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ABSTRACT
Low-grade glioma (LGG), a common primary tumor,mainly originates from astrocytes
and oligodendrocytes. Increasing evidence has shown that peroxisomes function in
the regulation of tumorigenesis and development of cancer. However, the prognostic
value of peroxisome-related genes (PRGs) in LGG has not been reported. Therefore,
it is necessary to construct a prognostic risk model for LGG patients based on the
expression profiles of peroxisome-related genes. Our study mainly concentrated on
developing a peroxisome-related gene signature for overall survival (OS) prediction
in LGG patients. First, according to these peroxisome-related genes, all LGG patients
from The Cancer Genome Atlas (TCGA) database could be divided into two subtypes.
Univariate Cox regression analysis was used to find prognostic peroxisome-related
genes in TCGA_LGG dataset, and least absolute shrinkage and selection operator
Cox regression analysis was employed to establish a 14-gene signature. The risk score
based on the signature was positively associated with unfavorable prognosis. Then,
multivariate Cox regression incorporating additional clinical characteristics showed
that the 14-gene signature was an independent predictor of LGG. Time-dependent
ROC curves revealed good performance of this prognostic signature in LGG patients.
The performance about predicting OS of LGG was validated using the GSE107850
dataset derived from the Gene Expression Omnibus (GEO) database. Furethermore,
we constructed a nomogrammodel based on the gene signature and age, which showed
a better prognostic power. Gene ontology (GO) and Kyoto Encylopedia of Genes and
Genomes (KEGG) analyses showed that neuroactive ligand-receptor interaction and
phagosome were enriched and that the immune status was decreased in the high-risk
group. Finally, cell counting kit-8 (CCK8) were used to detect cell proliferation of
U251 and A172 cells. Inhibition of ATAD1 (ATPase family AAA domain-containing
1) and ACBD5 (Acyl-CoA binding-domain-containing-5) expression led to significant
inhibition of U251 and A172 cell proliferation. Flow cytometry detection showed that
ATAD1 andACBD5 could induce apoptosis of U251 andA172 cells. Therefore, through
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bioinformatics methods and cell experiments, our study developed a new peroxisome-
related gene signature that migh t help improve personalized OS prediction in LGG
patients.

Subjects Biochemistry, Bioinformatics, Cell Biology
Keywords LGG, Peroxisome related gene, Gene signature, TCGA, Prognosis

INTRODUCTION
Glioma derived from brain glial cells is the most common primary tumor of the central
nervous system (CNS) and has a high degree of malignancy (Reni et al., 2017). The World
Health Organization (WHO, 2016) divides glioma into grades I–IV, of which grades I
and II are treated as LGG, accounting for 40%–50% of tumors in patients under the age
of 18. LGG tumors are characterized by a slow growth rate and may even show periods
of growth arrest. LGG is generally treated by comprehensive therapy, including surgery,
radiotherapy, and chemotherapy, but none of these methods are capable of curing LGG.
Existing therapy methods can only improve patient symptoms, but often result in drug
resistance and tumor recurrence, with over half of LGG patients developing high-grade
LGG that is difficult to treat. LGG prognosis is also affected by patient age, nerve damage,
excision range, gene phenotype, and other factors. Considering the limitations of current
LGG treatments, novel therapeutic targets are needed to increase the clinical outcome
of LGG, and reliable new prognostic gene signatures are needed to make targeted LGG
therapies.

Peroxisomes are single membrane-enclosed organelles that function in the metabolic
process of reactive oxygen species, bile acids, ether phospholipids, branched-chain, and
long chain fatty acids (Schrader & Fahimi, 2006). Abnormal metabolism is a hallmark
of most cancers (Benedetti et al., 2010; Laurenti et al., 2011; Pavlova & Thompson, 2016).
In recent years, many studies have demonstrated that peroxisomes play a positive role in
cancer (Dahabieh et al., 2018). Enzymes that participate in peroxisomal lipid processing are
increased in various types of cancers, including prostate cancer (Zha et al., 2005), colorectal
cancer (Gupta et al., 2001), breast cancer (Fenner & Elstner, 2005), liver cancer (Peters,
Cheung & Gonzalez, 2005), ovarian cancer (Vignati et al., 2006), glioma (Bruns et al., 2019),
glioblastoma (Hua et al., 2020; Laurenti et al., 2011), and bladder cancer (Inamoto, Shah
& Kamat, 2009; Mansure, Nassim & Kassouf, 2009). In addition, employing in vivo mouse
models, controlling the expression of genes participating in peroxisome degradation and/or
chemically restraining peroxisomal lipid processing has shown inhibited tumor growth
across diverse cancer types.

This study constructed a new prognostic signature based on peroxisome-related genes in
LGG cohorts through univariate Cox and LASSO Cox regression analyses. This signature
was then validated as a robust, independent predictor for risk stratification in LGG patients.
A nomogramwas also constructed combining gene signature and patient age that had better
prognostic value in LGG patients. Finally, CCK8 and flow cytometry were used to explore
the biological function of ATAD1 and ACBD5 in glioma cells.
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MATERIALS AND METHODS
Data collection of known peroxisome-associated genes (PRGs)
A total of 113 PRGs were collected from the human liver peroxisomes, Peroxisome DB 2.0
database, and KEGG database.

Datasets
The transcriptional gene expression profiles of 511 LGG patients from the TCGA_LGG
cohort were produced using the Illumina HiSeq RNA-Seq platform and relevant clinical
features such as patient age, gender, overall survival (OS) time, and survival status were
obtained from the UCSC Xena database (https://xenabrowser.net/datapages/). The gene
expression data and corresponding clinical information of the validation dataset were
downloaded from the GEO database (GSE107850). The keywords ‘‘LGG or Low-grade
glioma and gene expression and survival’’ were used for searching the NCBI GEO database.
The eligibility criteria for selecting the suitable dataset were clinical outcome with survival
time and mRNA profiles.

Consensus clustering
To analyze LGG molecular subtypes, the ‘‘Consensus Clustering Plus’’ functional module
from Sangerbox Tools (http://sangerbox.com/) was used to split LGG patients into different
subtypes. The parameters were: distance –(1-Pearson correlation), 80% sample resampling,
and 80% gene resampling.

Construction and evaluation of peroxisome-related gene
signature
A univariate Cox proportional hazards regression analysis was conducted using the
‘‘survival’’ and ‘‘survminer’’ R package and the results revealed the genes that were
significantly related to overall survival (OS) in the training cohort. Hazard ratios (HRs)
and 95% confident intervals (95% CIs) were also calculated. HR >1, p < 0.05 were treated
as a positive relationship with event hazards and a negative relationship with survival time.

LASSO (least absolute shrinkage and selection operator) penalized Cox regression was
used to establish an optimal risk signature from survival-related genes using the ‘‘glmnet’’
R package. The risk score for every patient in both cohorts was calculated by taking the sum
of the LASSO regression coefficient for every signature gene multiplied with its relevant
expression value. Patients were then divided into high- and low-risk groups based on the
median risk scores in each cohort. A principal component analysis (PCA) was performed,
using the ‘‘ggplot2’’ R package, to study the distribution of genes in different groups based
on the expression level of genes in this model.

To assess the prediction efficiency of this signature, time-dependent ROC (receiver-
operating characteristic) and AUC (calculated the area under the curve) analyses were
performed using R packages. The ‘‘timeROC’’ R package was used to conduct 1-year,
3-year, and 5-year ROC analyses.
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Validation of the gene signature’s prognostic value
An LGG cohort from the GEO database (GSE107850) was used to validate the prognostic
value of the gene signature identified in this study with an external dataset. The expression
of each peroxisome-related gene was normalized using the ‘‘scale’’ function and the risk
score was then calculated using the same formula that was used for the TCGA cohort.
Based on the best risk score, the patients in the GSE107850 cohort were also divided into
low- or high-risk subgroups, and these groups were then compared to validate the gene
model.

Independent prognostic value of the gene signature
Patient agewas extracted from the clinical information of LGGpatients in theTCGAdataset.
This variable was then analyzed in combination with the risk score in the regression model.
Univariate and multivariable Cox regression analyses were also performed.

Bioinformatics analysis of the differentially expressed genes (DEGs)
between the low- and high-risk groups
LGG patients from the TCGA cohort were divided into two subgroups based on the best
risk score. The DEGs between the low- and high-risk groups were filtered based on specific
criteria (|log2FC|≥ 1 and FDR <0.05) using the ‘‘Bioconductor Limma’’ R package.
GO and KEGG analyses were performed for these DEGS by applying the Sangerbox
Tools (http://sangerbox.com/). A PPI (Protein-protein interaction) network analysis was
performed using the STRING (Search Tool for the Retrieval of Interacting Genes/Proteins)
protein interaction database (https://cn.string-db.org/).

Comprehensive analysis of tumor microenvironment
CIBERSORTx (https://cibersort.stanford.edu/) was used to calculate the abundance of 22
immune cell types for clarifying the association between peroxisome-related genes and
immune infiltration in the TCGA_LGG dataset.

Construction and assessment of the nomogram
The risk scores and clinical characteristics that were found to be significant in the univariate
Cox analysis were selected to establish a nomogram using the ‘‘survival’’ and ‘‘rms’’ R
packages. The concordance index (C-index) was used to assess the performance of this
model. Calibration plots weremade to assess the concordance between actual and predicted
survival.

Cell culture and transfection
U251 and U87 cells are two common human glioma cell lines, with some differences in
morphological, biological, and molecular characteristics. Many studies have used U251
and U87 cell lines to study the molecular mechanisms of specific genes. For example, the
gene expression of ATAD1 and ACBD5 are both upregulated in these two cells. For this
study, two glioma cell lines (U251 and A172) were purchased from the cell bank of the
Chinese Academy of Sciences (Shanghai, China). These two cells were cultured in DMEM
medium with 10% FBS, 100 U/mL penicillin, and 0.1 mg/mL streptomycin added at 37 ◦C
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under a 5% CO2 environment. U251 and A172 cells under logarithmic phase status were
digested and then planted into two 6-well plates.

ATAD1 and ACBD5 siRNA was transfected into U251 and A172 cells using
Lipofectamine 2000, according to the instructions. A scrambled RNA was used as the
negative control. The ATAD1_si and ACBD5_si sequences were:
ATAD1-si1:GAAGCAAAUUGGAGUGAAAtt;
ATAD1-si2:GAAUGAAGUUGUUGGUUUAtt;
ATAD1-si3:CAUGUUACUUGGAGUGAUAtt;
ACBD5-si1:GCAUUCACCAAGAUAUAAAtt;
ACBD5-si2:CCGUUAAUGGUAAAGCUGAAAtt;
ACBD5-si3:GCACAGUGGUUGGUGUAUUUAtt

Fluorescence quantitative PCR
A TRNzol universal RNA extraction kit (Tiangen, Beijing, China) was used to extract total
RNA of ATAD1-si3/siNC transfected U251 cells and ATAD1-si3/siNC transfected A172
cells. Total RNA was then reverse transcribed to cDNA using a PrimeScript RT reagent kit
with gDNA Eraser (Takara, Tokyo, Japan). PCR was then performed in a TB Green Premix
Ex Taq II (Tli RNaseH Plus; Takara, Tokyo, Japan). The 2 −11Ct method was then used to
analyze the gene expression data. The qPCR primers for ATAD1 and ACBD5 were:
ATAD1_upstream: 5′-GCTACCAATCGTCCTCAGGA-3′;
ATAD1_downstream: 5′-TTCCTGGGCAACTTCTAGCA-3′;
ACBD5_upstream: 5′-GCCTTGTCCGGCAATACCAA-3′;
ACBD5_downstream: 5′-CGGCAAACTCTGGATCACCT-3′;
β-Actin-F: 5′-CATCCGCAAAGACCTGTACG-3′

β-Actin-R: 5′-CCTGCTTGCTGATCCACATC-3′

CCK8 assay
CCK8 (Beyotime Biotechnology, Jiangsu, China) was used to detect cell viability according
to the manufacturer’s instructions: 10,000 U251 or A172 cells were planted into each well
of a 96-well plate. Then, 10 µL CCK8 solution was added and incubated for 2 h at each of
the following time points: 24 h, 48 h, 72 h, 96 h, and 120 h after transfection. Cell viability
was calculated by measuring OD 450.

Apoptosis detection
A Calcein-AM/PI kit (DOJINDO) was used to detect cell apoptosis. After transfection for
48 h, U251 or A172 cells were collected and washed with PBS buffer. These tumor cells
were then centrifuged and the supernatant was carefully removed. Annexin V binding
buffer was added to resuspend cells to 5 × 106/mL. Then, the 5 µL Annexin V/FITC mix
with cell suspension (100 µL) was incubated for 5 min, and 10 µL PI dye and 400 µL PBS
was added before flow cytometry.

Statistical interpretation
To analyze differences in the OS of patients between subgroups, a survival analysis was
performed using the Kaplan–Meier method with a two-sided log-rank test. Univariate and
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Figure 1 The data analysis workflow diagram.
Full-size DOI: 10.7717/peerj.16874/fig-1

multivariate Cox regression models were used to explore the independent prognostic value
of the risk model. A Mann–Whitney test was used to compare immune cell infiltration
between the two groups. All statistical analyses were performed using the R software (4.1.1;
R Core Team, 2022), and P < 0.05 was considered statistically significant. The overall flow
diagram is shown in Fig. 1.

RESULTS
Clinical characteristics of LGG patients
Data from 706 LGG patients from the TCGA-LGG cohort (n= 511) and the GSE107850
cohort (n= 195) were used in this study. Detailed clinical information of the LGG patients
in these two cohorts is shown in Table 1.
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Table 1 Characteristics of patients with LGG in the TCGA and GSE107850 datasets.

Characteristic TCGA cohort GSE107850

Gender
male 283 (55.38%) 110 (56.41%)
female 228 (44.62%) 85 (43.59%)

Age
<60 442 (86.50) 178 (91.28%)
>=60 69 (13.50%) 17 (8.72%)

Tumor classification according to the peroxisome-related genes
A consensus cluster analysis was performed with 511 LGG patients from the TCGA dataset
to study the relationship between the expression of 113 peroxisome-related genes and LGG
subtypes. Increasing the k value (clustering variable) from two to 10 showed that when
k = 2, 511 LGG patients could be perfectly divided into two clusters based on the 113
peroxisome-related genes (Fig. 2A). Differences in OS time were also compared between
these two groups, and the results showed that the LGG patients in Cluster 2 (C2) had a
lower survival rate than those in Cluster 1 (C1; Fig. 2A).

Construction of a prognostic gene signature based on the LGG_TCGA
cohort
Samples from 511 LGG patients were matched with relevant patients who had complete
survival clinical information. A univariate Cox regression analysis was used to screen
genes related to survival. The 65 genes that met the criteria of P < 0.0 were reserved
for further analysis. Among these genes, 33 were found to be associated with higher
risk (HRs >1), while the other 32 genes were associated with lower risk (HRs <1). A
multivariate Cox analysis was then performed to evaluate whether the expressions of
these 65 genes could be used as an independent prognostic factor in LGG. The results
showed that 61 genes could be independent prognostic factors. By performing a LASSO
Cox regression analysis, a 14-gene signature, including ACBD5, ACSL1, ACSL5, ATAD1,
CROT, DHRS4, GRHPR, IDH1, IDI1, IDI2, NUDT19, NUDT7, PEX16, and PEX7, was
established based on the optimum λ value (Figs. 3A–3B). The risk score was calculated as
follows: risk score= (−0.519*ACBD5 exp.) + (0.030*ACSL1 exp.) + (0.053* ACSL5 exp.) +
(−0.226*ATAD1 exp.) + (0.221*CROT exp.) + (−0.022*DHRS4 exp.) + (−0.011*GRHPR
exp.) + (0.065*IDH1 exp.) + ( −0.132*IDI1 exp.) + (−0.4071* IDI2 exp.) + (0.074*
NUDT19 exp.) + (−0.044* NUDT7 exp.) + (−0.196* PEX16 exp.) + (−0.173* PEX7 exp.).

According to the best cut off score calculated by the risk score formula, the 511
LGG patients were separated into low- and high-risk subgroups (Fig. 3C). PCA results
demonstrated that LGG patients with different risks could be divided into two groups even
though there was one overlap in the PCA plot (Fig. 3D). There were also more deaths and
a shorter survival time in the high-risk patient group than in the low-risk patient group
(Fig. 3E). There was a significant difference in OS time between the high-risk and low-risk
groups (P < 0.001).
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Figure 2 Identification of two classifications of LGG in the TCGA_LGG dataset. (A) Empirical cumu-
lative distribution plot identifying the optimal number of LGG classifications. (B) Relative change in area
under the CDF curve was increased. (C) Consensus clustering of LGG patient samples using two classifica-
tions. (D) KM plot curves of OS for C1 and C2.

Full-size DOI: 10.7717/peerj.16874/fig-2

An ROC analysis was used to assess the sensitivity and specificity of this prognostic
model. AUC (Area under the curve) was found to be 0.825 for 1-year, 0.831 for 3- year,
and 0.752 for 5-year survival (Fig. 3F).

Validation of the risk gene signature on an independent dataset
A dataset of 195 LGG patients derived from a GEO cohort (GSE107850) was used as the
validation dataset (Table 1). These patients were divided into two subgroups based on the
best risk score in the GSE107850 dataset, with 49 patients in this cohort in the low-risk
subgroup and the other 146 patients in the high-risk subgroup (Fig. 4A). PCA results
showed a clearer separation between the two subgroups (Fig. 4B). Patients in the low-risk
group (Fig. 4C) had longer survival times and lower death rates than those in the high-risk
group. A KM plot analysis also indicated a significant difference in the overall survival
rate between the low- and high-risk groups (P = 0.0048, Fig. 4D). An ROC analysis of the
GEO cohort demonstrated that this model had poor predictive efficacy (AUC = 0.672 for
1-year, 0.546 for 3-year, and 0.547 for 5-year survival; Fig. 4E). This might be due to the
small number of LGG patients in the GSE107850 dataset.
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Figure 3 Construction of a 14-gene signature in the LGG_TCGA cohort. (A) LASSO regression of the
14 survival-related genes. (B) Cross-validation in the LASSO regression process. (C) Distribution of LGG
patients based on the risk score and survival status of each patient (low-risk population: on the left side of
the blue line; high-risk population: on the right side of the red line). (D) PCA plot for LGG patients ac-
cording to risk score. (E) KM plot for the OS of patients in the high- and low-risk groups. (F) ROC curves
showed the predictive efficiency of this risk score.

Full-size DOI: 10.7717/peerj.16874/fig-3

Independent prognostic value of the gene signature
Univariate and multivariable Cox regression analyses were used to explore the independent
prognostic value of the risk score based on the gene signature model in LGG. The univariate
Cox analysis showed that LGG patients with a high risk score had poor survival rates in the
TCGA dataset. After adjusting for other confounding factors, the multivariate Cox analysis
also showed that the risk score was a prognostic factor for LGG patients. A complex
heatmap of clinical characteristics was then constructed for the TCGA dataset (Fig. 5C),
which showed that patient age and living status were diversely distributed between the low-
and high-risk groups.
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Figure 4 External validation of the risk model in the GSE107850 dataset. (A) Distribution of LGG pa-
tients in the GSE107850 dataset according to the median risk score in the TCGA_LGG cohort, and the
survival status for each patient (low-risk population: on the left side of the blue line; high-risk population:
on the right side of the red line). (B) PCA plot for LGG. (C) KM plot for comparing OS between the low-
and high-risk groups. (D) Time-dependent ROC curves for LGG patients.

Full-size DOI: 10.7717/peerj.16874/fig-4

Construction of a nomogram based on peroxisome-related gene
signature
A nomogram was then constructed integrating risk score and the independent clinical risk
factor, patient age, in the TCGA_LGG dataset (Fig. 6). Two straight, horizontal straight
lines were drawn to show the detailed points for risk score and age, respectively. Then,
total points for every patient were calculated by taking the sum of all variate points. The
predicted survival probabilities at 1, 2, and 3 years were obtained by drawing a vertical line
between the total point line and each prognostic line. The results showed that the predicted
and actual survival had a good conformance (Fig. 6). The nomogram indicated that the risk
score had a higher weight than patient age. These results indicated that this nomogrammay
be an optimal model for predicting the prognosis of LGG patients compared to individual
risk factors.

Functional analyses according to the risk model
To further study the differences in the genes’ functions and pathways between the subgroups
divided by the risk model, the ‘‘limma’’ R package was used to extract the DEGs by applying
the criteria FDR <0.05 and |log2FC | ≥ 1. A total of 1,850 DEGs were found between the
low- and high-risk groups from the TCGA_LGG database (Table S1). There were 995
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Figure 5 Independent prognostic value of the gene signature. (A) Univariate analysis for the
TCGA_LGG dataset (age, gender, risk score). (B) Multivariate Cox analysis for the TCGA_LGG dataset
(age, risk score). (C) Heatmap of the expression distribution of 14 DEGs and clinical features between the
high-risk and low-risk groups.

Full-size DOI: 10.7717/peerj.16874/fig-5

upregulated genes and 855 downregulated genes in the high-risk group. A gene ontology
(GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway analysis were then employed to assess the DEGs. The results demonstrated that
these DEGs were mainly associated with the neuroactive ligand–receptor interaction,
ECM-receptor interaction, and the phagosome (Fig. 7 and Table S2).
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Figure 6 Establishment of a new nomogram for OS prediction in LGG patients. (A) Nomogram com-
bining the 14-gene signature with patient age. (B, C, D) Calibration curve of the nomogram for predicting
the probability of OS at 1, 2, and 3 years in the TCGA-LGG dataset.

Full-size DOI: 10.7717/peerj.16874/fig-6

Comparison of the immune activity between the high- and
low-risk groups
Based on the results of the functional analyses, differences in the enrichment scores of 22
types of immune cells were compared between the low- and high-risk groups inTCGA_LGG
cohorts using CIBERSORTx. In the TCGA_LGG dataset, the high-risk subgroup showed
lower infiltration levels of immune cells, especially of naïve B cells, plasma cells, naïve
CD4 T cells, and monocytes, than the low-risk subgroup (Fig. 7C). Future research should
explore the different PRG signatures between astrocytes and oligodendrocytes to determine
whether these two cell types have a similar or different LGG-related PRG signature.

Expression levels of 14 genes in normal and LGG tumor tissues
To explore whether the 14 identified genes could be used as diagnostic biomarkers in LGG,
the expression levels of these genes were analyzed in the pooled GTEx (Genotype-Tissue
Expression) and TCGA data from 207 normal tissues and 518 tumor tissues. The results
showed that compared with normal tissues, the mRNA expression of five genes, ACBD5,
ATAD1, DHRS4, GRHPR, and IDH1, was significantly up-regulated in tumor tissues
(Figs. 8A–8E). To further study the interactions of these 14 peroxisome-related genes, a
PPI analysis was performed and the results are shown in Fig. 8F and Table S3.
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Figure 7 Functional analysis of DEGs and comparison of the enrichment scores of 22 types of im-
mune cells between the two risk groups in the TCGA_LGG dataset. (A) Bubble graph for GO enrich-
ment. (B) Barplot graph for KEGG pathways. (C) Differences of 22 immune cell subsets in high- and low-
risk groups.

Full-size DOI: 10.7717/peerj.16874/fig-7

Downregulation of ATAD1 and ACBD5 inhibited U251 and A172 cell
proliferation
Because both ATAD1 and ACBD5 were determined to be both diagnostic and prognostic
biomarkers in LGG, and these two genes hadnot been previously reported in LGG, theywere
selected for cell experiment verification. To investigate the function of ATAD1 or ACBD5,
three siRNAs were designed to knock down ATAD1 and ACBD5 in U251 or A172 cells,
respectively. The interference efficiencies are quantified in Fig. 9. The results indicated
that all three kinds of siRNAs showed the powerful activity in knocking down ATAD1
and ACBD5 expression, respectively. One siRNA, siRNA3 (ATAD1_si3 or ACBD5_si3),
was selected for follow-up experiments. The qPCR results, shown in Fig. 10, verified
the inhibition of siATAD1 on ATAD1 expression and siACBD5 on ACBD5 expression.
Sustained proliferation is the most important characteristic of cancer cells, so the influence
of ATAD1 and ACBD5 downregulation on A172 or U251 cell proliferation was assessed
using a CCK8 assay. The results, shown in Fig. 11, indicated that after transfection for 48 h
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Figure 8 (A–E) The expression level of five peroxisome-related genes in normal tissue and LGG tumor
tissue. (F) Protein–protein interaction network of 14 genes in the STRING database.

Full-size DOI: 10.7717/peerj.16874/fig-8

and 72 h, the cell viability of ATAD1_si3 and ACBD5_si3 transfected cells was significantly
decreased compared to that of siNC transfected cells (P < 0.05).

In summary, ATAD1_si3 and ACBD5_si3 transfection inhibited U251 cell proliferation,
suggesting that ATAD1 and ACBD5 play an oncogenic role in glioma.

Downregulation of ATAD1 and ACBD5 induced cell apoptosis
To further explore the inhibition of ATAD1_si3 and ACBD5_si3 transfection on cell
proliferation, flow cytometry was performed to analyze apoptosis of A172 or U251 cells
transfected with ATAD1_si3 and ACBD5_si3. The results showed that ATAD1_si3 and
ACBD5_si3 transfection significantly increased the cell apoptosis percentage in A172 and
U251 cells (Figs. 12–13).
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Figure 9 The qPCR demonstrated that si1, si2, and si3 efficiently inhibited ATAD1 (A) and ACBD5 (B)
expression.

Full-size DOI: 10.7717/peerj.16874/fig-9

DISCUSSION
The recent development of high-throughput sequencing has significantly improved the
understanding of tumor development and progression, and has provided new clues for
the accurate diagnosis and prognostic prediction of LGG. However, to date, the number
of clinical biomarkers used to predict the survival of LGG patients is very small, restricting
the development of early diagnosis and prognosis biomarkers for LGG.

Özbek et al. (2023) used bioinformatics methods to identify several diagnostic and
prognostic markers (such as CD74, CD86, CDC25A, etc.) in LGG. Liu et al. (2021) found
that a 10-gene signature may be used as a prognostic biomarker for predicting poor
prognosis in LGG patients. To further evaluate the prognostic value of these peroxisome-
related genes, the present study created a 14-gene risk signature through univariate Cox
analysis and LASSO Cox regression analysis, which was also validated in an external GEO
dataset. A nomogram was then constructed based on the 14-gene signature that showed
a good predictive prognostic ability in LGG patients. A functional analysis demonstrated
that the DEGs between the low-risk and high-risk LGG patient groups were related to
neuroactive ligand–receptor interaction. This study also compared the infiltrated immune
cells in the low- and high-risk groups and found that the high-risk group had decreased
levels of infiltrating immune cells compared with the low-risk group.

It is still unclear how PRGs interact in LGG and whether they are associated with
the survival time of LGG patients. This study constructed a gene signature featuring 14
peroxisome-related genes (ACBD5, ACSL1, ACSL5, ATAD1, CROT, DHRS4, GRHPR,
IDH1, IDI1, IDI2, NUDT19, NUDT7, PEX16, and PEX7) and found that it could predict
OS in LGG patients. ACSL1, ACSL5, CROT, IDH1, and NUDT19 were positively related
with poor survival, whereas ACBD5, ATAD1, DHRS4, GRHPR, IDI1, IDI2, NUDT7,
PEX16, and PEX7 may be protective genes in the TCGA-LGG dataset.
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Figure 10 ATAD1 (A and B) and ACBD5 expression (C and D) was efficiently downregulated by
siATAD1 and siACBD5 transfection in A172 and U251 cells.

Full-size DOI: 10.7717/peerj.16874/fig-10

Fatty acid (FA) metabolism is important for the biogenesis of cellular components
and ATP production to maintain cancer cell proliferation. Long-chain fatty acyl-CoA
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Figure 11 Downregulation of ATAD1 (A and B) and ACBD5 (C and D) inhibited cell proliferation in
A172 and U251 cells. A172 and U251 cell proliferation was detected by CCK8 assay.

Full-size DOI: 10.7717/peerj.16874/fig-11

synthetases (ACSLs) are a group of rate-limiting enzymes in FA metabolism that can
convert free-fatty acid to fatty acid-CoA. In 2017,Wang et al. (2017) found that oncoprotein
hepatitis B X-interacting protein (HBXIP) is able to up-regulate ACSL1 (long-chain fatty
acyl-CoA synthetase 1) by activating transcriptional factor Sp1 in breast cancer. In 2019,
Reeby et al. showed that ACSL1 can regulate TNF α-induced granulocyte-macrophage
colony-stimulating factor (GM-CSF) production via breast cancer MDA-MB-231 cells
(Thomas et al., 2019). In 2021, Zhang et al. (2021) demonstrated that ACSL1 can promote
cancer metastasis by regulating FA metabolism and myristoylation. In the same year,
Ma et al. (2021) found that ACSL1 can promote prostate cancer progression by elevating
lipogenesis and fatty acid beta-oxidation. Therefore, ACSL1 may play an oncogenetic role
in different cancer types.

In 2016, Hartmann et al. (2017) using a standardized IHC method, found that ACSL5
may serve as an independent prognostic biomarker for early tumor recurrence of sporadic
colorectal adenocarcinoma. In 2017, Yen et al. (2017) demonstrated that ACSL5 expression
is controlled by ER signaling pathways and is a potential novel prognostic biomarker of
breast cancer patients. In 2019, Ma et al. (2019) using bioinformatics and IHC staining
methods, discovered that patients with high ACSL5 expression had a shorter PFS than
those with low ACSL5 expression, revealing ACSL5 as a potential prognostic marker in
pancreatic cancer patients.

Lan et al. (2021) found that NUDT19 regulated by LINC00958 can activate the
mTORC1/P70S6K signaling pathway. They also found that both NUDT19 overexpression
and mTORC1 activator MYH1485 could reverse the inhibitory effect of LINC00958
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Figure 12 Downregulation of ATAD1 and ACBD5 induced apoptosis in A172 cells.
Full-size DOI: 10.7717/peerj.16874/fig-12

silencing on the proliferation, migration, and EMT process of HCC (Lan et al., 2021).
Notably, in the present study, ACSL1, ACSL5, andNUDT19 seemed to be cancer-promoting
genes, as their upregulation was associated with poor survival. However, further study is
needed to validate this result.

GRHPR (Glyoxylate reductase/hydroxypyruvate reductase) is an important enzyme in
the glyoxylate cycle, and its deficiency can lead to primary hyperoxaluria type 2. Pan et al.
(2013) demonstrated that patients with negative GRHPR had a significantly shorter survival
time than those with positive GRHPR, indicating GRHPR deficiency in noncancerous
tissues may be an independent biomarker of worse survival for HCC patients after curative
resection. Song et al. (2020) found that peroxisomal coenzyme A diphosphatase NUDT7
deletion promotes the development of KrasG12D CRC. These results indicate that GRHPR
and NUDT7 are potential protective genes.

The remaining signature genes (ACBD5, ATAD1, CROT, DHRS4, IDH1, IDI1, IDI2,
PEX16, and PEX7), which may also be oncogenes or tumor suppressors, have rarely been
studied. Further research is required to fully clarify the potential roles and mechanisms of
these 14 genes in LGG.
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Figure 13 Downregulation of ATAD1 and ACBD5 induced apoptosis in U251 cells.
Full-size DOI: 10.7717/peerj.16874/fig-13

This study has some limitations. First, because retrospective data was used, prospective
experiment validation of this signature in LGG patients of low-grade glioma or experiments
in mouse models is necessary to verify its diagnostic and prognostic potential. Second,
the predictive performance of this signature would improve if multi-omics data was
appropriately integrated into the analyses. Finally, a large pre-collected cohort is needed to
verify the potential prognostic value of the current gene signature.

CONCLUSION
Althoughprevious studies have reported prognostic PRGs in cancers, this study innovatively
established and validated a new prognostic signature containing 14 PRGs that can better
predict OS in LGG patients. This 14-gene signature may become a valuable prognostic
biomarker for LGG patients, potentially leading to personalized clinical treatment for these
patients.
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