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ABSTRACT
Background. Extracellular vesicles (EVs) are membrane-bound vesicles containing
various proteins, lipids, and nucleic acids. EVs are found in many body fluids, such as
blood and urine. The release of EVs can facilitate intercellular communication through
fusion with the plasma membrane or endocytosis into the recipient cell or through
internalization of the contents. Recent studies have reported that EVs isolated from
human endometrial epithelial cells (EECs) promote sperm fertilization ability. EVs
from uterine flushing fluid more closely resemble the physiological condition of the
uterus. However, it is unclear whether EVs derived directly from uterine flushing fluid
have the same effect on sperm. This study aimed to research the effect of EVs from
uterine flushing fluid on sperm.
Methods. EVs were isolated from the uterine flushing fluid. The presence of EVs was
confirmed by nanoparticle tracking analysis (NTA), Western blot, and transmission
electron microscopy (TEM). EVs were incubated with human sperm for 2 h and 4 h.
The effects of EVs on sperm were evaluated by analyzing acrosome reaction, sperm
motility, and reactive oxygen species (ROS).
Results. The EVs fractions isolated from the uterine fluid were observed in cup-shaped
vesicles of different sizes by TEM. All isolated vesicles contained similar numbers of
vesicles in the expected size range (30–200nm)byNTA.CD9 andCD63were detected in
EVs bywestern blot. Comparing themotility of the two groups incubated spermmotility
significantly differed at 4 h. The acrosome reactions were promoted by incubating with
EVs significantly. ROS were increased in sperm incubated with EVs.
Conclusion. Our results showed EVs present in the uterine fluid. Acrosome reactions
and ROS levels increased in human sperm incubated with EVs. EVs from uterine fluid
can promote the capacitation of human sperm. The increased capacitation after sperm
interaction with EVs suggests a possible physiological effect during the transit of the
uterus.
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INTRODUCTION
After ejaculation, sperm must travel through the female genital tract to combine with the
oocyte to form a zygote. After entering the female genital tract, the sperm count in semen
ranges from 108–109 initially and is then reduced to 102–103 before reaching the oviduct.
Despite the fact that the interaction time between sperm and female genital secretions is
limited, the time is essential for sperm capacitation (De Jonge, 2017). Early studies suggest
that the uterus and oviduct might synergistically accelerate sperm capacitation (Bedford,
1970; Hunter & Hall, 1974); thus, the female reproductive tract may optimize sperm by
regulating sperm capacitation.

Extracellular vesicles (EVs) are phospholipid bilayer-enclosed entities that are produced
by eukaryotic and prokaryotic cells. EVs carry and deliver various regulatory molecules,
including proteins, microRNAs, and lipids, and play key roles in cell–cell communication
(Machtinger, Laurent & Baccarelli, 2016). Griffiths et al. (2008) first discovered uterine
exosomes in the uterine fluid of estrous mice, and uterine EVs are potentially responsible
for sperm capacitation, membrane stabilization, and eventual maturation via miRNA
transfer in mice (Godakumara et al., 2022). Recent studies have shown that uterosome-
like vesicles derived from cultured human endometrial epithelial cells (EECs) promote
sperm capacitation (Franchi et al., 2016; Murdica et al., 2020). However, these findings
were generated by EVs derived from endometrial adenocarcinoma cells and do not fully
represent the physiological properties of EVs in uterine fluid. EVs isolated fromuterine fluid
are therefore more representative of the internal environment of the female reproductive
tract and thus more suitable for functional analysis.

In this study, we applied the method recently developed by Luddi et al. (2019) to isolate
EVs from uterine fluid, and evaluated their effects on sperm. We also demonstrated that
EVs derived from uterine fluid act on sperm directly and promote sperm capacitation.

MATERIALS AND METHODS
Ethical approval
The study was approved by the Ethical Committee of the First Affiliated Hospital of
Kunming Medical University, China, and all of the participants provided written informed
consent. This study was designed and conducted according to the Declaration of Helsinki.

Sperm preparation
Semen was collected by masturbation from healthy donors (N = 3, age 25–35 years)
who had been abstinent for 2–7 days. The semen parameters of donors were normal
according to the World Health Organization (WHO) guidelines (Björndahl & Kirkman
Brown, 2022). Semen was liquefied for 30 min at room temperature, and spermatozoa
were isolated from the semen by discontinuous Percoll gradient centrifugation. Sperm
were resuspended in Biggers-Whitten-Whittingham (BWW) medium (Solarbio, Beijing,
China) and maintained at 37 ◦C in an incubator with 5% CO2 in compressed air and high
humidity. In the experiments on sperm capacitation, we used a non-capacitating BWW
medium (NC-BWW, Hepenbio, China), which did not contain human serum albumin or
HCO3

−.
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Collection and processing of uterine flushes
Ten female volunteers with proven fertility were recruited in this study. Inclusion criteria
were: (1) 25–45 years of age, (2) proven fertility, (3) no HPV infection, and (4) no
cervical or uterine inflammation. The uterine flush fluid was collected at the Gynecology
Department of the First Affiliated Hospital of Kunming Medical University. Briefly, the
uterus was flushed with a disposable catheter filled with 40–50 ml of normal saline before
hysteroscopic surgery. Samples were immediately collected from the catheter, and the
supernatant was filtered through a 0.22-µm filter to remove cells and cellular debris. The
supernatant was then transferred to an Amicon Ultra-15 10 K centrifuge filter (Merck
Millipore, Rahway, NJ, USA), centrifuged at 5,000 g for 10 min at 4 ◦C to concentrate it to
2 ml, and stored at −20 ◦C.

EV isolation
EVs were isolated using ExoQuick TC™ (SBI, CA, USA) according to the manufacturer’s
instructions (Alvarez, 2014). Briefly, the supernatant was thoroughly mixed with ExoQuick
TC™ at a volume/volume ratio of 2:1, and the mixture was maintained at 4 ◦C for 12–16 h,
followed by centrifugation of 16,000 g at 4 ◦C for one hour. The supernatant was then
discarded. The resulting EV pellet was resuspended in 100 µl of sterile PBS and preserved
at −80 ◦C. EVs from 10 donors were pooled and then incubated with sperm from three
different donors.

Transmission electron microscopic analysis of EVs
The quality of isolated EVs was assessed by transmission electron microscopy (TEM) as
described previously (Yang et al., 2019).

Nanoparticle tracking analysis
Nanoparticle tracking analysis (NTA) was performed using a ZeTaView Particle Metrix
instrument (Szatanek et al., 2017). Briefly, the samples were first diluted with PBS to achieve
20–120 nanoparticles per frame and/or 107–109 nanoparticles/ml. Three 30-second videos
were then recorded at 30 frames per second for each sample. The concentration, mean size
and SEM of the nanoparticles in each sample were calculated.

Western blot analysis
EVs were extracted and subjected to protein quantification using a BCA kit and stored
at −80 ◦C. Samples selected for electrophoresis were prepared in SDS-PAGE sample
loading buffer and heated for 5 min at 100 ◦C. Ten micrograms of protein were loaded
per lane on 10% polyacrylamide gels and transferred onto polyvinylidene fluoride (PVDF)
membranes. Blots were then blocked for 2 h at room temperature and incubated with
anti-CD63 (1:500, 30–55 kDa; 25682-1-AP, Proteintech, Chigago, IL, USA) and anti-CD9
(1:20,000, 23–30 kDa; 20597-1-AP, Proteintech, Chicago, IL, USA) primary antibodies
overnight at 4 ◦C. Non-specific binding of antibody was removed by washing three times
with TBST for 10 min each before incubation with goat anti-rabbit IgG H&L (HRP,
1:10,000) for one hour at 4 ◦C. The membrane was again washed three times with TBST
for 10 min chemiluminescence was detected using an ECL kit (Campoy et al., 2016; Kowal
et al., 2017).
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Figure 1 Flowchart for the measurement of acrosome reaction. (A) Sperm incubated with PBS (unin-
cubated with EVs). (B) Sperm incubated with EVs. (C) Sperm incubated with A23187.

Full-size DOI: 10.7717/peerj.16875/fig-1

Sperm motility
Sperm were incubated with EVs at 37 ◦C for 2 h and 4 h. Curvilinear velocity (VCL) and
percentage of motile sperm were determined using a computer-assisted sperm analysis
system (Sperm Class Analyzer; Microptic, Barcelona, Spain).

Measurement of the acrosome reaction
The sperm were equally divided into three groups and incubated with 20 µl of PBS, 20 µl of
EVs, or 10 µM calcium ionophore A23187 (Sigma-Aldrich, St. Louis, MO, USA) for 2 h at
37 ◦C, respectively. The sperm from all of the groups were fixed in 4% paraformaldehyde
for 25 min at room temperature and then washed twice with PBS (Xu et al., 2021).

The fixed sperm were stained with 0.22% Kaumas Brilliant Blue G250 (Sigma Aldrich,
St. Louis, MO, USA) for 5 min to visualize sperm heads. After rinsing with distilled water,
the sperm were allowed to dry and were fixed with 90% glycerol. The acrosome reaction
and morphology were observed and photographed under a light microscope at 400x
magnification. We counted 200 cells from each sample (Fig. 1) (Murdica et al., 2019).

Measurement of ROS
Sperm were incubated with EVs for 2 h at 37 ◦C, centrifuged at 1,400 r/min for 8 min,
and the supernatant aspirated. After that, 2′, 7 Dichlorofluorescein diacetate (DCFH-DA,
MedChemExpress, Monmouth Junction, NJ, USA) was added and incubated with sperm
for 20 min at 37 ◦C. Sperm were centrifuged twice to remove DCFH-DA, and resuspended
in 100 µl of PBS solution and incubated at room temperature in the dark for 20 to 30
min. Fluorescence intensity was determined using flow cytometry (ACEA Biosciences, San
Diego, CA, USA).
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Statistical analysis
Sperm from three donors were used to conduct experiments, and experiments with each
donor’s sperm were replicated three times. We adopted one-way analysis of variance
(ANOVA) followed by Tukey’s post hoc test to determine the differences among groups
using SPSS 22.0 software. p< 0.05 was considered to be statistically significant.

RESULTS
Characteristics of EVs in uterine flushes
TEM analysis confirmed the presence of EVs in all 10 of the uterine douche samples
collected in this study. As shown in representative electron microscopic images (Figs. 2A,
2B), the fraction isolated from the uterine douche showed cup-shaped vesicles of different
sizes. All of the vesicles showed a honeycomb-like double-membrane structure with
diameters ranging from 30 nm to 200 nm, a typical feature of EVs (Franchi et al., 2016).

Next, further characterization of EVs using NTA showed that all of the isolated vesicles
contained similar numbers of vesicles in the expected size range (30–200 nm) (Figs. 2C,
2D) (Szatanek et al., 2017), and that EVs from uterine fluid showed characteristics similar
to EVs from EECs cultured in vitro. We detected CD9 and CD63 in EVs from different
donors by western blot analysis (Fig. 2E) (Campoy et al., 2016).

Effect of EVs on the motility of human sperm
Sperm incubated with EVs for 2 h were measured using an SQA-V automated semen
analyzer, and the data were analyzed using a computer-assisted semen analysis system. We
herein considered the percentage of sperm with forward and non-forward motion as an
indicator of sperm motility. Our results revealed that sperm motility did not differ at 2 h,
but was significantly different at 4 h (Fig. 3).

Effect of EVs on sperm capacitation
It has been demonstrated that uterine fluid promotes sperm capacitation and the acrosome
reaction, and we herein assessed sperm capacitation by the level of acrosome reaction.
After staining with Kaumas Brilliant Blue and observation by light microscopy, sperm
heads with an intact acrosome stained blue, and the regions of the sperm heads after the
reaction remained unstained (Lu et al., 2002). We observed acrosome reactions in every
group (Fig. 4).

The percentage of unstained sperm acrosomes in group A was significantly lower than
in groups B and C, showing that the percentage of acrosome-reacted sperm increased
significantly after incubation with EVs or A23187 (Fig. 5). These data suggest that uterine
fluid EVs modulate the physiological state of sperm and increase their energetic capacity.

EVs increase levels of ROS in human sperm
The ROS content of the sperm in each group was quantified by measuring the fluorescence
intensity using flow cytometry. DCFH-DA is a cell-permeable dye that is hydrolyzed
intracellularly to DCFH, and oxidation of DCFH by the action of intracellular ROS
transforms the molecule into its highly fluorescent form, DCF (Rajneesh Pathak et al.,
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Figure 2 Characteristics of EVs isolated from uterine fluid. (A–B) Representative TEM images of EVs
isolated from uterine fluid at 40,000× (A) and 80,000× (B) magnification (scale bars are 0.5 µm in A
and 0.2 µm in B). (C–D) Quantification of EV particle number (C) and size (D) by NTA. (C) The data
are presented as the mean and SEM of three experimental data points. The EVs particles are expressed as
the mean± SEM of three repeated measurements (I, 2.73× 106± 0.03; II, 1.93× 106± 0.17; III, 2.06×
106± 0.07 mL). (D) The diameter of EVs in the three groups (I, 198.3± 2.16; II, 173.4± 2.40; III, 172.7
± 2.59 nm; NS, p > 0.05). (E) CD63 and CD9 were used to label EVs extracted from uterine flushes. 1,
2, and 3 represent uterine flushes of EVs from different donors. The results showed that CD63 and CD9
markers could be detected in EVs extracted from uterine flushes.

Full-size DOI: 10.7717/peerj.16875/fig-2

2017). When we applied DCFH-DA to detect cytosolic ROS production in sperm, we
observed that the fluorescence intensity increased significantly after sperm were incubated
with EVs from uterine flushes, indicating an increase in ROS. This result suggests that EVs
increased the ROS levels of sperm (Fig. 6).

DISCUSSION
In animals exhibiting in vivo fertilization, sperm migrate toward the female’s primary
reproductive organ after mating and fuse with the oocyte, with tens or hundreds of
millions of sperm found in the ejaculate. Therefore, most species possess a rigorous
screening process to ensure that high-quality sperm eventually combine with the egg.
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Figure 3 Motility of sperm after incubation with EVs. (A) represents sperm motility after two hours
of incubation with EVs. (B) represents sperm motility after four hours of incubation with EVs. Blank,
sperm unincubated with EVs; EV group, sperm incubated with EVs. Three biological replicates were per-
formed. The data represent the mean and SEM of the three experimental data points. (A) 51.63%± 1.32%
vs. 52.10%±1.51%, p> 0.05; (B) 40.6%± 1.13% vs. 6.43%± 0.86%, ∗∗p< 0.01.

Full-size DOI: 10.7717/peerj.16875/fig-3

Figure 4 Coomassie brilliant blue staining of sperm acrosomes. The heads of sperm with intact acro-
somes are shown as blue, and the area of the sperm head after the reaction was unstained. The acrosome-
reacted sperm are indicated by red arrows, and three groups were stained with Coomassie Brilliant Blue.
Original magnification, 400×; scale bar, 20 µm. (A) sperm unincubated with EVs; (B) sperm incubated
with EVs; (C) sperm incubated with A23187.

Full-size DOI: 10.7717/peerj.16875/fig-4

Sperm enter the female reproductive tract and undergo a long and tortuous journey
through the vagina, cervix, uterus, uterine tubal junction, and oviducts before only one
oocyte is usually successfully fertilized by one spermatozoon. This implies that the sperm
will interact with and be affected by the uterine environment during transport through the
uterus. We demonstrated that EVs isolated from uterine fluid rapidly interact with sperm
and thereby enhance human sperm fertilizing ability (Eisenbach & Giojalas, 2006).

Earlier studies suggested that the uterus and oviduct synergistically accelerate sperm
capacitation (Hunter, 1969; Hunter & Hall, 1974). For example, it was found in wild boars
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Figure 5 Percentage of acrosomally reacted sperm in each group. (A), sperm unincubated with EVs;
(B), sperm incubated with EVs; (C), sperm incubated with A23187. The results showed that the acrosome
reaction rate increased significantly in group B and group C compared with group A. Three biological
replicates were performed. The results are expressed as the mean± SEM of three experiments (A, 1.67
± 0.22; B, 27.75± 2.34; C, 39.73± 1.16) (∗∗p< 0.01 and ∗∗∗p< 0.001).

Full-size DOI: 10.7717/peerj.16875/fig-5

that sperm could be temporarily stored in the uterus before entering the oviduct (Hunter
& Rodriguez-Martinez, 2004), and Fusi and colleagues demonstrated that incubation of
EECs with sperm enhances their fertilizing capacity. The number of sperm penetrating
hamster oocytes was also significantly increased after co-culture of EECs and sperm (Fusi
et al., 1994).

Franchi et al. (2016) demonstrated that even 15 min of sperm incubation with EVs was
sufficient to increase the level of active cells up to 1.5-fold. This suggests that EVs rapidly
interact with the sperm plasma membrane to modulate the physiological state of sperm
and improve their energetic capacity, even after a brief period of rapid uterine transit.

As spermmotility did not differ with EVs at 2 h, we speculated that this incubation period
was insufficient and therefore increased the incubation time. After 4 h of incubation, our
results then revealed that spermmotility was significantly enhanced.We thus demonstrated
that EVs from uterine fluid promoted sperm capacitation, and after capacitation sperm
motility was subsequently slightly enhanced. Data from Sáez-Espinosa et al. (2020) showed
that one hour of capacitation sufficed to recover a sperm subpopulation with high levels of
motility and viability, and revealed that sperm recovery after swim-up was approximately
15% after 1 h and 4 h. In conclusion, our findings indicated that EVs promoted sperm
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Figure 6 ROS in sperm as measured by flow cytometry. (A), sperm unincubated with EVs; (B), sperm
incubated with EVs; (C), sperm incubated with A23187. ‘‘P’’ in the figure indicates the percentage of
DCFH-DA fluorescence; increased fluorescence intensity denotes increased production of ROS. (D) The
results showed that the levels of ROS increased significantly in groups B and C compared with group
A. Three biological replicates were performed. The results are expressed as the mean± SEM of three
experiments. I, sperm unincubated with EVs; II, sperm incubated with EVs; III, sperm incubated with
A23187 (I, 57.43%± 0.12%; II, 69.93%± 0.84%; III, 73.7%± 0.80%) (∗∗∗p< 0.001).

Full-size DOI: 10.7717/peerj.16875/fig-6

capacitation and sperm motility compared with untreated sperm at the same duration of
exposure.

We herein demonstrated that sperm underwent the acrosome reaction when exposed to
EVs as evidenced by elevatedROS, indicating an increase in spermcapacitation.Mammalian
sperm capacitation is an oxidative event, and the mitochondrial electron transfer chain
precipitates the production of ROS in addition to its involvement in ATP synthesis, with
ROS production occurs during tyrosine phosphorylation (Rivlin et al., 2004).

Although there appears to be an interaction between EVs and sperm, the mechanisms
that mediate this communication remain unknown. The role of EV in intercellular
communication has been studied in specific cells, and investigators have shown that
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this communication can be mediated by cell membrane fusion or by direct binding to
the cell surface (Raposo & Stoorvogel, 2013). Recent work has elucidated in detail the
possible mechanisms underlying the internalization of EVs (Aryani & Denecke, 2016),
such as cypermethrin-mediated endocytosis (Barrès et al., 2010; Escrevente et al., 2011),
phagocytosis (Feng et al., 2010), macropinocytosis (Escrevente et al., 2011; Tian et al.,
2014), and plasma (Aryani & Denecke, 2016; Escrevente et al., 2011; Schwarz et al., 2013)
or endosomal membrane fusion. Murdica et al. (2020) used filipin-mediated inhibition to
analyze the internalization of EVs by lipids, as filipin disrupts fossa structure and function
as well as lipid raft-mediated endocytosis; internalization of EVs labeled with filipin was
also shown to be strongly inhibited (Rothberg et al., 1992; Rothberg et al., 1990). These
results showed that sperm internalized EVs through lipid raft structural domain-mediated
endocytosis. Al-Dossary found that PMCA4a constitutes the Ca2+ efflux pump in sperm,
and that EVs are protein transporters from luminal fluid to the sperm surface. EVs thus
transfer PMCA4a to sperm through the fusion of vesicles with the sperm membrane,
regulating the dynamic balance of Ca2+ (Al-Dossary, Strehler & Martin-Deleon, 2013).

We discerned that uterine fluid released EVs in the absence of external stimuli. These
EVs were cup-shaped, 30–200 nm in diameter, and exhibited CD9 and CD63 proteins on
their membranes; these features were also similar to those derived from EECs. Although
the composition of EVs from uterine flushes is complex, the EVs more closely emulate the
physiological state of the uterus. Additionally, although we used sperm from healthy male
volunteers at the Center for Reproductive Genetics, we could not eliminate the possibility
that normally active sperm might also manifest some infertility issues.

In summary, these results confirmed that EVs isolated from uterine fluid in vitro act on
human sperm and promote their fertilizing ability. The increased capacitation after sperm
interactions with EVs also suggests a possible physiological effect during the transit of the
uterus. The exchange between sperm and uterine cells reveals a process by which sperm
are prepared for fertilization of the oocyte, and this may have important implications for
the treatment of human infertility.
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