementing
fuzzy matching. Here, we provide an additional graph-based approach to this challenge,
allowing the user to specify the search depth when implementing enforce_matching()
(default of 3, Fig. 3), ranging from strict matching to minimize false positives (depth of
1) to more relaxed matching to decrease false negatives (depth of 3). Not only do these
functions provide increased functionality and transparent control over the decision-
making processes, but it allows the user to more easily find potential errors by identifying
which species are sensitive to different resolution depths.

While linkages between backbones in the Treemendous were constructed using
authority information and trinomials (variants, suspects, etc.), Treemendous
currently requires a Latin binomial as input data. To identify potential issues, it returns
a flag via highlight.flags() to indicate when an input Latin binomial has conflict-
ing authority information or unclear Latin trinomial resolution. Of these flags, the
infraspecific.link flag is generally benign, indicating that the accepted Latin binomial
was reached via linking through a trinomial. The infraspecific.ambiguity flag is
mainly of concern if the original dataset possibly or knowingly contained truncated
trinomials. Because different subspecies and varieties with the same Latin binomial
frequently resolve to different accepted Latin binomials, we reiterate that the user should
never truncate trinomials, and instead should resolve these manually or with the aid
of other packages. Last, the authorship.ambiguity flag highlights instances which
resolve to different accepted Latin binomials, which often correspond to homonyms at
the species level. In such instances, Treemendous returns the shortest path to an accepted
binomial in the focal backbone, and otherwise simply picks the first match in the list, such
that the selected species is taxonomically arbitrary. We strongly encourage the user to
carefully explore the flagged taxa to determine the appropriate result, and to subsequently
use another name-resolution application if needed, such as the recent U.Taxonstand
package (Zhang & Qian, 2023), to incorporate authority information to help resolve these
conflicts.

The core database used to resolve tree names is broadly inclusive (401,482 species
names in total including synonyms and accepted names) and encompasses all species
within a genus known to contain at least one characterized tree, which includes some
woody shrubs and vines. Nonetheless, this package can also be used to identify and
distinguish trees from other woody plants. Specifically, one can call matching() followed
by enforce_matching(), with BGCI as the reference backbone. This will use the relations
between synonyms in WFO, WCVP, and GFBI to translate the given species list into BGCI-
consistent taxonomy (e.g., Fig. 3), ensuring that the resulting list contains only docu-
mented tree species. On the other hand, this package excludes non-woody tree-like species
(e.g., tree ferns and monocots) which are absent from BGCI. For certain analyses (e.g.,
analysis of tree canopy) the inclusion of such species may be desirable, which presents an
important next step for improving the extensibility of this package.

Specker et al. (2024), PeerJ, DOI 10.7717/peerj.16896 18/23

https://peerj.com
http://dx.doi.org/10.7717/peerj.16896

Treemendous is a fully open-source and collaborative tool that can easily be adapted
to other taxonomic settings, including all plants or animals. Yet the challenge when
moving beyond trees is the large number of possible species (e.g., ca. 375,000 known plant
species (Christenhusz & Byng, 2016) vs. ca. 65,000 known tree species (Gatti et al., 2022))
which presents computational challenges, particularly when considering so-called ‘fuzzy
matches’ (misspellings) across multiple backbones. To overcome some of the previous
limitations, our approach uses fully vectorized functions, which avoids the need to process
names sequentially; and it also relies on a built-in database, rather than requiring slow
API calls by querying a remote database. Nevertheless, this package contains the core
functionality for implementing taxonomic name resolution of other taxonomic groups,
and would only require changing the reference database. We welcome and encourage any
user suggestions or extensions to the package via the GitHub collaborative tools.

Taxonomic backbones are constantly being updated and revised, such that species
lists that were previously consistent with a given backbone inevitably become outdated
and inconsistent over time. By combining information across multiple backbones, the
Treemendous package helps to overcome this challenge, allowing users to directly translate
species names into a target species list, even when the target is inconsistent with any
present-day backbone. By facilitating the integration of different data types and sources
for biodiversity research, this functionality can help assimilate new data into existing
workflows and models, increasing collaboration and data sharing across disciplines.

ACKNOWLEDGEMENTS
We thank Lalasia Bialic-Murphy for several discussions leading to the design of this
package. We also thank Bradley L. Boyle and two anonymous reviewers for their insightful
comments which substantially improved the manuscript and the package.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
Daniel Maynard and Andrea Paz were supported by an Ambizione grant from the Swiss
National Science Foundation to Daniel Maynard (#PZ00P3_193612). Thomas Crowther
was supported by grants from DOB Ecology and the Bernina Initiative. The funders had
no role in study design, data collection and analysis, decision to publish, or preparation of
the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
The Swiss National Science Foundation: #PZ00P3_193612.
DOB Ecology and the Bernina Initiative.

Competing Interests
The authors declare there are no competing interests.

Specker et al. (2024), PeerJ, DOI 10.7717/peerj.16896 19/23

https://peerj.com
http://dx.doi.org/10.7717/peerj.16896

Author Contributions
• Felix Specker performed the experiments, analyzed the data, prepared figures and/or
tables, authored or reviewed drafts of the article, and approved the final draft.
• Andrea Paz conceived and designed the experiments, authored or reviewed drafts of the
article, and approved the final draft.
• Thomas W. Crowther conceived and designed the experiments, authored or reviewed
drafts of the article, and approved the final draft.
• Daniel S. Maynard conceived and designed the experiments, authored or reviewed drafts
of the article, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The code and data are available at GitHub along with installation instructions and
examples and Zenodo:

- https://github.com/speckerf/treemendous
- Felix Specker, Andrea Paz, Thomas Crowther, & Daniel S. Maynard. (2023).

speckerf/treemendous: Zenodo Release v1.1.1 (zenodo-v1.1.1). Zenodo. https://doi.org/10.
5281/zenodo.8251851

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj.16896#supplemental-information.

REFERENCES
Bache SM,WickhamH. 2022.magrittr: a forward-pipe operator for R. R package version

2.0.3. Available at https://cran.r-project.org/web/packages/magrittr/magrittr.pdf .
Beech E, Rivers M, Oldfield S, Smith P. 2017. GlobalTreeSearch: the first complete global

database of tree species and country distributions. Journal of Sustainable Forestry
36(5):454–489 DOI 10.1080/10549811.2017.1310049.

Bisby F, Roskov Y, Culham A, Orrell T, Nicolson D, Paglinawan L, Bailly N, Appeltans
W, Kirk P, Bourgoin T, Baillargeon G, Ouvrard D. 2012. Species 2000 & ITIS
Catalogue of Life, 2012 Annual Checklist. Technical Report. Species 2000/ ITIS,
Reading.

Borsch T, BerendsohnW, Dalcin E, DelmasM, Demissew S, Elliott A, Fritsch P, Fuchs
A, Geltman D, Güner A, Haevermans T, Knapp S, le RouxMM, Loizeau P-A,
Miller C, Miller J, Miller JT, Palese R, Paton A, Parnell J, Pendry C, Qin H-N,
Sosa V, Sosef M, von Raab-Straube E, Ranwashe F, Raz L, Salimov R, Smets E,
Thiers B, ThomasW, Tulig M, UlateW, Ung V,WatsonM, Jackson PW, Zamora
N. 2020.World Flora Online: placing taxonomists at the heart of a definitive and
comprehensive global resource on the world’s plants. TAXON 69(6):1311–1341
DOI 10.1002/tax.12373.

Boyle B, Hopkins N, Lu Z, Raygoza Garay JA, Mozzherin D, Rees T, Matasci N, Narro
ML, Piel WH,Mckay SJ, Lowry S, Freeland C, Peet RK, Enquist BJ. 2013. The

Specker et al. (2024), PeerJ, DOI 10.7717/peerj.16896 20/23

https://peerj.com
https://github.com/speckerf/treemendous
https://doi.org/10.5281/zenodo.8251851
https://doi.org/10.5281/zenodo.8251851
http://dx.doi.org/10.7717/peerj.16896#supplemental-information
http://dx.doi.org/10.7717/peerj.16896#supplemental-information
https://cran.r-project.org/web/packages/magrittr/magrittr.pdf
http://dx.doi.org/10.1080/10549811.2017.1310049
http://dx.doi.org/10.1002/tax.12373
http://dx.doi.org/10.7717/peerj.16896

taxonomic name resolution service: an online tool for automated standardization
of plant names. BMC Bioinformatics 14(1):16 DOI 10.1186/1471-2105-14-16.

Chamberlain SA, Szöcs E. 2013. taxize: taxonomic search and retrieval in R.
F1000Research 2:191 DOI 10.12688/f1000research.2-191.v2.

Christenhusz MJM, Byng JW. 2016. The number of known plants species in the world
and its annual increase. Phytotaxa 261(3):201–217 DOI 10.11646/phytotaxa.261.3.1.

Csardi G, Nepusz T. 2006. The igraph software package for complex network research.
InterJournal Complex Systems 1695. Available at https://igraph.org/.

Csárdi G, FitzJohn R. 2019. progress: terminal Progress Bars. R package version 1.2.2.
Gagolewski M. 2022. stringi: Fast and portable character string processing in R. Journal of

Statistical Software 103(2):1–59 DOI 10.18637/jss.v103.i02.
Gatti RC, Reich PB, Gamarra JG, Crowther T, Hui C, Morera A, Bastin JF, De-Miguel

S, Nabuurs GJ, Svenning JC, Serra-Diaz JM, Merow C, Enquist B, KamenetskyM,
Lee J, Zhu J, Fang J, Jacobs DF, Pijanowski B, Banerjee A, Giaquinto RA, Alberti
G, Zambrano AMA, Alvarez-Davila E, Araujo-Murakami A, Avitabile V, Aymard
GA, Balazy R, Baraloto C, Barroso JG, BastianML, Birnbaum P, Bitariho R,
Bogaert J, Bongers F, Bouriaud O, Brancalion PH, Brearley FQ, Broadbent EN,
Bussotti F, da SilvaWC, César RG, Češljar G, Moscoso VC, Chen HY, Cienciala E,
Clark CJ, Coomes DA, Dayanandan S, Decuyper M, Dee LE, Del Aguila Pasquel
J, Derroire G, DjuikouoMNK, van Do T, Dolezal J, Dordevic I, Engel J, Fayle
TM, Feldpausch TR, Fridman JK, Harris DJ, Hemp A, Hengeveld G, Herault
B, HeroldM, Ibanez T, Jagodzinski AM, Jaroszewicz B, Jeffery KJ, Johannsen
VK, Jucker T, Kangur A, Karminov VN, Kartawinata K, Kennard DK, Kepfer-
Rojas S, Keppel G, KhanML, Khare PK, Kileen TJ, KimHS, Korjus H, Kumar
A, Kumar A, Laarmann D, Labrière N, LangM, Lewis SL, Lukina N, Maitner BS,
Malhi Y, Marshall AR, Martynenko OV, MonteagudoMendoza AL, Ontikov
PV, Ortiz-Malavasi E, Pallqui Camacho NC, Paquette A, ParkM, Parthasarathy
N, Peri PL, Petronelli P, Pfautsch S, Phillips OL, Picard N, Piotto D, Poorter L,
Poulsen JR, Pretzsch H, Ramírez-Angulo H, Correa ZR, RodeghieroM, Del Pilar
Rojas Gonzáles R, Rolim SG, Rovero F, Rutishauser E, Saikia P, Salas-Eljatib C,
Schepaschenko D, Scherer-LorenzenM, Šebeň V, Silveira M, Slik F, Sonké B,
Souza AF, Stereńczak K. J., SvobodaM, TaedoumgH, Tchebakova N, Terborgh
J, Tikhonova E, Torres-Lezama A, van der Plas F, Vásquez R, Viana H, Vibrans
AC, Vilanova E, Vos VA,Wang HF,Westerlund B,White LJ, Wiser SK, Zawiła-
Niedźwiecki T, Zemagho L, Zhu ZX, Zo-Bi IC, Liang J. 2022. The number of tree
species on Earth. 119(6):e2115329119 DOI 10.1073/pnas.2115329119.

GBIF Secretariat. 2021. GBIF Backbone Taxonomy. Version November 2021. Available
at https://doi.org/10.15468/39omei.

Govaerts R, Nic Lughadha E, Black N, Turner R, Paton A. 2021. The world checklist of
vascular plants, a continuously updated resource for exploring global plant diversity.
Scientific Data 8(1):215 DOI 10.1038/s41597-021-00997-6.

Specker et al. (2024), PeerJ, DOI 10.7717/peerj.16896 21/23

https://peerj.com
http://dx.doi.org/10.1186/1471-2105-14-16
http://dx.doi.org/10.12688/f1000research.2-191.v2
http://dx.doi.org/10.11646/phytotaxa.261.3.1
https://igraph.org/
http://dx.doi.org/10.18637/jss.v103.i02
http://dx.doi.org/10.1073/pnas.2115329119
https://doi.org/10.15468/39omei
http://dx.doi.org/10.1038/s41597-021-00997-6
http://dx.doi.org/10.7717/peerj.16896

Gray A, Brandeis T, Shaw J, McWilliamsW,Miles P. 2012. Forest inventory and analysis
database of the United States of America (FIA). Biodiversity Ecology 4:225–231
DOI 10.7809/b-e.00079.

Grenié M, Berti E, Carvajal-Quintero J, Dädlow GML, Sagouis A,Winter M. 2021.
Harmonizing taxon names in biodiversity data: a review of tools, databases and best
practices.Methods in Ecology and Evolution 14:12–25 DOI 10.1111/2041-210X.13802.

Henry L,WickhamH. 2020. purrr: functional Programming Tools. R package version
0.3.4. Available at https://purrr.tidyverse.org/.

Mozzherin DY, Myltsev AA, Patterson DJ. 2017. ‘‘gnparser’’: a powerful parser for
scientific names based on Parsing Expression Grammar. BMC Bioinformatics
18(1):279 DOI 10.1186/s12859-017-1663-3.

Muller MR. 2004. An analysis of the implications of intellectual property rights (IPR) on
the Global Biodiversity Information Facility (GBIF). Global Biodiversity Information
Facility, Copenhagen, Denmark.

Müller K,WickhamH. 2022. tibble: simple data frames. R package version 3.1.8.
Available at https://tibble.tidyverse.org/.

R Core Team. 2022. R: a language and environment for statistical computing. Vienna,
Austria. Available at https://www.r-project.org/.

Rees T. 2014. Taxamatch, an Algorithm for Near (‘Fuzzy’) Matching of scientific names
in taxonomic databases. PLOS ONE 9(9):e107510 DOI 10.1371/journal.pone.0107510.

Robinson D. 2020. fuzzyjoin: join tables together on inexact matching. R package version
0.1.6. Available at https://cran.r-project.org/web/packages/fuzzyjoin/fuzzyjoin.pdf .

Schellenberger Costa D, Boehnisch G, Freiberg M, Govaerts R, Grenié M, Hassler M,
Kattge J, Muellner-Riehl AN, Rojas Andrés BM,Winter M,WatsonM, Zizka A,
Wirth C. 2023. The big four of plant taxonomy –a comparison of global checklists of
vascular plant names. New Phytologist DOI 10.1111/nph.18961.

Thomas C. 2009. Biodiversity databases spread, prompting unification call. Science
324:1632–1633 DOI 10.1126/science.324_1632.

van der LooM. 2014. The stringdist package for approximate string matching. The R
Journal 6:111–122 DOI 10.32614/RJ-2014-011.

WickhamH. 2019a. assertthat: easy pre and post assertions. R package version 0.2.1.
Available at https://cran.r-project.org/web/packages/assertthat/assertthat.pdf .

WickhamH. 2019b. stringr: simple, consistent wrappers for common string operations.
R package version 1.4.0. Available at https://stringr.tidyverse.org/.

WickhamH, AverickM, Bryan J, ChangW,McGowan LD, François R, Grolemund
G, Hayes A, Henry L, Hester J, KuhnM, Pedersen TL, Miller E, Bache SM,Müller
K, Ooms J, Robinson D, Seidel DP, Spinu V, Takahashi K, Vaughan D,Wilke C,
Woo K, Yutani H. 2019.Welcome to the tidyverse. Journal of Open Source Software
4(43):1686 DOI 10.21105/joss.01686.

WickhamH, François R, Henry L, Müller K. 2022. dplyr: a grammar of data manipula-
tion. R package version 1.0.9. Available at https://dplyr.tidyverse.org/.

WickhamH, GirlichM. 2022. tidyr: tidy messy data. R package version 1.2.0. Available at
https://tidyr.tidyverse.org/.

Specker et al. (2024), PeerJ, DOI 10.7717/peerj.16896 22/23

https://peerj.com
http://dx.doi.org/10.7809/b-e.00079
http://dx.doi.org/10.1111/2041-210X.13802
https://purrr.tidyverse.org/
http://dx.doi.org/10.1186/s12859-017-1663-3
https://tibble.tidyverse.org/
https://www.r-project.org/
http://dx.doi.org/10.1371/journal.pone.0107510
https://cran.r-project.org/web/packages/fuzzyjoin/fuzzyjoin.pdf
http://dx.doi.org/10.1111/nph.18961
http://dx.doi.org/10.1126/science.324_1632
http://dx.doi.org/10.32614/RJ-2014-011
https://cran.r-project.org/web/packages/assertthat/assertthat.pdf
https://stringr.tidyverse.org/
http://dx.doi.org/10.21105/joss.01686
https://dplyr.tidyverse.org/
https://tidyr.tidyverse.org/
http://dx.doi.org/10.7717/peerj.16896

WickhamH, Hester J, Bryan J. 2022. readr: read rectangular text data. R package version
2.1.2. Available at https://readr.tidyverse.org/.

WickhamH, Hester J, ChangW, Bryan J. 2021a. devtools: tools to make developing R
packages easier. R package version 2.4.3. Available at https://devtools.r-lib.org/.

WickhamH, Hester J, ChangW,Müller K, Cook D. 2021b.memoise: ‘Memoisation’ of
functions. R package version 2.0.1. Available at https://memoise.r-lib.org/.

Zhang J, Qian H. 2023. U.Taxonstand: an R package for standardizing scientific names of
plants and animals. Plant Diversity 45(1):1–5 DOI 10.1016/j.pld.2022.09.001.

Specker et al. (2024), PeerJ, DOI 10.7717/peerj.16896 23/23

https://peerj.com
https://readr.tidyverse.org/
https://devtools.r-lib.org/
https://memoise.r-lib.org/
http://dx.doi.org/10.1016/j.pld.2022.09.001
http://dx.doi.org/10.7717/peerj.16896

