

Reviewer's file (Dr. M Verjee)

Mathematical model of voluntary vaccination against schistosomiasis

Santiago Q Lopez ¹, Samiya F Majid ¹, Rida A Syed ^{2,3}, Jan Rychtar ^{Corresp., 2}, Dewey Taylor ²

¹ Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia, United States

² Department of Mathematics and Applied Mathematics, Virginia Commonwealth University, Richmond, Virginia, United States

³ Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia, United States

Corresponding Author: Jan Rychtar

Email address: rychtarj@vcu.edu

Human schistosomiasis is a chronic and debilitating neglected tropical disease caused by parasitic worms of the genus *Schistosoma*. It is endemic in many countries, in particular **delete** in sub-Saharan Africa. Although there is currently no vaccine available, vaccines are in development. In this paper, we extend a simple compartmental model of schistosomiasis transmission by incorporating the vaccination option. Unlike previous models of schistosomiasis transmission that focus on control and treatment at the population level, our model focuses on incorporating human behavior and voluntary individual vaccination.

We identify vaccination rates needed to achieve herd immunity as well as optimal, voluntary vaccination rates. We demonstrate that the prevalence remains too high (higher than 1%) unless the vaccination costs are sufficiently low. Thus, we can conclude that voluntary vaccination (with or without mass drug administration) may not be sufficient to eliminate schistosomiasis as a public health concern. The cost of the vaccine (relative to the cost of schistosomiasis **infection**) is the most important factor determining whether **or not** **delete** voluntary vaccination can yield the **delete** elimination of schistosomiasis. When the cost is low, the optimal voluntary vaccination rate is high enough that the prevalence of schistosomiasis declines under 1%. **Therefore, delete** Once the vaccine becomes available for public use, it will be crucial to ensure that the individuals have as cheap **an** access to the vaccine as possible.

The Abstract is appropriate and sets the scene for the manuscript very well.

PeerJ reviewing PDF | (2023:10:92309:0:2:NEW 6 Nov 2023)

Mathematical model of voluntary ¹ vaccination against schistosomiasis ²

Santiago Q. Lopez¹, Samiya F. Majid¹, Rida A. Syed^{2,3}, Jan Rychtar², and Dewey Taylor³

⁴
¹Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, ⁵
⁶ VA 23284, USA

²Department of Chemistry, Virginia Commonwealth University, Richmond, VA 23284, USA ⁷

³Department of Mathematics and Applied Mathematics, Virginia Commonwealth ⁸

⁹University, Richmond, VA 23284, USA

¹⁰ Corresponding author:

Jan Rychtař

¹¹

¹² Email address: rychtař@vcu.edu

¹³ ABSTRACT

Human schistosomiasis is a chronic and debilitating neglected tropical disease caused by parasitic worms of the genus *Schistosoma*. It is endemic in many countries, in particular in (delete) sub-Saharan Africa. Although there is currently no vaccine available, vaccines are in development. In this paper, we extend a simple (delete) compartmental model of schistosomiasis transmission by incorporating the vaccination option. Unlike previous models of schistosomiasis transmission that focus on control and treatment at the population level, our model focuses on incorporating human behavior and voluntary individual vaccination. We identify vaccination rates needed to achieve herd immunity as well as optimal voluntary vaccination rates. We demonstrate that the prevalence remains too high (higher than 1%) unless the vaccination costs are sufficiently low. Thus, we can conclude that voluntary vaccination (with or without mass drug administration) may not be sufficient to eliminate schistosomiasis as a public health concern. The cost of the vaccine (relative to the cost of schistosomiasis infection) is the most important factor determining whether or not voluntary vaccination can yield the elimination of schistosomiasis (substitute “the infection.”). When the cost is low, the optimal voluntary vaccination rate is high enough that the prevalence of schistosomiasis declines to under 1%. Therefore, (delete) Once the vaccine becomes available for public use, it will be crucial to ensure that the individuals have as cheap an access to the vaccine as possible.

¹⁴

¹⁵

¹⁶

¹⁷

¹⁸

¹⁹

²⁰

²¹

²²

²³

²⁴

²⁵

²⁶

²⁷

²⁸

²⁹ INTRODUCTION

³⁰ Human schistosomiasis is a chronic and debilitating neglected tropical disease caused by parasitic flatworms of the genus *Schistosoma* (Ross et al., 2002). It is endemic in many countries in Africa, South America, and Asia (Madsen et al., 2022). Worldwide there are an estimated 800 million people at risk of infection (Steinmann et al., 2006); over 230 million people are infected with about 201.5 million living in Africa (Verjee, 2019).

³⁵ *Schistosoma* genus consists of 23 species (Littlewood and Webster, 2017); we will focus on *S. mansoni* which is endemic throughout sub-Saharan Africa. The life cycle of *Schistosoma mansoni* is described,

³⁷

³⁸

³⁹

⁴⁰

⁴¹

⁴²

⁴³

⁴⁴

⁴⁵

for example in McManus et al. (2018). The cycle involves an intermediate fresh-water snail host of *Biomphalaria* species (Habib et al., 2021) and the definitive human host. Eggs are excreted in the human faeces and they hatch upon contact with water. After hatching, the eggs release free-swimming ciliated larvae, miracidia which seek and penetrate the (delete) snail hosts. Within the snails, the parasites develop into sporocysts which reproduce asexually and Delete and substitute “to” produce numerous larvae, called cercariae. Cercariae (delete and substitute “The larvae” to avoid repetition of “cercariae”) emerge from the (delete) snails in response to sunlight, and swim and (delete) seeking human hosts. Once cercariae penetrate the skin of a human host their tails drop off and the larvae transform into schistosomula. They enter the (delete) blood vessels and migrate to the liver, where they mature into adults. From the liver, the male and female worms migrate in pairs to the bowel, where the (Delete) Females produces eggs which. Eggs (delete) are excreted in the (delete) faeces and the cycle continues.

Well written and accurately outlined.

⁴⁷Schistosomiasis control efforts include the following strategies: (1) disease treatment large-scale mass drug administration (MDA) of praziquantel (PZQ) (Doenhoff et al., 2009), (2) health education, (3) snail intermediate host control, and (4) water, sanitation, and hygiene (WASH) programs (Tchuente' et al., 2017).

Suggest listing the four strategies above.

Successes in Japan, China, Egypt and in some sub-Saharan African countries (**Expand the country names involved in Sub-Saharan region**) demonstrate that Control with progression ⁵¹towards elimination is possible (Rollinson et al., 2013). MDA by PZQ is a cost-effective

⁵²'preventive chemotherapy' and it is currently the strategy of choice and endorsed by WHO (Tchuente' ⁵³et al., 2017; WHO, 2021). However, this strategy is unsustainable in the long term and interruptions in ⁵⁴these MDA programs can lead to rebounds of egg count (Ross et al., 2017). Vaccines are being developed, ⁵⁵but none is (**Rewrite as "are"**) available yet (Molehin et al., 2022; Molehin, 2020; Molehin et al., 2016). **Mention why vaccines have not reached a state for use yet**

⁵⁶Mathematical modeling plays a crucial and integral part of disease control and elimination (Anderson ⁵⁷and May, 1992; Behrend et al., 2020). Many models exist for schistosomiasis transmission and control, ⁵⁸including Woolhouse et al. (1996); Spear et al. (2002); Chiyaka and Garira (2009); Zhou et al. (2013); ⁵⁹Mbah et al. (2014); Stylianou et al. (2017); Lo et al. (2018); Gurarie et al. (2018); Kadaleka et al. (2021b,a, ⁶⁰2022); Madubueze et al. (2022). In Collyer et al. (2019) and Kura et al. (2020), the authors modeled the ⁶¹impact of schistosomiasis vaccine. (**Mention the impact envisaged**) Other models focus on snail intermediate hosts (Woolhouse, 1991);

⁶²Woolhouse and Chandiwana, 1990; Feng et al., 2002; Allen and Victory Jr, 2003; Zhao and Milner, 2008; ⁶³Mangal et al., 2008; Anderson et al., 2021). In French et al. (2010), the authors fitted a model to data ⁶⁴from a large-scale administration of PZQ in Uganda.

⁶⁵In this paper, we extend a compartmental model presented in Gao et al. (2011) which investigated the ⁶⁶effect of MDA on schistosomiasis transmission. Inspired by Stylianou et al. (2017); Kura et al. (2019), ⁶⁷we assume the vaccination is already available and focus on what happens when MDA and other control ⁶⁸strategies are no longer in place. (**Why would MDA and other strategies be stopped?**) Specifically, we are interested to see whether the transmission can be ⁶⁹substantially interrupted by voluntary vaccination.

⁷⁰Even if the vaccination is incorporated into existing pediatric vaccine programs and made mandatory, (**Who will have the authority to mandate and what could be the consequences of failure to adhere to policy?**)

⁷¹it does not automatically mean that the population would adhere to the mandates. Vaccine hesitancy and ⁷²avoidance is a real concern in the US (Tolsma, 2015), Europe (Reczul'ska et al., 2022) as well as Africa ⁷³(Anjorin et al., 2021). **While vaccine hesitancy is well known in the West, how does that apply to African populations?** There is a conflict between individual freedom and interests and the public health

⁷⁴benefits (Papicki et al., 2018). **The vaccination produces herd immunity that can be enjoyed even by ⁷⁵those not vaccinated (Serpell and Green, 2006).** Thus, vaccination programs are prone to free-riding ⁷⁶(Ibuka et al., 2014) because individuals maximize their self-interests, rather than the interests of the entire ⁷⁷group (Maskin, 1999). (**rewrite – further clarity needed**)

⁷⁸We apply the game-theory framework popularized in Bauch and Earn (2004). The framework ⁷⁹has been applied to many diseases; see Wang et al. (2016); Verelst et al. (2016); Chang et al. (2020) ⁸⁰for recent reviews. As argued in (Wang et al., 2016), epidemics models incorporating human behavior ⁸¹provide more insight and better predictions. Thus, the game-theory models have been applied to study ⁸²the prevention and elimination of many NTDs, **mpox – (if the authors mean monkey pox, clarify. The others are self-explanatory)** (Bankuru et al., 2020; Augsburger et al., 2022;

⁸³Augsburger et al., 2023), chikungunya (Klein et al., 2020), typhoid fever (Acosta-Alonzo et al., 2020), ⁸⁴Chagas disease (Han et al., 2020), visceral leishmaniasis (Fortunato et al., 2021), lymphatic filariasis ⁸⁵(Rychta'r and Taylor, 2022), rabies (Campo et al., 2022), yellow fever (Caasi et al., 2022), or zika (Angina ⁸⁶et al., 2022).

⁸⁷In the ideal case, the interests of the individual – to minimize one's costs, or to maximize one's ⁸⁸benefits – align with the interest of the entire population – to reduce the prevalence of the disease below

⁸⁹ an acceptable level. (Define a value for “acceptable.”) If this is the case, by behaving optimally (in their own sense), the individuals will (will or should?)

⁹⁰ behave optimally from the public health perspective. Thus, the individuals will more likely adhere to the
⁹¹ mandatory vaccination policy and contribute to disease elimination as the public health concern. However,
⁹² because the (delete) interests can differ, a behavior that is optimal from the perspective of an individual may not
⁹³ be optimal from the perspective of the group and vice versa. To avoid confusion, in the rest of the paper,
⁹⁴ when we say “optimal”, we will mean optimal from the individual perspective, unless specified otherwise.
⁹⁵ The aim of this paper is to focus on incorporating human behavior and voluntary individual vaccination
⁹⁶ against schistosomiasis. We want to determine whether voluntary vaccination alone could eliminate
⁹⁷ schistosomiasis as a public health concern, i.e., decrease the prevalence of high intensity infections under
⁹⁸ 1% (WHO, 2021). (Rewrite as repetition from before)

2/21 PeerJ reviewing PDF | (2023:10:92309:0:2:NEW 6 Nov 2023)

⁹⁹ MODEL

¹⁰⁰ We introduce a mathematical model for voluntary vaccination against schistosomiasis. First, we incorpo¹⁰¹
rate a possible vaccination into a compartmental model of schistosomiasis transmission developed by Gao
¹⁰² et al. (2011). Then, we add the game-theory (as opposed to “game-theoretical?” – this is used consistently in the
manuscript but is not defined or cited) component that will allow us to investigate individuals’
¹⁰³ optimal vaccination decisions.

¹⁰⁴ Compartmental model

¹⁰⁵ The human population is divided into susceptible (S_1), infectious (I_1) and vaccinated (V_1). The snail
¹⁰⁶ population is divided into susceptible (S_2) and infected (I_2). The schistosomiasis pathogen is divided into
¹⁰⁷ (1) the snail-penetrating stage miracidia (M), and (2) the human-penetrating stage, cercariae (P).

¹⁰⁸ Human individuals are born susceptible to schistosomiasis at a rate L_1 . Susceptible individuals
¹⁰⁹ become infected through contact with free-living cercariae present in contaminated fresh water. Because
of saturating and crowding effect, we use a Holling type II incidence rate b_1P
 $1+a_1P$ (Holling, 1959; Real,

¹¹⁰ 1977), where b_1 is the rate of transmission in small concentrations of P and a_1 is a scaling factor.

¹¹¹ The infected humans are treated at rate h , returning back delete in delete to the susceptible population; without
¹¹² treatment the individuals stay infected. (Reference needed here to justify statement)

¹¹³ Susceptible individuals are vaccinated at a rate n . Vaccinated individuals are assumed immune against
¹¹⁴ the disease. They lose their vaccine-induced immunity at a rate w and become susceptible again. Infected
¹¹⁵ humans may get vaccinated as well. From a practical standpoint, individuals with low intensity of
¹¹⁶ infection will likely consider themselves susceptible and would vaccinate. Nevertheless, we assume that
¹¹⁷ the vaccine does not work in these instances and the individuals stay infected. Hence, we do not consider
¹¹⁸ a transition from I_1 to V_1 compartment. (Clarify this statement)

¹¹⁹ Infected humans release parasite eggs giving rise to the population of mircacidia (Spelling – miracidia) M at rate
 g_1 ; we

¹²⁰ ignore the egg hatching period.

Susceptible snails are born at rate L_2 . They become infected at a rate b_2MS_2

M_0+eM_2 which is a Holling Type

¹²¹ III incidence rate (Holling, 1959; Real, 1977), where b_2 is the rate transmission in small concentrations of
¹²² M and M_0 and e are scaling factors. Infected snails give rise to the population of cercariae P at a rate, g_2 .
For simplicity, we assume that the risk of contracting schistosomiasis after the age $\mu-1$

¹²³ is negligible. Complex description but makes sense

¹²⁴ Thus, all humans are removed from the population at risk at a rate μ_1 as they age. The infected cases also
¹²⁵ suffer from the disease-related death rate d_1 ; so they are removed from the population at a total rate μ_1+d_1 .

¹²⁶ The susceptible snails die at a rate μ_2+q , where μ_2 is the natural death rate and q is the elimination
¹²⁷ rate of snails. Infected snails die at a rate μ_3+d_2+q , where d_2 is the disease-related death rate of snails.

¹²⁸ miracidia (M) die at a rate μ_3 . The death rate of cercariae population P is μ_4+t where μ_4 is the natural
¹²⁹ death rate and t is the elimination rate. We ignore the negligible removal rates of miracidia and cercariae
¹³⁰ due to human and snail infections.

dS_1
 dt
 $= L_1 -$
 $b_1 P S_1$
 $1 + a_1 P - \mu_1 S_1 + h I_1 - v S_1 + w V_1 (1)$
 dI_1
 dt
 $=$
 $b_1 P S_1$
 $1 + a_1 P - (\mu_1 + d_1 + h) I_1 (2)$
 dM
 dt
 $= g_1 I_1 - \mu_3 M (3)$
 dS_2
 dt
 $= L_2 - (\mu_2 + q) S_2 (4)$
 dI_2
 dt
 $=$
 $b_2 M S_2$
 $M_0 + e M_2 - (\mu_2 + d_2 + q) I_2 (5)$
 dP
 dt
 $= g_2 I_2 - (\mu_4 + t) P (6)$
 dV_1
 dt
 $= v S_1 - w V_1 - \mu_1 V_1 (7)$
3

Table 1. Model parameters (top part) and other notation (bottom part) as based on Gao et al. (2011). The rates are per capita per year, the times are in years. The calibration procedure is described in section “Model calibration”.

Symbol	Meaning	Value	Range	Source
L_1	Birth rate (humans)	0.031	[0.02,0.04]	World Bank (2022)
μ_1	Max age of people at risk	20	[15,25]	Jordan (1972)
μ_2	Natural death rate (snails)	1.85	[1.5,2.4]	Appleton (1977)
μ_3	Natural death rate (miracidia)	1460	[1100,1750]	Maldonado et al. (1948)
μ_4	Natural death rate (cercariae)	830	[500,1100]	Whitfield et al. (2003)
g_1	Miracidia production rate	1.1	~10 ⁵	[10 ⁵ ,2.2~10 ⁵]
g_2	Cercariae production rate	1.55	~10 ⁵	[0.9~10 ⁵ ,2.2~10 ⁵]
d_1	Disease related mortality rate (humans)			
t	10~4	[0,10~2]		WHO (2021)
h	MDA treatment rate of humans	0	- Assumed	
t	Elimination rate of cercariae	0	- Assumed	
q	Elimination rate of snails	0	- Assumed	
n	Vaccination rate variable	[0,0.1]	Assumed	
w	Vaccine waning rate	1/6.5	[1/8,1/5]	Zhang et al. (2014)
d_2	Disease related mortality rate (snails)			
	0.25	[0,0.5]	Fitted	
b_1	Human infection rate by cercariae	0.0013	[0.001,0.0015]	Fitted
a_1	Scaling factor for human infection rate			
	0.0315	[0.01,0.05]	Fitted	
b_2	Snails infection rate by miracidia	12.71	[10,15]	Fitted
M_0	Scaling factor for snail infection rate	3500	[3000,5000]	Fitted
e	Scaling factor for snail infection rate	1.689	[1,2]	Fitted
L_2	Birth rate (snails)	10	[5,15]	Fitted
c	Cost of vaccine relative to cost of schistosomiasis			
	0.02	[0,0.1]	Assumed	

d₁ Rate out of I₁ $\mu_1 + d_1 + h$
d₂ Rate out of S₂ $\mu_2 + q$
d₃ Rate out of I₂ $\mu_2 + d_2 + q$
d₄ Rate out of P $\mu_4 + q$
g Auxiliary variable
L_{1g1}
M₀
d Auxiliary variable g₂L₂
a₂ Auxiliary variable e
M₀
5

Mathematical workings

Hence, the Nash equilibrium is given by (66), where S₀
1 is given in (65), I₁ is given by (64), and I₂ ²¹¹ is
given by (58). (The Nash equilibrium theory has *not* been explained or fully discussed, nor is it cited as a
reference. It is critical to the whole manuscript) This is an omission to be corrected.

How do you calculate Nash equilibrium?

There is not a specific formula to calculate Nash equilibrium. It can be determined by modeling out different scenarios within a given game to determine the payoff of each strategy and which would be the optimal strategy to choose.

What are the limitations of Nash equilibrium?

The primary limitation of Nash equilibrium is that it requires an individual to know their opponent's strategy. A Nash equilibrium can only occur if a player chooses to remain with their current strategy if they know their opponent's strategy.

In most cases, such as in war—whether that be a military war or a bidding war—an individual rarely knows the opponent's strategy or what they want the outcome to be. Unlike dominant strategy, the Nash equilibrium doesn't always lead to the most optimal outcome. It just means that an individual chooses the best strategy based on the information they have.

Furthermore, in multiple games played with the same opponents, the Nash equilibrium does not take into consideration past behavior, which often predicts future behavior.

The Nash equilibrium can be applied in a variety of real-life situations to determine what the best payoff in a scenario would be, based on decisions as well as knowledge of another's decision.

MODEL CALIBRATION

²¹³ We focus on transmission of *S. mansoni* and we locate as many parameters specific to this species
²¹⁴ as possible. However, since *S. haematobium* is also endemic in sub-Saharan Africa, some parameter
²¹⁵ estimates are based on that species or simply schistosoma species in general; we specifically say so if
²¹⁶ it is the case. We perform sensitivity and uncertainty analysis to account for possible discrepancies in
²¹⁷ parameter values.

²¹⁸ For birth rate, we will use a country in sub-Saharan Africa, like Zimbabwe where schistosomiasis in
²¹⁹ general is endemic (Midzi et al., 2014). In Zimbabwe, the birth rate is 31 births per 1,000 people per year
²²⁰ (World Bank, 2022), i.e., L₁ = 0.031.

²²¹ The egg output of cases infected by *S. haematobium* (Bradley and McCullough, 1973) as well as the
²²² length of water contact (Jordan, 1972) varies by age and there is a sharp drop off after the age 20 for both
²²³ measures (Kura et al., 2021). We will thus assume the same is true for *S. mansoni* and consider the aging
²²⁴ rate $\mu_1 = 1/20$.

²²⁵ We will consider snails of the Planorbidae family, especially *Biomphalaria* species, as they are one

227 are a common intermediate host of schistosomiasis (Gabrielli and Garba Djirmay, 2022). Their life span
228 ranges between 5 to 8 months (Appleton, 1977) and we use the average death rate $\mu_2 = 12/6.5 = 1.85$
229 per year.

230 The longevity of *S. mansoni* miracidia is relatively small, about 5-6 hours and no more than 9 hours
231 (Maldonado et al., 1948). We will thus use $\mu_3 = 365/(6/24) = 1460$. Similarly, *S. mansoni* cercariae
232 live on average about 10.5 hours with a range from 8-17 hours (Whitfield et al., 2003) and so we set
233 ($\mu_4 = 365\text{A} \sim 24/10.5 = 830$). We note that the cercariae may survive up to 72 hours (Nelwan, 2019).
234 *S. mansoni* females release about 300 eggs per day (Alwan and LoVerde, 2021; Mooee et al., 1956);
235 we will thus use $g_1 = 300 / 365 = 1.1\text{A} \sim 105$.

236 The number of *S. mansoni* cercariae produced daily is 250–600 (Gabrielli and Garba Djirmay, 2022).
237 We will thus use $g_2 = 425 / 365 = 1.15\text{A} \sim 105$.

238 We estimate the disease related mortality as $d_1 = 1/104$ based on 2016 global schistosomiasis data
239 of 24,000 deaths and 240 million infections (Gabrielli and Garba Djirmay, 2022; WHO, 2021). This is
240 in general agreement with Kheir et al. (1999) who estimated the annual mortality between 50/105 and
241 1/1000 (or higher for specific kinds of infections).

242 There is currently no vaccine (Molehin et al., 2022) for humans. Nevertheless, based on phase 1
243 clinical trials in baboons, the longevity of one of the tested vaccines is 5-8 years (Zhang et al., 2014). We
244 thus set the vaccine waning rate to be $w = 1/6.5$. The vaccine reduces the parasitic female load by about
245 90%, but for simplicity we will assume a complete protection.

246 For the purpose of the model, we will assume $h = 0$ because PZQ helps to control morbidity by
247 killing adult schistosomes but it is ineffective against juvenile worms (McManus et al., 2018; Hagan et al.,
248 2004). We also assume $c = 0.02$ with the range [0,0.05], the cost of the vaccine is about 1/50 of the cost
249 of contracting schistosomiasis (and somewhere between 0 and 1/20 of the cost of the disease).

250 To find the values of other parameters, we set the controls to 0, i.e., set $n = 0, q = 0, t = 0, h = 0$,
251 and fitted the model predictions to observed data of (a) the reproduction number, $R_0 = 4.31$ based on
252 Woolhouse et al. (1996), (b) the proportion of infected individuals, $I_1/(I_1+S_1) = 0.227$ based on Midzi
253 et al. (2014), and (c) the proportion of infected snails $I_2/(I_2+S_2) = 0.018$ based on Odongo-Aginya et al.

Figures 2, 3, 4, & 5, are appropriate, and representative.

CONCLUSIONS AND DISCUSSION

317 We extended the compartmental model of schistosomiasis transmission (Gao et al., 2011) by adding the
318 possibility of vaccination (Molehin et al., 2022; Stylianou et al., 2017) and applied the game-theoretic
319 framework (Bauch and Earn, 2004). Unlike previous models of schistosomiasis transmission that focused
320 on control and treatment at the population level, our model focuses on incorporating human behavior and
321 voluntary individual vaccination.

322 We identified vaccination rates needed to achieve the herd immunity as well as optimal (from the
323 individuals' perspective) voluntary vaccination rates. We evaluated the prevalence of schistosomiasis
324 for the scenario when everyone uses the optimal vaccination rates. We demonstrated that the prevalence
325 remains too high (higher than 1%) unless the vaccination costs are sufficiently low. Thus, we can conclude
326 that the voluntary vaccination alone may not be sufficient to eliminate schistosomiasis as a public health
327 concern. When combining vaccination with MDA, the elimination is feasible; however, in such scenarios,
328 the elimination would be possible by MDA alone.

329 We calibrated our model based on the data from literature. However, especially data related to
330 transmission rates were lacking and we thus had to fit our model numerically to empirical data. We argue
331 that there is an ongoing need to strengthen data collection and evaluation for decision-making (Toor et al.,
332 2021). We also performed uncertainty and sensitivity analysis and showed that the results are relatively
333 robust; the optimal voluntary vaccination (without MDA) will not eliminate schistosomiasis in at least
334 65% of the scenarios. With MDA, the situation is somewhat better, the elimination would occur in all but
335 25% of the scenarios. **Good explanation.**

336 The cost of the vaccine for the individual was an important factor determining whether or not voluntary
337 vaccination can yield the elimination of schistosomiasis. When the cost is low, the optimal voluntary
338 vaccination rate is high enough that the prevalence of schistosomiasis declines under 1% and the disease
339 is thus eliminated as a public health concern. **Who is responsible for the vaccine cost in Africa? If it is not
provided gratis, it is almost doomed to failure as a philosophy in Sub-Saharan Africa where nations are
economically stressed. There is a big assumption here.** Once the vaccine becomes available for public use, it will

340 therefore be crucial to ensure that the individuals have as ~~cheap~~ access to the vaccine as possible. ~~delete~~
341 Our main finding that voluntary vaccination alone may not be enough to eliminate schistosomiasis is
342 not surprising. These conclusions had been already reached in a general scenario (Geoffard and Philipson,
343 1997) as well as demonstrated for specific diseases with a high cost of vaccination relative to the cost
344 of the disease such as cholera (Kobe et al., 2018), Hepatitis B (Chouhan et al., 2020; Scheckelhoff
345 et al., 2021), lymphatic filariasis (Rychta'r and Taylor, 2022), polio (Cheng et al., 2020), or typhoid fever
346 (Acosta-Alonso et al., 2020).

347 The big caveat of our quantitative results, though, is that, for simplicity, our model did not incorporate
348 several important feature of schistosomiasis. First, the age is an important factor influencing the water
349 contact and infection rates (Kura et al., 2021), but we considered it only marginally. To ~~properly~~ ~~delete~~
350 incorporate the age-dependent water contact ~~properly~~, we would have to stratify the human population by age
351 groups. This stratification would also allow better tracking of the prevalence of the infections amongst
352 school age children, which is crucial for the WHO's elimination goal. ~~The age groups would play an~~
353 ~~important role even from the logistical standpoint. Similarly to MDA which is administered mostly to~~
354 ~~school age children~~ ~~needs rewording~~ (King et al., 2011), it seems that the vaccine would have to be administered
before age

355 5 by incorporating into existing pediatric vaccine programs. Due to waning protection, the vaccination
356 would have to be ~~reapplied~~ ~~delete~~. Use "administered." every 5 or so years. However, these aspects were not
addressed by our model ~~Admission of weakness in achievement, but no other suggestions inserted.~~

357 ~~at all. Delete~~

358 Second, we assumed ~~that~~ ~~delete~~ the vaccine offers 100% protection while the real efficacy will be likely
359 around 90% (Zhang et al., 2018). Nevertheless, based on modeling of imperfect vaccine done for example
360 in Reluga and Galvani (2011); Augsburger et al. (2023); Augsburger et al. (2022), as long as the vaccine
361 is 85% or more effective, there are no big differences in model outcomes between perfect and imperfect
362 vaccines. Furthermore, usage of *S. mansoni*-only vaccine would likely not be acceptable in sub-Saharan
363 Africa as there are regions where both *S. mansoni* and *S. haematobium* are endemic. A model that accounts
364 for both species at the same time would be needed to better understand what to do in those regions.

365 Third, individuals eventually reach immunity (Kura et al., 2021; Wilkins et al., 1984) and this was
366 omitted in our model that concentrated on the young population only. While the recovered compartment
367 should be added to the later iterations of the model, we believe its addition would not significantly alter
368 the results.

369 Our model can be further improved in several other ways. The underlying compartmental model
370 can be made more realistic by (a) adding "exposed" compartments to human and intermediate hosts
15/21 PeerJ reviewing PDF | (2023:10:92309:0:2:NEW 6 Nov 2023)

371 (such as in Anderson et al. (2021)), (b) considering ~~the fact that~~ ~~delete~~. Use "why" instead. infected humans
release eggs rather

372 than miracidia, and most importantly (c) specifically model the parasite load (such as in Woolhouse et al.
373 (1996)). Also, schistosomiasis endemicity exhibits a great variation when even neighboring villages show
374 vastly different levels of parasite loads (Carabin et al., 2005). The distribution of schistosoma infections
375 are highly ~~over dispersed~~ among hosts, even within age groups (Bundy, 1988); this can have implications
376 on how effective the vaccination program is in reality. Incorporating some sort of structural modeling
377 network to epidemics, for example as done in Hadjichrysanthou and Sharkey (2015) would be helpful.

378 The game theory part of the model can be extended as follows. We assumed that every individual has
379 the same risk of infection. However, the risk varies by age and by their behavioral pattern (M'Bra et al.,
380 2018). Individuals thus have different risk perceptions (Poletti et al., 2011) and also base their decision on
381 different social aspects (Xia and Liu, 2013). Therefore, it is often beneficial to use multi-agent-simulation
382 (MAS) methodology (Iwamura and Tanimoto, 2018; Kabir and Tanimoto, 2019; Kuga et al., 2019; Kabir
383 and Tanimoto, 2020) which allows more flexibility and realism. Furthermore, our model assumed the
384 risk of contracting the disease to be the only cost associated with not-vaccination. If the vaccine is
385 made mandatory, there can also be penalties for vaccine avoidance, possibly shrinking the gap between
386 optimal voluntary vaccination level and the level required to achieve elimination. Finally, we assumed
387 all individuals have perfect and full information. This is unlikely to happen in reality. However, the
388 people will look up to their local leadership for advice and support. It is thus critical for the success of the
389 vaccination campaign that the local leaders receive proper information about the disease and the available
390 prevention methods.

391

REFERENCES

405 Acosta-Alonso, C. B., Erovenko, I. V., Lancaster, A., Oh, H., Rychtár, J., and Taylor, D. (2020). High
406 endemic levels of typhoid fever in rural areas of ghana may stem from optimal voluntary vaccination
407 behaviour. *Proceedings of the Royal Society A*, 476(2241):20200354.

408 Allen, E. and Victory Jr, H. (2003). Modelling and simulation of a schistosomiasis infection with
409 biological control. *Acta Tropica*, 87(2):251–267.

410 Alwan, S. N. and LoVerde, P. T. (2021). The effect of fs800 on female egg production in *Schistosoma*
411 *mansonii*. *Molecular and Biochemical Parasitology*, 245:111412.

412 Anderson, L. C., Loker, E. S., and Wearing, H. J. (2021). Modeling schistosomiasis transmission: the
413 importance of snail population structure. *Parasites & Vectors*, 14(1):1–14.

414 Anderson, R. M. and May, R. M. (1992). *Infectious diseases of humans: dynamics and control*. Oxford
415 University Press.

416 Angina, J., Bachhu, A., Talati, E., Talati, R., Rychtár, J., and Taylor, D. (2022). Game-theoretical model
417 of the voluntary use of insect repellents to prevent Zika fever. *Dynamic Games and Applications*,
418 12:133–146.

16/21 PeerJ reviewing PDF | (2023:10:92309:0:2:NEW 6 Nov 2023)

Anjorin, A. 419 A., Odetokun, I. A., Abioye, A. I., Elnadi, H., Umoren, M. V., Damaris, B. F., Eyedo, J.,
420 Umar, H. I., Nyandwi, J. B., Abdalla, M. M., et al. (2021). Will africans take COVID-19 vaccination?
421 *PLoS One*, 16(12):e0260575.

422 Appleton, C. (1977). The influence of temperature on the life-cycle and distribution of *Biomphalaria*
423 *pfeifferi* (Krauss, 1948) in South-Eastern Africa. *International Journal for Parasitology*, 7(5):335–345.

424 Augsburger, I. B., Galanthalay, G. K., Tarosky, J. H., Rychtár, J., and Taylor, D. (2022). Voluntary
425 vaccination may not stop monkeypox outbreak: a game-theoretic model. *PLOS Neglected Tropical*
426 *Diseases*, 16(12):e0010970.

427 Augsburger, I. B., Galanthalay, G. K., Tarosky, J. H., Rychtár, J., and Taylor, D. (2023). Imperfect vaccine
428 can yield multiple Nash equilibria in vaccination games. *Mathematical Biosciences*, 356:108967.

429 Bankuru, S. V., Kossol, S., Hou, W., Mahmoudi, P., Rychtár, J., and Taylor, D. (2020). A game-theoretic
430 model of Monkeypox to assess vaccination strategies. *PeerJ*, 8:e9272.

431 Bauch, C. T. and Earn, D. J. (2004). Vaccination and the theory of games. *Proceedings of the National*
432 *Academy of Sciences*, 101(36):13391–13394.

433 Behrend, M. R., Basáñez, M.-G., Hamley, J. I., Porco, T. C., Stolk, W. A., Walker, M., de Vlas, S. J., and
434 Consortium, N. M. (2020). Modelling for policy: the five principles of the Neglected Tropical Diseases
435 Modelling Consortium. *PLoS Neglected Tropical Diseases*, 14(4):e0008033.

436 Blower, S. and Dowlatabadi, H. (1994). Sensitivity and uncertainty analysis of complex models of disease
437 transmission: an HIV model, as an example. *International Statistical Review*, 62(2):229–243.

438 Bradley, D. J. and McCullough, F. S. (1973). Egg output stability and the epidemiology of *Schistosoma*
439 *haematobium* part ii. an analysis of the epidemiology of endemic *S. haematobium*. *Transactions of the*
440 *Royal Society of Tropical Medicine and Hygiene*, 67(4):491–500.

441 Bundy, D. A. (1988). Population ecology of intestinal helminth infections in human communities.
442 *Philosophical Transactions of the Royal Society of London. B, Biological Sciences*, 321(1207):405–
443 420.

444 Caasi, J. A. S., Joseph, B. M., Kodiyamplakkal, H. J., Manibusan, J. R. U., Camacho Aquino, L. J., Oh,
445 H., Rychtár, J., and Taylor, D. (2022). A game-theoretic model of voluntary yellow fever vaccination
446 to prevent urban outbreaks. *Games*, 13(4):55.

447 Campo, V. N., Palacios, J. L., Nagahashi, H., Oh, H., Rychtár, J., and Taylor, D. (2022). A game-theoretic
448 model of rabies in domestic dogs with multiple voluntary preventive measures. *Journal of Mathematical*
449 *Biology*, 85(5):57.

450 Carabin, H., Marshall, C. M., Joseph, L., Riley, S., Olveda, R., and McGarvey, S. T. (2005). Estimating
451 the intensity of infection with *Schistosoma japonicum* in villagers of Leyte, Philippines. Part I: A
452 Bayesian cumulative logit model. *The Schistosomiasis Transmission & Ecology Project (STEP)*. The
453 *American Journal of Tropical Medicine and Hygiene*, 72(6):745–753.

454 Chang, S. L., Piraveenan, M., Pattison, P., and Prokopenko, M. (2020). Game theoretic modelling of
455 infectious disease dynamics and intervention methods: a review. *Journal of Biological Dynamics*,
456 14(1):57–89.

457 Cheng, E., Gambhirrao, N., Patel, R., Zhouandai, A., Rychtár, J., and Taylor, D. (2020). A game⁴⁵⁸

theoretical analysis of Poliomyelitis vaccination. *Journal of Theoretical Biology*, 499:110298.

⁴⁵⁹ Chiyaka, E. T. and Garira, W. (2009). Mathematical analysis of the transmission dynamics of schistosomiasis in the human-snail hosts. *Journal of Biological Systems*, 17(03):397–423.

⁴⁶¹ Choi, W. and Shim, E. (2021). Optimal strategies for social distancing and testing to control covid-19. *Journal of Theoretical Biology*, 512:110568.

⁴⁶³ Chouhan, A., Maiwand, S., Ngo, M., Putalapattu, V., Rychta'r, J., and Taylor, D. (2020). Game-theoretical model of retroactive hepatitis B vaccination in China. *Bulletin of Mathematical Biology*, 82(6):1–18.

⁴⁶⁵ Collyer, B. S., Turner, H. C., Hollingsworth, T. D., and Keeling, M. J. (2019). Vaccination or mass drug administration against schistosomiasis: a hypothetical cost-effectiveness modelling comparison. *Parasites & vectors*, 12(1):1–14.

⁴⁶⁸ Doenhoff, M., Hagan, P., Cioli, D., Southgate, V., Pica-Mattoccia, L., Botros, S., Coles, G., Tchuente', L. T., Mbaye, A., and Engels, D. (2009). Praziquantel: its use in control of schistosomiasis in sub-Saharan Africa and current research needs. *Parasitology*, 136(13):1825–1835.

⁴⁷¹ Feng, Z., Li, C.-C., and Milner, F. A. (2002). Schistosomiasis models with density dependence and age of infection in snail dynamics. *Mathematical Biosciences*, 177:271–286.

⁴⁷³ Fortunato, A. K., Glasser, C. P., Watson, J. A., Lu, Y., Rychta'r, J., and Taylor, D. (2021). Mathematical modelling of the use of insecticide-treated nets for elimination of visceral leishmaniasis in Bihar, India. *Royal Society Open Science*, 8(6):201960.

⁴⁷⁶ French, M. D., Churcher, T. S., Gambhir, M., Fenwick, A., Webster, J. P., Kabatereine, N. B., and Basa'nez, M.-G. (2010). Observed reductions in *Schistosoma mansoni* transmission from large-scale administration of praziquantel in Uganda: a mathematical modelling study. *PLoS Neglected Tropical Diseases*, 4(11):e897.

⁴⁸⁰ Gabrielli, A. F. and Garba Djirmay, A. (2022). Schistosomiasis. *Encyclopedia of Infection and Immunity*, page 666–677.

⁴⁸² Gao, Liu, Luo, and Xie (2011). Control problems of a mathematical model for schistosomiasis transmission dynamics. *Nonlinear Dynamics*, 63:503–512.

⁴⁸⁴ Geoffard, P.-Y. and Philipson, T. (1997). Disease eradication: private versus public vaccination. *The American Economic Review*, 87(1):222–230.

⁴⁸⁶ Gurarie, D., Lo, N. C., Ndeffo-Mbah, M. L., Durham, D. P., and King, C. H. (2018). The human snail transmission environment shapes long term schistosomiasis control outcomes: Implications for improving the accuracy of predictive modeling. *PLoS Neglected Tropical Diseases*, 12(5):e0006514.

⁴⁸⁹ Habib, M. R., Lv, S., Rollinson, D., and Zhou, X.-N. (2021). Invasion and dispersal of *Biomphalaria* species: increased vigilance needed to prevent the introduction and spread of schistosomiasis. *Frontiers in Medicine*, 8:614797.

⁴⁹² Hadjichrysanthou, C. and Sharkey, K. J. (2015). Epidemic control analysis: Designing targeted intervention strategies against epidemics propagated on contact networks. *Journal of Theoretical Biology*, 365:84–95.

⁴⁹⁵ Hagan, P., Appleton, C. C., Coles, G. C., Kusel, J. R., and Tchueme-Tchuente', L.-A. (2004). Schistosomiasis control: keep taking the tablets. *Trends in Parasitology*, 20(2):92–97.

⁴⁹⁷ Han, C. Y., Issa, H., Rychta'r, J., Taylor, D., and Umana, N. (2020). A voluntary use of insecticide treated nets can stop the vector transmission of Chagas disease. *PLoS Neglected Tropical Diseases*, 14(11):e0008833.

⁵⁰⁰ Holling, C. S. (1959). The components of predation as revealed by a study of small-mammal predation of the European pine sawfly. *The Canadian Entomologist*, 91(5):293–320.

⁵⁰² Ibuka, Y., Li, M., Vietri, J., Chapman, G. B., and Galvani, A. P. (2014). Free-riding behavior in vaccination decisions: an experimental study. *PLOS One*, 9(1).

⁵⁰⁴ Iwamura, Y. and Tanimoto, J. (2018). Realistic decision-making processes in a vaccination game. *Physica A: Statistical Mechanics and its Applications*, 494:236–241.

⁵⁰⁶ Jordan, P. (1972). Epidemiology and control of schistosomiasis. *British Medical Bulletin*, 28(1):55–9.

⁵⁰⁷ Kabir, K. A. and Tanimoto, J. (2019). Modelling and analysing the coexistence of dual dilemmas in the proactive vaccination game and retroactive treatment game in epidemic viral dynamics. *Proceedings of the Royal Society A*, 475(2232):20190484.

⁵¹⁰ Kabir, K. A. and Tanimoto, J. (2020). Evolutionary game theory modelling to represent the behavioural dynamics of economic shutdowns and shield immunity in the COVID-19 pandemic. *Royal Society Open Science*, 7(9):201095.

513 Kadaleka, S., Abelman, S., Mwamtobe, P., and Tchuenche, J. (2021a). Optimal control analysis of a
514 human–bovine schistosomiasis model. *Journal of Biological Systems*, 29(01):1–26.

515 Kadaleka, S., Abelman, S., and Tchuenche, J. M. (2021b). A human–bovine schistosomiasis mathematical
516 model with treatment and mollusciciding. *Acta Biotheoretica*, 69(4):511–541.

517 Kadaleka, S., Abelman, S., and Tchuenche, J. M. (2022). A mathematical model of the transmission
518 dynamics of bovine schistosomiasis with contaminated environment. *Acta Biotheoretica*, 70(1):9.

519 Kheir, M. M., Eltoum, I. A., Saad, A. M., Ali, M. M., Baraka, O. Z., and Homeida, M. (1999). Mortality
520 due to Schistosomiasis mansoni: a field study in Sudan. *The American Journal of Tropical Medicine
521 and Hygiene*, 60(2):307–310.

522 King, C. H., Olbrych, S. K., Soon, M., Singer, M. E., Carter, J., and Colley, D. G. (2011). Utility of
523 repeated praziquantel dosing in the treatment of schistosomiasis in high-risk communities in Africa: a
524 systematic review. *PLoS Neglected Tropical Diseases*, 5(9):e1321.

525 Klein, S. R. M., Foster, A. O., Feagins, D. A., Rowell, J. T., and Erovenko, I. V. (2020). Optimal voluntary
526 and mandatory insect repellent usage and emigration strategies to control the chikungunya outbreak on
527 Reunion Island. *PeerJ*, 8:e10151.

528 Kobe, J., Pritchard, N., Short, Z., Erovenko, I. V., Rychta’r̄, J., and Rowell, J. T. (2018). A game-theoretic
18/21 PeerJ reviewing PDF | (2023:10:92309:0:2:NEW 6 Nov 2023)
529 model of cholera with optimal personal protection strategies. *Bulletin of Mathematical Biology*,
530 80(10):2580–2599.

531 Kuga, K., Tanimoto, J., and Jusup, M. (2019). To vaccinate or not to vaccinate: A comprehensive study
532 of vaccination-subsidizing policies with multi-agent simulations and mean-field modeling. *Journal of
533 Theoretical Biology*, 469:107–126.

534 Kura, K., Collyer, B. S., Toor, J., Truscott, J. E., Hollingsworth, T. D., Keeling, M. J., and Anderson,
535 R. M. (2020). Policy implications of the potential use of a novel vaccine to prevent infection with
536 schistosoma mansoni with or without mass drug administration. *Vaccine*, 38(28):4379–4386.

537 Kura, K., Hardwick, R. J., Truscott, J. E., and Anderson, R. M. (2021). What is the impact of acquired
538 immunity on the transmission of schistosomiasis and the efficacy of current and planned mass drug
539 administration programmes? *PLoS Neglected Tropical Diseases*, 15(12):e0009946.

540 Kura, K., Truscott, J. E., Toor, J., and Anderson, R. M. (2019). Modelling the impact of a schisto
541 soma mansoni vaccine and mass drug administration to achieve morbidity control and transmission
542 elimination. *PLOS Neglected Tropical Diseases*, 13(6):e0007349.

543 Littlewood, D. and Webster, B. L. (2017). Origins and evolutionary radiation of Schistosoma. In
544 *Schistosoma*, pages 9–16. CRC Press.

545 Lo, N. C., Gurarie, D., Yoon, N., Coulibaly, J. T., Bendavid, E., Andrews, J. R., and King, C. H. (2018).
546 Impact and cost-effectiveness of snail control to achieve disease control targets for schistosomiasis.
547 *Proceedings of the National Academy of Sciences*, 115(4):E584–E591.

548 Madsen, H., Stauffer, J. R., et al. (2022). Zoonotic trematode infections; their biology, intermediate hosts
549 and control. In Jorge Morales-Montor, V. H. D. R.-A. and Hernande’z-Bello, R., editors, *Parasitic
550 Helminths and Zoonoses*, page 102434. IntechOpen.

551 Madubueze, C. E., Chazuka, Z., Onwubuya, I., Fatmawati, F., and Chukwu, C. (2022). On the math
552 ematical modeling of schistosomiasis transmission dynamics with heterogeneous intermediate host.
553 *Frontiers in Applied Mathematics and Statistics*, 8:1020161.

554 Maldonado, J. F., Acosta-Matienzo, J., et al. (1948). Biological studies on the miracidium of Schistosoma
555 mansoni. *American Journal of Tropical Medicine*, 28(5):645–57.

556 Mangal, T. D., Paterson, S., and Fenton, A. (2008). Predicting the impact of long-term temperature
557 changes on the epidemiology and control of schistosomiasis: a mechanistic model. *PLOS One*,
558 3(1):e1438.

559 Marino, S., Hogue, I. B., Ray, C. J., and Kirschner, D. E. (2008). A methodology for performing global
560 uncertainty and sensitivity analysis in systems biology. *Journal of Theoretical Biology*, 254(1):178–196.

561 Maskin, E. (1999). Nash equilibrium and welfare optimality. *The Review of Economic Studies*, 66(1):23–
562 38.

563 Mbah, M. L. N., Skrip, L., Greenhalgh, S., Hotez, P., and Galvani, A. P. (2014). Impact of Schisto-
564 soma mansoni on malaria transmission in Sub-Saharan Africa. *PLoS Neglected Tropical Diseases*,
565 8(10):e3234.

566 McManus, D. P., Dunne, D. W., Sacko, M., Utzinger, J., Vennervald, B. J., and Zhou, X.-N. (2018).
567 Schistosomiasis (primer). *Nature Reviews: Disease Primers*, 4(1):13.

568 Midzi, N., Mduluza, T., Chimbari, M. J., Tshuma, C., Charimari, L., Mhlanga, G., Manangazira, P.,
569 Munyati, S. M., Phiri, I., Mutambu, S. L., et al. (2014). Distribution of schistosomiasis and soil
570 transmitted helminthiasis in Zimbabwe: towards a national plan of action for control and elimination.
571 *PLoS Neglected Tropical Diseases*, 8(8):e3014.

572 Molehin, A. J. (2020). Schistosomiasis vaccine development: update on human clinical trials. *Journal of*
573 *Biomedical Science*, 27(1):1–7.

574 Molehin, A. J., McManus, D. P., and You, H. (2022). Vaccines for human schistosomiasis: Recent progress,
575 new developments and future prospects. *International Journal of Molecular Sciences*, 23(4):2255.

576 Molehin, A. J., Rojo, J. U., Siddiqui, S. Z., Gray, S. A., Carter, D., and Siddiqui, A. A. (2016). Develop
577 ment of a schistosomiasis vaccine. *Expert Review of Vaccines*, 15(5):619–627.

578 Moojee, D., Sandgeound, J., et al. (1956). The relative egg producing capacity of *Schistosoma mansoni*
579 and *Schistosoma japonicum*. *American Journal of Tropical Medicine and Hygiene*, 5(5):831–40.

580 M'Bra, R. K., Kone, B., Yapi, Y. G., Silue', K. D., Sy, I., Vienneau, D., Soro, N., Cisse', G., and Utzinger, J.
581 (2018). Risk factors for schistosomiasis in an urban area in northern Co'te d'Ivoire. *Infectious Diseases*
582 of Poverty, 7:1–12.

583 Nelwan, M. L. (2019). Schistosomiasis: life cycle, diagnosis, and control. *Current Therapeutic Research*,
19/21 PeerJ reviewing PDF | (2023:10:92309:0:2:NEW 6 Nov 2023)
584 91:5–9.

585 Odongo-Aginya, E., Kironde, F., Kabatereine, N., Kategere, P., and Kazibwe, F. (2008). Effect of seasonal
586 rainfall and other environmental changes, on snail density and infection rates with *Schistosoma mansoni*
587 fifteen years after the last snails' study in Kigungu, Entebbe, Uganda. *East African Medical Journal*,
588 85(11):556–563.

589 Paplicki, M., Susło, R., Najjar, N., Najjar, N., Ciesielski, P., Augustyn, J., and Drobniak, J. (2018). Conflict
590 of individual freedom and community health safety: Legal conditions on mandatory vaccinations and
591 changes in the judicial approach in the case of avoidance. *Family Medicine & Primary Care Review*,
592 20(4):389–395.

593 Poletti, P., Ajelli, M., and Merler, S. (2011). The effect of risk perception on the 2009 H1N1 pandemic
594 influenza dynamics. *PloS One*, 6(2):e16460.

595 Real, L. A. (1977). The kinetics of functional response. *The American Naturalist*, 111(978):289–300.

596 Reczulska, A., Tomaszewska, A., and Raciborski, F. (2022). Level of acceptance of mandatory vaccination
597 and legal sanctions for refusing mandatory vaccination of children. *Vaccines*, 10(5):811.

598 Reluga, T. C. and Galvani, A. P. (2011). A general approach for population games with application to
599 vaccination. *Mathematical Biosciences*, 230(2):67–78.

600 Rollinson, D., Knopp, S., Levitz, S., Stothard, J. R., Tchuente', L.-A. T., Garba, A., Mohammed, K. A.,
601 Schur, N., Person, B., Colley, D. G., et al. (2013). Time to set the agenda for schistosomiasis elimination.
602 *Acta Tropica*, 128(2):423–440.

603 Ross, A., AC, B. P. F., and GR, S. A. F. (2002). Schistosomiasis. *New England Journal of Medicine*,
604 346(16):1212–1220.

605 Ross, A. G., Chau, T. N., Inobaya, M. T., Olveda, R. M., Li, Y., and Harn, D. A. (2017). A new global
606 strategy for the elimination of schistosomiasis.

607 Rychta'~r, J. and Taylor, D. (2022). A game-theoretic model of lymphatic filariasis prevention. *PLoS*
608 *Neglected Tropical Diseases*, 16(9):e0010765.

609 Saltelli, A., Tarantola, S., Campolongo, F., and Ratto, M. (2004). Sensitivity analysis in practice: a guide
610 to assessing scientific models, volume 1. Wiley Online Library.

611 Scheckelhoff, K., Ejaz, A., Erovenko, I. V., Rychta'~r, J., and Taylor, D. (2021). Optimal voluntary
612 vaccination of adults and adolescents can help eradicate hepatitis b in china. *Games*, 12(4):82.

613 Serpell, L. and Green, J. (2006). Parental decision-making in childhood vaccination. *Vaccine*, 24(19):4041–
614 4046.

615 Spear, R. C., Hubbard, A., Liang, S., and Seto, E. (2002). Disease transmission models for public health
616 decision making: toward an approach for designing intervention strategies for Schistosomiasis japonica.
617 *Environmental Health Perspectives*, 110(9):907.

618 Steinmann, P., Keiser, J., Bos, R., Tanner, M., and Utzinger, J. (2006). Schistosomiasis and water resources
619 development: systematic review, meta-analysis, and estimates of people at risk. *The Lancet Infectious*
620 *Diseases*, 6(7):411–425.

621 Stylianou, A., Hadjichrysanthou, C., Truscott, J. E., and Anderson, R.M. (2017). Developing a mathemati
622 cal model for the evaluation of the potential impact of a partially efficacious vaccine on the transmission

623 dynamics of *Schistosoma mansoni* in human communities. *Parasites & Vectors*, 10(1):1–13.

624 Tchuente', L.-A. T., Rollinson, D., Stothard, J. R., and Molyneux, D. (2017). Moving from control to
625 elimination of schistosomiasis in sub-Saharan Africa: time to change and adapt strategies. *Infectious
626 Diseases of Poverty*, 6(01):12–25.

627 Tolsma, E. C. (2015). Protecting our herd: how a national mandatory vaccination policy protects public
628 health by ensuring herd immunity. *J. Gender Race & Just.*, 18:313.

629 Toor, J., Hamley, J. I., Fronterre, C., Castan~o, M. S., Chapman, L. A., Coffeng, L. E., Giardina, F.,
630 Lietman, T. M., Michael, E., Pinsent, A., et al. (2021). Strengthening data collection for neglected
631 tropical diseases: What data are needed for models to better inform tailored intervention programmes?
632 *PLoS Neglected Tropical Diseases*, 15(5):e0009351.

633 van den Driessche, P. and Watmough, J. (2002). Reproduction numbers and sub-threshold endemic
634 equilibria for compartmental models of disease transmission. *Mathematical Biosciences*, 180:29–48.

635 Verelst, F., Willem, L., and Beutels, P. (2016). Behavioural change models for infectious disease transmis-
636 sion: a systematic review (2010–2015). *Journal of The Royal Society Interface*, 13(125):20160820.

637 Verjee, M. A. (2019). Schistosomiasis: still a cause of significant morbidity and mortality. *Research and
638 reports in tropical medicine*, 10:153.

20/21 PeerJ reviewing PDF | (2023:10:92309:0:2:NEW 6 Nov 2023)

639 Wang, Z., Bauch, C. T., Bhattacharyya, S., d'Onofrio, A., Manfredi, P., Perc, M., Perra, N., Salathe', M.,
640 and Zhao, D. (2016). Statistical physics of vaccination. *Physics Reports*, 664:1–113.

641 Whitfield, P., Bartlett, A., Khammo, N., and Clothier, R. (2003). Age-dependent survival and infectivity
642 of *Schistosoma mansoni* cercariae. *Parasitology*, 127(1):29–35.

643 WHO (2021). Ending the neglect to attain the sustainable development goals: A road map for
644 neglected tropical diseases 2021–2030. <https://www.who.int/publications/item/9789240010352>. Accessed November 22 2022.

645 Wilkins, H., Goll, P., Marshall, T. d. C., and Moore, P. (1984). Dynamics of *Schistosoma haematobium*
646 infection in a Gambian community. III. Acquisition and loss of infection. *Transactions of the Royal
647 Society of Tropical Medicine and Hygiene*, 78(2):227–232.

648 Woolhouse, M. (1991). On the application of mathematical models of schistosome transmission dynamics.
649 I. Natural transmission. *Acta Tropica*, 49(4):241–270.

650 Woolhouse, M. and Chandiwana, S. (1990). The epidemiology of schistosome infections of snails: taking
651 the theory into the field. *Parasitology Today*, 6(3):65–70.

652 Woolhouse, M. E., Hasibeder, G., and Chandiwana, S. (1996). On estimating the basic reproduction
653 number for *Schistosoma haematobium*. *Tropical Medicine & International Health*, 1(4):456–463.

654 World Bank (2022). Life expectancy at birth (total), Zimbabwe. <https://data.worldbank.org/indicator/SP.DYN.LE00.IN?locations=ZW>. Accessed November 22, 2022.

655 Xia, S. and Liu, J. (2013). A computational approach to characterizing the impact of social influence on
656 individuals' vaccination decision making. *PloS One*, 8(4):e60373.

657 Zhang, W., Ahmad, G., Le, L., Rojo, J. U., Karmakar, S., Tillery, K. A., Torben, W., Damian, R. T.,
658 Wolf, R. F., White, G. L., et al. (2014). Longevity of Sm-p80-specific antibody responses following
659 vaccination with Sm-p80 vaccine in mice and baboons and transplacental transfer of Sm-p80-specific
660 antibodies in a baboon. *Parasitology Research*, 113:2239–2250.

661 Zhang, W., Molehin, A. J., Rojo, J. U., Sudduth, J., Ganapathy, P. K., Kim, E., Siddiqui, A. J., Freeborn, J.,
662 Sennoune, S. R., May, J., et al. (2018). Sm-p80-based schistosomiasis vaccine: double-blind preclinical
663 trial in baboons demonstrates comprehensive prophylactic and parasite transmission-blocking efficacy.
664 *Annals of the New York Academy of Sciences*, 1425(1):38–51.

665 Zhao, R. and Milner, F. A. (2008). A mathematical model of *Schistosoma mansoni* in *Biomphalaria
666 glabrata* with control strategies. *Bulletin of Mathematical Biology*, 70:1886–1905.

667 Zhou, Y.-B., Liang, S., Chen, G.-X., Rea, C., Han, S.-M., He, Z.-G., Li, Y.-P., Wei, J.-G., Zhao, G.-M.,
668 and Jiang, Q.-W. (2013). Spatial-temporal variations of *Schistosoma japonicum* distribution after
669 an integrated national control strategy: a cohort in a marshland area of China. *BMC Public Health*,
670 13(1):1–8.

The references were extensive. I took a sample of them to verify pertinence and accuracy in quotation. The ones chosen at random met that criteria.