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ABSTRACT
Despite millions of SARS-CoV-2 genomes being sequenced and shared globally,
manipulating such data sets is still challenging, especially selecting sequences for focused
phylogenetic analysis. We present a novel method, uvaia, which is based on partial
and exact sequence similarity for quickly extracting database sequences similar to
query sequences of interest. Many SARS-CoV-2 phylogenetic analyses rely on very
low numbers of ambiguous sites as a measure of quality since ambiguous sites do not
contribute to single nucleotide polymorphism (SNP) differences. Uvaia overcomes this
limitation by usingmeasures of sequence similarity which consider partially ambiguous
sites, allowing for more ambiguous sequences to be included in the analysis if needed.
Such fine-grained definition of similarity allows not only for better phylogenetic
analyses, but could also lead to improved classification and biogeographical inferences.
Uvaiaworks nativelywith compressed files, can usemultiple cores and efficiently utilises
memory, being able to analyse large data sets on a standard desktop.

Subjects Bioinformatics, Computational Science, COVID-19
Keywords SARS-CoV-2, COVID-19, Sequencing, Genomics, Phylogenetics, Distance, Neighbour
search, Alignment, SNP

INTRODUCTION
Genome sequencing has been globally deployed at pace to understand the evolution,
transmission and dynamics of the SARS-CoV-2 virus, with the goal of providing actionable
data for management of the COVID-19 pandemic (Du Plessis et al., 2021; Maxmen, 2021;
Lambrou et al., 2022). Genomic epidemiology contextualises newly sequenced genomes
within currently available knowledge, as towhether these new sequences have been observed
before, and when and where their most similar genomes have been sequenced before. This
can allow for outbreaks to be identified, linked, and mitigations put in place to monitor
or limit further spread. This is particularly important for closed environments such as
hospitals (Page et al., 2021), care homes (Aggarwal et al., 2021), or for limiting the spread
of newly emergent variants with concerning mutations (Aggarwal et al., 2022).

The number of SARS-CoV-2 genomes available in global public databases such as the
ENA/NCBI and GISAID has surpassed 14 million (accessed 2023-01-23). SARS-CoV-2
is now the most sequenced organism of all time; however, bioinformatics methods have
struggled to keep pace with the scale of the data, or are optimised for different properties
(e.g., small numbers of large genomes, rather than large numbers of small genomes). To
complicate things further, the sequencing methods commonly utilised for SARS-CoV-2
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can result in partial genomes (Baker et al., 2021). This can be due to a low viral load of the
sample where a patient is at an early or late stage of their infection (Alikhan et al., 2021),
due to a mutation causing a dropout in an amplicon primer sequence (Sanderson & Barrett,
2021), or could be due to the manner in which the sample has been collected and stored
(Liu et al., 2021). On the other hand, laboratories might erroneously impute the reference
DNA state to low coverage regions (Baker et al., 2021). Another algorithmic challenge
is that SARS-CoV-2 mutates relatively slowly, with regular global lineage replacements
as fitter lineages emerge. As circulating diversity can be very low during any given time
period, any changes between sequences can be significant epidemiologically. To address
huge genomic SARS-CoV-2 data sets with uneven quality, resolution, and completeness,
uvaia uses similarity measures which indirectly account for genome completeness, as we’ll
see below.

To account for partial genomes, a minimum threshold for genome completeness is often
applied, so that downstream analyses can rely on high quality genomes. For example, the
COVID-19 Genomics UK (COVID-19 Genomics UK Consortium, 2023) consortium sets a
threshold of 50% (Page et al., 2021), with data deposited in the ENA/NCBI and GISAID
(>90% completeness). A cycle threshold (Ct), i.e., the number of polymerase chain
reaction amplification cycles necessary for the virus to be detected (Rhoads et al., 2021),
is often applied before sequencing begins in order to maximise the chances of getting
a high coverage genome. Thus higher Ct values mean that there is less viral RNA, and
samples with Ct > 30 are usually excluded, to ensure that there is sufficient viral material
available for sequencing. Phylogenetic analyses can be restricted to genomes with a higher
completeness threshold, e.g., at least 90% of the sites with high-coverage. This can result
in clinically important samples being disregarded before sequencing, and for sequenced
genomes to never be made public, even though they could contain epidemiologically
useful information. Assuming that the sequence completeness does not compromise the
alignment (i.e., the presence of ambiguous sites does not generate a spurious alignment with
regards to the reference genome), uvaia can find similar sequences based on the number
of partial and exact matches, instead of the more common number of single nucleotide
polymorphism (SNP) differences.

Two important software tools for the phylogenetic analysis of SARS-CoV-2 data sets
are Nextstrain (Hadfield et al., 2018) and civet (O’Toole et al., 2021), and both contain
strategies for reducing the number of sequences to those relevant to a particular study.
Nextstrain can generate ‘‘focal sets’’ by downsampling based on geography and collection
date information, which can subsequently be selected for inclusion through a genetic
distance-based ‘‘priority’’ ordering (Hodcroft et al., 2021). Likewise, given a background
database composed of alignment and metadata, civet can generate a ‘‘catchment area’’
composed of sequences within a given distance to the query genomes, with the possibility
of downsampling (O’Toole et al., 2021). Both methods rely on stochastic factors, metadata
information and a SNP-distance measure.

Another essential software for SARS-CoV-2 analysis with integrated phylogenetics is
UShER, which can parsimoniously place a query sequence into a tree, and therefore can
return the closest samples from this so-called mutation-annotated tree (Turakhia et al.,
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2021). UShER relies on a given parsimonious tree, which can be further optimised and
quickly updated with new sequences (Ye et al., 2021). Its native input format for sequences
is the VCF format. However, it does not consider indels or ambiguous bases. UShER has
good accuracy for PANGO lineage classification, and scales very well given an existing
mutation-annotated tree (Kramer et al., 2023).

We have created a method, uvaia, for performing neighbourhood search of aligned
sequences, allowing for similar genomes to be found within massive datasets even for
more ambiguous sequences. Given a genome aligned to a reference, we can rapidly find
all other similar, equivalent or identical genomes from massive public aligned data sets,
and return a similarity matrix between them. Uvaia scales linearly to the massive datasets
seen with SARS-CoV-2 genomics, and almost linearly per core to the query sample size.
It accounts for the complexity of partial genomes, and can provide analysis rapidly on an
ordinary laptop. Since it relies on aligned sequences, we also offer a reference-based aligner,
uvaialign, as a convenient fallback which works readily with uvaia.

Uvaia has been used for rapidly analysing genomic data against massive databases to
assist pandemic management in multiple countries, including distance based analyses
analysing dynamics of the rapid emergence of the Omicron variant of concern in the
UK (Eales et al., 2022a; Eales et al., 2022b), for phylogenetic based analyses to understand
multiple waves in Zimbabwe (Mashe et al., 2021a; Mashe et al., 2021b), the spread of
variants of concern in Pakistan (Sarwar et al., 2021), and the emergence and replacement
of multiple variants of concern in Lebanon (Merhi et al., 2022). Uvaia achieves this by
utilising high efficiency compression, efficient parallelisation and combines this with
knowledge of the fundamental characteristics and properties found with SARS-CoV-2
genomic datasets. Uvaia is available under the open source GNU GPL3 licence from
https://github.com/quadram-institute-bioscience/uvaia.

Uvaia addresses two problems related to massive data sets, which have not been fully
explored by existing tools: by working natively with XZ-compressed files, and with a pool
of sequences in parallel. The first is to avoid files which may fill up the disk space: the raw
GISAID fasta file with all sequences as of v.2023_06_08, with more than 15Mi sequences,
occupies 433.3 GiB, while its XZ-compressed equivalent takes only 1,618 MiB. Such files
can also not be read into memory at once in most personal computers, and thus the
uvaia programs work with the sequence files in manageable batches, using multiprocessing
whenever possible, including the output XZ compression which is done in parallel.

Handling ambiguity
Most SARS-CoV-2 sequences will have some indels but also a considerable number of Ns,
which represent complete uncertainty or ambiguity in the base at the location. A sequence
may also have partially ambiguous sites (IUPAC codes), as for instance the character M
means that the site may be an A or a C, but not a G or a T. Both gaps and Ns are excluded
from pairwise comparisons by most sequence comparison algorithms, including uvaia.

Uvaia calculates the pairwise similarity based on three measures: on unambiguous
pairwise comparisons (i.e., sites exclusively with A, C, G, or T on both sequences), on
partial matches (so that an M will match A or C, for instance), and also on exact text
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Figure 1 Example of three sequences with no dissimilarities to each other (zero distance) which
nonetheless contain differences.

Full-size DOI: 10.7717/peerj.16890/fig-1

matches (such that an M matches with another M but not with A or C). The partial
matches similarity is related to the polymorphism p-distance, which assumes that state
ambiguity comes from population diversity (Potts, Hedderson & Grimm, 2014; Zhao,
Nielsen & Korneliussen, 2022) .There is an option for uvaia to mimic other software by
excluding partial matches from the comparison—although we notice that phylogenetic
inferencemethods, particularly probabilistic, benefit from partially ambiguous information
(Felsenstein, 2003; Yang, 2014) and thus are enabled by default in uvaia.

When we consider indels and Ns, looking at the distance between sequences may not
be a good indicator of neighbourhood since the sequences may have few comparable sites
(pairwise comparisons exclude sites with a gap or N in one of the sequences, see Fig. 1 for
an example). The same caveat applies to percentage identity calculation, since we normalise
by valid pairwise comparisons. Thus our ‘‘neighbourhood’’ (groups of similar genomic
sequences) is defined by the total number of matches, instead of number of mismatches or
fraction of matches.

METHODS
Given a set of query sequences, we want to keep from a (potentially very large) reference
alignment only the sequences which are close to at least one query. This keeps downstream
inferences computationally feasible, and also helps faster inferences to be made, like
neighbour-based lineage classification, or geographical analyses (Sarwar et al., 2021; Eales
et al., 2022a). In uvaia a priority queue is created to store the neighbourhood of each query
sample, where at most k reference sequences are kept. For each query, a new reference is
added to its queue, in order of importance, by its total number of unambiguous matches,
of exact text matches, and of partial matches. Ties are further broken by the number
of derived unambiguous matches, and ultimately by the number of valid sites of the
reference sequence. The reference sequences are thus ranked for each query according to
the tie-breaking statistics described above. This ranking therefore gives more weight to
sequences with more unambiguous sites, and to comparisons with more textual matches
(which in the worst case could be an artefact of the sequencing centre). The number of
derived matches is based on the strict consensus between all queries, which is created to
speed up calculations and split the sites into constant and polymorphic. The total number
of matches is then the number of matches between the reference and the consensus across
queries (i.e., over constant sites amongst query sequences) plus the number of derived
matches (calculated over polymorphic sites, that is which may differ between queries). The
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rationale is to give preference to neighbours closer to the tips and farther from the ancestor
of the query sequences. Portions of this text were previously published as part of a preprint
(https://www.biorxiv.org/content/10.1101/2023.01.31.526458v2).

The same reference can be on the neighbourhood of more than one query sequence, but
to speed up computations and to minimise duplicated effort, uvaia can remove identical
and redundant query sequences. A sequence is redundant if there is another, more resolved
sequence, with all its information but with less ambiguity. For example the 6-mer AACNNN
is redundant with respect to AACAAA since the latter is a more resolved version of the
former. Any close neighbour to the more resolved sequence will also be a close neighbour
to the less resolved one. Notice that on the other hand NACAAA is not a more resolved
version of AACNNN since there is information in the latter (the first ‘‘A’’) not available in
the more resolved, former sequence.

Finally, a table with match information between each query and its set of N closest
neighbouring reference sequences is output, together with a reduced reference alignment
output with all temporary close neighbours. This reduced alignment file can be queried
afterwards using the table information, to obtain the neighbour sequence themselves. Uvaia
can also simulate other SNP distance algorithms where partially ambiguous sites are not
taken into account (considering only A, C, G, and T).

The main program is thus uvaia, which uses the match similarities described above to,
given a query data set of aligned sequences, rank and to extract the closest neighbours
in a large reference data set. In addition to the main uvaia program, we also provide an
implementation of the wavefront alignment algorithm (Marco-Sola et al., 2020) into a
reference-based aligner, called uvaialign. Currently there are faster alternatives designed
specifically for SAR-CoV-2 alignment (Moshiri, 2021; Aksamentov et al., 2021), but we
maintain uvaialign for reproducibility (and ease of usage, in our opinion). This program
is also multithreaded, works in batches to avoid exhausting available memory, and can
read from and write to compressed format. It produces output which can be used by uvaia
seamlessly, and was also designed to handle huge data sets. Uvaia and uvaialign have been
used in several SARS-CoV-2 analyses already, some of which comprised all millions of
sequences available at the time (Sarwar et al., 2021; Eales et al., 2022a; Asante et al., 2023),
showing its scalability.

RESULTS
Uvaia can also be used to calculate exhaustively the pairwise similarities between two
alignment data sets, and we compared its results to those obtained using snp-dists
(Seemann, 2018). Our test data set is composed of 6,000 unique sequences generated
at the QIB (Norwich, UK) as part of the COG-UK consortium (The COVID-19 Genomics
UK consortium, 2020), spanning the time range 2020–2022, and with the fraction of fully
ambiguous sites (i.e., Ns) between 0 and 50%. This data set was generated as follows: after
downloading all sequences from COG-UK (‘‘COG-UK archival version of data sets’’), we
selected all 33,488 samples sequenced at the QIB (labelled ‘‘NORW’’), including those
missing from public repositories due to high ambiguity (Baker et al., 2021). We removed
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Table 1 PANGO lineages (given by the ‘‘scorpio call’’ column) of the 6,000 unique sequences used in
this study, divided into two data sets.

1,000 samples data set: 5,000 samples data set:

341 Omicron (BA.1-like) 1725 Omicron (BA.1-like)
205 Delta (AY.4-like) 1096 Delta (AY.4-like)
196 Probable Omicron (BA.1-like) 997 Probable Omicron (BA.1-like)
145 Delta (B.1.617.2-like) 719 Delta (B.1.617.2-like)
55 Other 249 Other
20 Delta (AY.4.2-like) 98 Alpha (B.1.1.7-like)
18 Alpha (B.1.1.7-like) 70 Delta (AY.4.2-like)
10 Omicron (BA.2-like) 26 Omicron (BA.2-like)
4 Probable Omicron (BA.2-like) 10 Probable Omicron (BA.3-like)
3 Probable Omicron (Unassigned) 7 Probable Omicron (BA.2-like)
3 Probable Omicron (BA.3-like) 1 Probable Omicron (Unassigned)

1 Gamma (P.1-like)
1 B.1.617.1-like

completely identical ones using a 128-bit xxhash algorithm, and also removed those with
more than 50% of fully ambiguous sites (since highly ambiguous regions compromise the
alignment). All sequences were aligned with uvaialign against the isolate Wuhan-Hu-1
(Genbank accession no. MN908947.3) since both snp-dists and uvaia rely on aligned
sequences. This test data set was further split into one set of 1,000 samples and one of 5,000
samples. Table 1 shows the distribution of PANGO lineages (Rambaut et al., 2020) of both
sets to give an idea of their diversity. The 1,000 samples data set was then used to compare
uvaia with distances calculated with snp-dists between all pairs.

In uvaia we calculate three similarity measures, based on the total number of ACGT
matches, total number of text matches (i.e., ACGT plus partially ambiguous treated as
characters), and total number of partial matches (where the IUPAC ambiguity code is used
to check for compatibility, except for Ns). Thus we can extract the number of mismatches
by subtracting the number of pairwise comparisons by these similarity values. In Fig. 1
we show cases where they are not equivalent to the SNP distance, since usually these SNP
calculations ignore all non-ACGT characters. Therefore even ‘‘identical’’ sequences as
reported by e.g., snp-dists may be quite distinct once we look at partially-ambiguous sites.
In Fig. 2 we have density plots showing this difference for all pairwise comparisons using
our smaller data set of 1,000 sequences. For every sequence pair, we calculate both their
SNP distance (i.e., number of SNPs which are different), and their ‘‘ACGT mismatch’’ as
the difference between the number of valid comparisons (i.e., sites where at least one is not
a gap or N) and the number of ACGT matches. This is an indirect measure of the number
of partially ambiguous sites. Figure 2 shows, then, the distribution of ACGT mismatches
conditioned on the SNP distance. We see that even for pairs without any SNP difference
(lowermost row in figure) most pairs had at least one partially ambiguous site between
them. Therefore, especially for large databases where the number of sequences without
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Figure 2 Stacked density plots (ridgeline plots). Stacked density plots showing the difference between
the pairwise sequence distance as calculated by snp-dists (y axis) and the number of ACGT mismatches as
the difference between the number of valid pairwise comparisons and the number of unambiguous DNA
matches (x axis). The x axis is truncated at the 97% percentile to ease visualisation. We used a set of 1,000
sequences, such that 499,500 pairwise comparisons were performed and just those with a small number of
differences are shown. Each density plot shows the distribution of ACGT mismatches for sequence pairs
with the same SNP distance.

Full-size DOI: 10.7717/peerj.16890/fig-2

SNPs may be overwhelming, we need higher resolution exclusion criteria for neighbours
search.

We performed a more thorough analysis of this difference for all pairwise comparisons,
as well as using the other similarity measures (Text S1 and Fig. S3). We can then see that
in fact it is more common to have at least one disagreement between uvaia-based and
SNP-based distances than for the two measures to agree.

Uvaia can replicate snp-dists results by excluding partially ambiguous states, i.e., treating
them togetherwithNs and gaps.We then used uvaia to calculate the similarity between these
1,000 ‘‘query’’ sequences to 5,000 distinct ‘‘reference’’ sequences with similar distribution
of lineages and ambiguous sites (using the partitioning of the 6,000 samples described
previously). To show the effect of uncertainty, we compare the number of neighbours
with no SNPs to the reference sequences to their number of partially unambiguous sites
in Fig. 3. We see how less resolved sequences appear to have more ‘‘identical’’ neighbours,
i.e., sequences with no SNP differences. Thus, by using the number of matches instead
of SNP differences, we can account for this ambiguity. Notice that here we used uvaia
to calculate the SNP distance since snp-dists cannot, at the moment, calculate pairwise
distances between two distinct sets, and furthermore uvaia already outputs the number of
valid sites.

To observe the effect of sequences with partially ambiguous sites in a phylogenetic
context, we inferred a maximum likelihood tree of closest neighbour sequences to an
arbitrary sequence by uvaia or byUShER (Text S1 and Figs. S1–S2). The resulting phylogeny
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Figure 3 Scatterplot of number of ‘‘query’’ neighbours with no SNPs to ‘‘reference’’ sequences (y axis)
against number of partially or completely unambiguous sites in the ‘‘reference’’ sequence (x axis). The
blue line represents the regression line smoothed with a generalised additive model (Wood, 2017). The
lower the number of valid sites, the less ‘‘resolved’’ the reference sequence is, and we observe a tendency
for a higher number of query sequences with no apparent SNP differences. The horizontal stripes of dots
at the more resolved quadrant are possibly due to single clusters composed of queries and references.

Full-size DOI: 10.7717/peerj.16890/fig-3

(Fig. S1) shows that: (1) the likelihood algorithm implemented in RAxML-NG (Kozlov et
al., 2019) was capable of using the partial information from some sequences to estimate
a more resolved phylogeny; and that (2) SNP distance-based neighbours might miss such
sequences.

While the execution time of uvaia increases linearly with the number of sequences in
the reference database, the memory requirements are bounded by the number of query
sequences, such that as long as all queries can fit into memory, uvaia can process arbitrarily
large reference databases (Text S1 and Figs. S4–S5). There is some overhead associated
with working with compressed files for both input and output (to benefit from the large
gain in space savings offered by XZ), which may explain why uvaia is slightly slower than
snp-dists, especially for small data sets (Text S1 and Fig. S6).

DISCUSSION
For poorly-resolved sequences, the likelihood of encountering ‘‘identical’’ neighbours is
higher. By ‘‘identical’’, we mean cases where there are no Single Nucleotide Polymorphisms
(SNPs) or in other words when there is 100% identity among the comparable sites.
Thereforewemust consider these cases also in the comparison, by (1) restricting our analysis
to well-resolved sequences (i.e., where the fraction of unambiguous sites is negligible) or
by (2) looking at the matches instead of mismatches, focusing on the similarity instead
of the distance, while accounting for the number of partially unambiguous sites. Most
research in SARS-CoV2 has employed strategy (1), by including only sequences with e.g.,
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90% unambiguous sites. Here we provide a software to solve (2), which can return the
reference sequences with more matches to a query sequence.

This may affect not only the phylogenetic inference—since likelihood and Bayesian
methods can use the ambiguity information (Felsenstein, 2003; Yang, 2014)—but also in
other epidemiological analyses where finding the closest sequences may be challenging.
Uvaia has been used successfully in both cases, by improving contact tracing and travel
history inferences, and overall evolutionary analyses, and here we present further details
into the algorithm.

Some pipelines might inadvertently replace ambiguous sites by the reference allele,
mistakenly assuming that low coverage sites are evidence for no change (the ancestral
state). This imputation strategy may inadvertently lead to misleading inferences since, as
indicated by Fig. 3, it can negatively affect similarity and distance estimates. Furthermore
it can mask the effects of recombination, intra-population diversity, homoplasies, and can
mislead phylogenetic analyses (Baker et al., 2021). All similarity measures may be affected
by such artefacts, and in some cases one measure may be more relevant than another. Our
suggestion is to use more than one when selecting neighbours, as well as for instance the
number of partial mismatches (see phylogenetic example in Text S1).

CONCLUSION
We show how a SNP distance-based neighbour sequence search may have low resolution
to find the most similar sequences in large databases. Notice that the main differences
between uvaia and other algorithms is the inclusion of partially ambiguous sites (with
the possibility of incorporating or not their compatibility information), and the number
of matching sites as optimality criterion. It is known that such partial matches can affect
phylogenetic analyses, with a few evolutionary distances incorporating partially ambiguous
sites as informative characters (Potts, Hedderson & Grimm, 2014; Joly, Bryant & Lockhart,
2015), and a so-called ‘‘Intra-Individual Site Polymorphism’’ is available in the R library
phangorn (Schliep, 2011). These distances fare well in comparison to others (Zhao, Nielsen
& Korneliussen, 2022), and have been used in phylogenetic studies (Scheunert & Heubl,
2017). We also have shown before (Baker et al., 2021) how in SARS-CoV-2 the sequencing
(and bioinformatic) handling of partially ambiguous sites can lead to differences in the
resulting phylogeny under maximum likelihood. As we show here, including these partially
ambiguous sites changes what we consider as ‘‘valid’’ comparisons and can increase the
resolution of a sequence neighbourhood.

We note that working with compressed files has a computational cost, even when using
a multithreaded algorithm for compression; decompression is always single threaded,
but faster than compression. The advantages of uvaia are best seen in a restricted budget
environment, with finite disk andmemory resources, but fully usingmulticore architectures
available even in lower end laptops. And as we are already seeing for SARS-CoV-2, in
preparation for future pandemics, new software like uvaia will be the default, scalable not
for thousands but for millions of sequences.
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PLPZ2aSS2ApqoU6-FCd2H035uJHnLu9fTL.
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