1	
2	
3	Climatic and soil characteristics account for the genetic structure of the invasive
4	cactus moth Cactoblastis cactorum, in its native range in Argentina
5	
6	Guadalupe Andraca-Gómez* ^{1,4} , Mariano Ordano ² , Andrés Lira-Noriega ³ , Luis Osorio-
7	Olvera ⁴ , César A. Domínguez ⁴ , Juan Fornoni* ⁴
8	
9	¹ Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad Universitaria,
10	05410, Ciudad de México, México.
11	² Fundación Miguel Lillo, 4000 San Miguel de Tucumán; Instituto de Ecología Regional
12	(CONICET-UNT), 4107 Yerba Buena, Tucumán, Argentina.
13	³ CONAHCYT Research Fellow, Instituto de Ecología, A.C. Xalapa, Carretera antigua a
14	Coatepec 351, El Haya, Xalapa, Veracruz, 91073, México.
15	⁴ Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad Universitaria,
16	05410, Ciudad de México, México.
17	
18	* Corresponding authors: guadalupeandraca@gmail.com, jfornoni@iecologia.unam.mx
19	
20	

22 Summary

- 23 **Background.** Knowledge of the physical and environmental conditions that may limit the
- 24 migration of invasive species is crucial to assess the potential for expansion outside their
- 25 native ranges. The cactus moth, Cactoblastis cactorum, is native to South America
- 26 (Argentina, Paraguay, Uruguay and Brazil) and has been introduced and invaded the
- 27 Caribbean and southern United States, among other regions. In North America there is an
- ongoing process of range expansion threatening cacti biodiversity of the genus *Opuntia* and
- 29 the commercial profits of domesticated *Opuntia ficus-indica*.
- 30 **Methods.** To further understand what influences the distribution and genetic structure of
- 31 this otherwise important threat to native and managed ecosystems, in the present study we
- 32 combined ecological niche modeling and population genetic analyses to identify potential
- 33 environmental barriers in the native region of Argentina. Samples were collected on the
- 34 host with the wider distribution range, O. ficus-indica.
- 35 **Results.** Significant genetic structure was detected using 10 nuclear microsatellites and 24
- 36 sampling sites. At least six genetic groups delimited by mountain ranges, salt flats and
- 37 wetlands were mainly located to the west of the Dry Chaco ecoregion. Niche modeling
- 38 supports that this region has high environmental suitability where the upper soil
- 39 temperature and humidity, soil carbon content and precipitation were the main
- 40 environmental factors that explain the presence of the moth. Environmental filters such as
- 41 the upper soil layer may be critical for pupal survival and consequently for the
- 42 establishment of populations in new habitats. Whereas the presence of available hosts is a

43 necessary conditions for insect survival, upper soil and climatic characteristics will

44 determine the opportunities for a successful establishment.

45 Keywords: biological invasions, gene flow, Lepidoptera, migration, population genetics,

46 prickly pear cacti

management.

Introduction

Since Elton's book on the *Ecology of Invasions by Animals and Plants* (1958), the field of invasion biology has grown exponentially (Ricciardi & MacIsaac, 2008), but our ability to predict which physical and biotic factors will prevent the expansion of invasive species in their non-native range is still poorly developed (Richardson, 2011). So far, rates of invasion have increased during the last century despite control and management practices (Jaspers et al., 2021), suggesting that being able to predict the invasion dynamic will open new opportunities to cope this threat. A central element in predicting the potential migration of invasive species in foreign regions is the analysis of the natural barriers that define the spatial distribution in their native habitat (Sherpa et al., 2019). Thus, understanding native spatial patterns of dispersal of individuals and genes is a first line of evidence to identify potential environmental barriers as input for predictive models of invasion and population

The simplest hypothesis about gene flow establishes that this is mainly determined by the geographic distance that separates two or more populations (Isolation by Distance, IBD) (Wright, 1943). However, to find a pattern of IBD, it is necessary that the flow

between populations is constant, that nothing interferes with the movement of genes in all 65 directions (neither physical nor environmental barriers), and that other evolutionary 66 processes like drift or selection are weaker than the intensity of gene flow (Bolnick & 67 Nosil, 2007, Epperson, 2010). Also, the IBD analysis does not provide information on 68 whether environmental factors are interacting with evolutionary processes (Manel et al., 69 2003). To identify how the environment can contribute to facilitate or reduce the rates of 70 movement of genes between different populations, tools have been developed in recent 71 72 years to analyze various gene flow hypotheses (Anderson et al., 2010). Circuit theory has 73 been used to build testable hypotheses of gene flow based on the ecology of the species and 74 the presence of potential environmental and physical barriers (e.g., MacRae, 2009; Andraca-Gómez et al., 2015; Dickson et al., 2019). This information is used to construct 75 resistance matrices that represent the probabilities of gene flow between all pairs of 76 populations. In areas of low resistance, movement of genes between populations is more 77 78 likely, while high-resistance areas represent geographic and environmental barriers (Cushman et al., 2006; McRae, 2006). This methodological approach is essential to test 79 more realistic hypotheses of gene flow (Isolation by Environment, IBE) (Osrini et al., 2013, 80 81 Sexton et al., 2014). However, to our knowledge, there have been few attempts to identify environmental barriers to gene flow of invasive species in their native range (Sherpa et al., 82 83 2019; Acevedo-Limón et al., 2020; Poveda-Martínez et al., 2023). This kind of evidence is essential for population management as input for invasion dynamic modeling to predict the 84 expansion range in non-native regions (Brown et al. 2016; Aguirre-Liguori et al., 2021; 85

Pilowsky et al., 2022).

86

The invasive cactus moth, Cactoblastis cactorum (Berg) (Pyralidae: Phycitinae), offers a 87 88 unique opportunity to evaluate environmental barriers in the native range of an invasive species because inhabits a wide range of environmental conditions. Cactoblastis cactorum 89 is a cactophagous. This insect is distributed in tropical and subtropical regions in South 90 America, between 0 and 1200 masl in Uruguay, south of Paraguay and Brazil, and in the 91 central and northern part of Argentina (Mann, 1969; McFadyen, 1985; Varone et al., 2014), 92 comprising the Chaco and Pampean biogeographical provinces (Morello et al., 2012; 93 94 Oyarzábal et al., 2018, Arana et al., 2021, Morrone et al., 2022). Within this area, it uses several native host species of prickly pear cacti (O. megapotamica, O. elata, O. anacantha, 95 O. bonaerensis, O. cardiosperma, O. surphurea, (R8), O. quimilo, O. rioplatensis, O. 96 97 penicilligera) and the exotic O. ficus-indica (Marsico et al., 2010; Varone et al., 2014). The 98 life cycle encompasses a gregarious larval stage within the cladodes, a pupal stage in the 99 soil (approximately 5-10 cm in depth) and a free adult stage (Andraca-Gómez personal 100 observation). The whole cycle lasts between 4-5 months and depends on environmental conditions (Dodd, 1940; Pettey, 1948; Mann, 1969). In particular, temperature determines 101 the percent of hatches (Legaspi & Legaspi, 2007, Marti & Carpenter, 2008). 102

This insect was initially used as a biological control agent against *Opuntia* in Australia, South Africa, and the Caribbean (Zimmermann et al., 2007). After being introduced in the Caribbean in 1956 (Simmond & Bennett, 1966), the cactus moth was dispersed to North America via commercial transportation and hurricanes (Simonsen et al., 2008; Marsico et al., 2010; Andraca-Gómez et al., 2015, 2020), entering Florida in 1989, and since then, representing a major threat to the biodiversity and commercial production of *Opuntia* in Mexico (Soberón et al., 2001). Mexico is known to be one of the highest cactus

103

104

105

106

107

108

109

Deleted: herbivore that feeds on the stems (cladodes) of the prickly pear cacti (*Opuntia* spp.). *Cactoblastis. cactorum*

Formatted: Font: Not Italic

biodiversity hotspots worldwide, as well as one of the main producers of *Opuntia*.

Therefore, identifying environmental conditions that constrain the presence of *C. cactorum* in its native range can guide research on introduced ranges.

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

Previous studies in the native region (Argentina) using insect samples from seven host species of Opuntia revealed the presence of four genetic groups based on mitochondrial DNA (COI) (Marsico et al., 2010). Morphological differentiation of larvae was detected among the four genetic groups, which also were associated with different host usage, suggesting a possible host effect on ecotypic differences (Brooks et al., 2014). Although some degree of preference to oviposit on the exotic O. ficus-indica rather than on other native species was recorded, C. cactorum behave as a generalist with little host preference (Varone et al., 2014). Recent analyses using genome wide SNPs and niche modelling data indicated that past climatic changes during the Quaternary and shifts in host use conditioned the actual distribution of genetic variation of C. cactorum in Argentina (Poveda-Martínez et al., 2023). Ecological niche modelling using bioclimatic variables indicated that environmental suitability increases since the last glacial maximum (ca. 21 ky) from the west to the east, north and south of the present distribution (Poveda-Martínez et al., 2023). During the Spanish settlement in South America, five centuries ago, O. ficusindica was introduced and likely colonized by C. cactorum since then (Ervin, 2012). The genetic structure of C. cactorum estimated across seven native hosts species suggest no evidence that the introduction of O. ficus-indica in the native range and the subsequent human-commercial dispersal have promoted contemporary admixture between distant populations (Poveda-Martínez et al. 2023). Within Argentina, O. ficus-indica occupies a larger area and a wider environmental range than any of the other native Opuntia species

(Varone et al., 2014), representing a suitable system to examine possible contemporary environmental effects on genetic variation and structure without strong historical effects nested within native hosts distribution (e.g., Poveda-Martínez et al., 2023). To control these sources of variation and to explore the contemporary environmental factors that affect the genetic structure of the species, in the present study, species-specific nuclear microsatellites were used to characterize the geographic pattern of genetic variation in *C. cactorum* associated with the distribution of *O. ficus-indica*.

Genetic analyses were combined with ecological niche modelling to test the hypothesis that environmental conditions affected the genetic structure of the species. Given that the insect pupates in the upper soil layer (Zimmerman et al., 2004) and is sensitive to temperature (Legaspi & Legaspi, 2007), we estimated its niche using soil and climatic variables to identify environmental barriers to species distribution. In addition, incorporating soil information in ecological niche models is known to reduce overestimation of expected suitability (Coudum et al., 2006; Beauregard & de Blois, 2014). The predictive model was used to build the Isolation by Environment (IBE) hypothesis represented by the resistance matrix to gene flow between pairs of sampling sites. A significant correlation between resistance and genetic differentiation matrices would indicate the existence of environmental barriers limiting dispersal (Hernández-Leal et al., 2022).

In the present study, we identified geographic and environmental (bioclimatic and soil) characteristics that may function as barriers for gene flow. Specifically, we (1) determined the existence of a significant genetic structure within the sampled region of Argentina where *C. cactorum* is associated with *O. ficus-indica*, (2) identified climatic and

soil variables within the sampled region that better explain the distribution of *C. cactorum* following a niche modeling approach, and (3) combined these two pieces of evidence to test whether environmental conditions explain the geographic pattern of genetic differentiation (McRae, 2009; Andraca-Gómez et al., 2015; Borja-Martínez et al., 2022).

Between 2011 and 2012, 508 larvae were collected from 24 sites within the distribution

Methods

Data collection

range of *C. cactorum* in Argentina; mainly in the Chaco and Pampa biogeographic provinces and included three ecoregions (Sampling approved by the Servicio Nacional de Sanidad y Calidad Agroalimentaria from Argentina) (Table 1, Fig. 1, Löwenberg-Neto, 2014). During two consecutive years, between February and March, one larva per cladode was collected, georeferenced and deposited in 1.5 ml vials with alcohol (96%) until DNA extraction. The samples were collected in the widely distributed exotic host, *O. ficus-indica*. Since this species was introduced five hundred years ago in South America, it is likely that it lacks a defensive mechanism against the cactus moth. Unlike native host species, this source of variation in the exotic host is minimized, increasing the chance to examine environmental effects on the genetic structure of the cactus moth. Sample sizes varied between 10 and 30 individuals per site (Table 1, Fig. 1). DNA extraction was performed with the DNEasy® blood & tissue kit (QIAGEN, Maryland, USA, cat.60504) and the resulting product was diluted to 20 ng/µl to warrant PCR amplification. We used

microsatellites specifically developed for C. cactorum (Andraca-Gómez et al., 2020). The

Formatted: Font color: Red

Formatted: Font color: Red

Formatted: Font color: Red

Deleted:

resulting PCR products were sent to the Core DNA Sequence Facility at the University of 181 182 Illinois and analyzed in an Applied Biosystems sequencer (3730 xl). The GeneMarker program (version 2.20 demo) was used to genotype individual larvae. 183 184 Genetic analyses 185 The presence of Hardy-Weinberg equilibrium and linkage disequilibrium at each location 186 was tested with Genepop (web version, Rousset, 2008) while null alleles among loci were 187 estimated with FreeNA. Loci with more than 20% of null alleles were eliminated from the 188 189 analyses (Chapuis & Estoup, 2007), as well as those that were out of the Hardy-Weinberg equilibrium in more than 50% of the locations. FSTAT (version 2.9.3.2, Goudet, 2002) was 190 used to calculate the number of alleles, the allele richness, the observed and expected 191 heterozygosity, and differentiation between all pairs of sites and genetic groups (F_{ST}) (Weir 192 & Cokerman, 1996; Chapuis & Estoup, 2007). 193 194 **Genetic structure** 195 First, a Bayesian grouping approximation was implemented in GENELAND (version 4.0) 196 (Guillot et al., 2008) in R Core Team (2023), to determine the existence of significant 197 population genetic structure. GENELAND identifies groups of populations based on genetic 198 similarity and geographic proximity. The analysis was performed in 10 independent runs of Formatted: Font: (Default) Times New Roman, 12 pt, Font 199 color: Red Monte Carlo Markov Chains (MCMC) with 100,000 chains, thinning of 100, burn-in of 200

100, and a minimum group value (K) of 1 and a maximum of 25. Assuming a significant

genetic structure, uncorrelated allelic frequencies were chosen. We also incorporated the

201

202

Formatted: Font: (Default) Times New Roman, 12 pt, Font

color: Red

possible genetic ambiguity (excess homozygotes) in the grouping algorithm, assuming the existence of null alleles. The location of each individual in the analysis was included as a geographic coordinate in decimal degrees with a minimum distance of 0.001° (approximately equivalent to 100 meters).

Second, to detect the presence of potential barriers to gene flow, we used the program *BARRIERS* (Version 2.2; Manni et al., 2004). This applies the Monmonier and Delaunay methods of triangulation of spatial coordinates of sampled sites and generates a map representing the relationship between the populations and the areas where the possible barriers can be found. We allowed a maximum of five barriers based on the number of genetic groups obtained by *GENELAND*. Genetic groups of populations were assigned a significance value after bootstrapping a set of 100 distance matrices using Nei (1972) genetic distance estimations. The 100 matrices required by the program were generated by resampling individuals within the populations using the program *MSA* (version 4.051). To examine the extent of genetic isolation of potential genetic groups a multivariate analysis of molecular variance (AMOVA) was performed to decompose the total amount of genetic variation among and within genetic groups (Arlequin 3.5; Excoffier & Lischer, 2010).

Ecological niche modeling and environmental barriers

To identify environmental barriers related to genetic grouping of sampled sites, niche modeling and isolation by resistance analyses were combined (Manthey & Moyle, 2015) (McRae & Beier, 2007; McRae et al., 2008). The MaxEnt algorithm executed in the ntbox package in R (Osorio-Olvera et al., 2020) was used to build a niche model hypothesis for

Deleted: The analysis was performed in 10 independent runs of Monte Carlo Markov Chains (MCMC) with 1,000,000 iterations each and a minimum group value (*k*) of 1 and a maximum of 24. Assuming a significant genetic structure, uncorrelated allelic frequencies were chosen. We also incorporated the possible genetic ambiguity (excess homozygotes) in the grouping algorithm, assuming the existence of null alleles. The location of each individual in the analysis was included as a geographic

Deleted: coordinate in decimal degrees with a minimum distance of 0.001° (approximately equivalent to 100 meters) Burn-in was applied to the first 10 % (200 chains) of the total iterations.

the sampled area of C. cactorum. To carry out the modeling, we used 40 sites in Argentina 238 where individuals of C. cactorum were observed during sampling. To build the model, 239 climatic and soil variables were gathered from WorldClim 240 (https://www.worldclim.org/data/bioclim.html), Soil (Biosoil) 241 (https://zenodo.org/record/4558732) (Lembrechts et al., 2021) and SoilGrids 242 (https://www.isric.org/explore/soilgrids) databases. We curated our occurrence data using 243 standard steps in ecological niche modeling literature and using the approach of Cobos et 244 245 al. (2018). We eliminated spatial duplicates by using a threshold distance of 0.04 grades (\sim 2.5 km at the equator). To avoid collinearity-related problems, we estimated the correlation 246 among each pair of predictors and kept only those with correlation values < 0.7. We ran 247 iteratively MaxEnt models using its auto features and explored variable contribution via the 248 249 Jackknife test on AUC values (area under the receiver operating characteristic (ROC) 250 curve). After each run, we removed the least contributing variable from the list of non-251 correlated environmental variables. After the selection model procedure, using AUC, we 252 ended up with the six best environmental variables that had the highest contribution in most of the models. The final model prediction (suitability map) expressed as a raster file was 253 254 used in CIRCUITSCAPE (version 4.0, McRae & Shah, 2009) to construct the resistance matrix (Andraca-Gómez et al., 2020), Geographic points with low suitability delineate 255 areas of high resistance for establishment, suggesting the presence of a geographic or 256 environmental barrier. Multiple matrix regression with randomization (MMRR) was 257 performed using the genetic distance matrix based on F_{ST}/(1 -F_{ST}) values between pairs of 258 259 sites as the response variable against the geographic distance matrix (Log₁₀) and the resistance (environmental) matrix obtained in CIRCUITSCAPE following the niche model 260 261 prediction (Wang, 2013). The distance matrix was adjusted to control for the great-circle

Deleted: and the ROC curve,

Deleted:

Formatted: Font color: Red
Formatted: Font color: Red

Deleted: in *CIRCUITSCAPE* (version 3.5, McRae & Shah, 2009; Andraca-Gómez et al., 2020)

Formatted: Font color: Red

Formatted: Font color: Red

Formatted: Font color: Red, Not Superscript/ Subscript

Formatted: Font color: Red

Formatted: Font color: Red, Not Superscript/ Subscript

Formatted: Font color: Red

Formatted: Font color: Red

Formatted: Font color: Red, Subscript

Formatted: Font color: Red

distance (i.e., shortest distance between two points on the surface of a sphere) using the 266 267 package sf in R (Pebesma, 2018). The model parameters of the multiple regression were Formatted: English (US) Formatted: Font color: Red, English (US) obtained after 999 random permutations of rows and columns of the dependent genetic 268 Formatted: Font color: Red, English (US) distance matrix to generate a null distribution against which observed values were 269 270 contrasted (Legendre et. al., 1994). 271 272 Results Genetic variation and structure. After an initial study, 4 out of 14 nuclear microsatellite 273 274 loci were eliminated because they had a null allele frequency greater than 20%. A total of Formatted: Font color: Red 10 microsatellites comprising 152 alleles were used in the final analyzes 275 276 (https://doi.org/10.6084/m9.figshare.24749082), Among the 24 locations sampled, the Formatted: Font: (Default) Times New Roman, 12 pt Formatted: Font: (Default) Times New Roman, 12 pt 277 allele richness varied between 3.36 and 5.78 and the observed heterozygosity (H_0) between Formatted: Font color: Red Formatted: Font color: Red 278 0.36 and 0.63 (Table 2). All sites, except site 14 (Yuqueri), had fewer heterozygotes than Deleted: ing Deleted: population 279 expected under the Hardy-Weinberg equilibrium ($F_{IS} > 0$, Table 2). Significant paired genetic differentiation among sites ranged from $F_{\rm ST} = 0.0228$ between locations 22 and 24 280 to $F_{ST} = 0.3011$ between locations 4 and 12. The mean level of genetic differentiation for 281 the whole set of sampling sites was $F_{ST} = 0.178$. Within the sample region, the analysis of 282 genetic structure using GENELAND indicated that the most probable number of genetic 283 groups (k) was six (Fig. 1B). Genetic groups (hereafter populations) were defined by a 284 Deleted: 2 Formatted: Font: Italic probability of assignment between 0.30 and 0.36 (Fig. 1A). The 15th collection site 285 Deleted: 2 corresponds to an isolated group in the northern Yungas ecoregion, within a mountain 286 forest near the Dry Chaco. On the east side of the distribution, within the Pampean 287 288 province, there is a group of six sampling sites (green dots in Fig. 1A) corresponding to the Deleted: 2

294	Espinal ecoregion with humid flats between the Paraná and Uruguay rivers. On the west	
295	area of the distribution within the Dry Chaco ecoregion, there are four genetic groups: a	
296	northwestern group (yellow dots in Fig. 1A), a southwestern group (blue dots in Fig. 1A),	Deleted: 2
207		Deleted: 2
297	and two groups in the middle, one on the east border (purple dots in Fig. 1A) and another	Deleted: 2
298	on the west border (red dots in Fig. 1A). The results of AMOVA indicated that the	Deleted: 2
299	variation within sites accounted for most of the genetic variation (81.8%) followed by the	
300	variation among sites within genetic groups (9.9%) and the variation among genetic groups	
301	(8.26%). Genetic differentiation among genetic groups was $F_{\text{CT}} = 0.078$ (Fig. 1D).	Deleted: 2
302	Heterozygosity for each genetic group estimated using the pooled sample of sites was	
303	similar to the average H ₀ when using each site as a replicate (Fig. <u>1</u> C). The presence of	Deleted: 2
304	potential barriers to gene flow with a probability of more than 50% existence strongly	
305	matched the clustering proposed by GENELAND (Fig. 1A). The barriers with higher	Deleted: 2
306	probability delimited the four genetic groups within the west region of the distribution	
307	range, while less intense barriers separated the north and east regions (Fig. 1A). Clusters 1,	Deleted: 2
308	2, 3, and 5, correspond to the Dry Chaco ecoregion, while cluster 6 corresponds to the	
309	Yungas ecoregion close to the Dry Chaco. Cluster 4 is located within the Pampean	
310	province, in a humid flat, within the Espinal ecoregion. Clusters 1, 2, 3, and 5 within the	
311	Dry Chaco are separated by mountain ranges, salt flats, and wetlands in arid or semi-arid	
312	conditions. Group 1 in the north (yellow dots in Fig. 1A) corresponds to forests and	Deleted: 2
313	shrublands, to the north of Salinas Grandes and south of the wetlands of the Salado river.	
314	Group 2 is located in salt flats within the Monte ecoregion surrounded by the Sierra de	
315	Ancasti to the north and Salinas Grandes to the west (red dots in Fig. 1A). Group 3	Deleted: 2
316	corresponds to dry forests and shrublands in a zone of low mountains, south of Salinas	
317	Grandes and west of Sierra Grande (blue dots in Fig. 1A). Group 5 is located within an area	Deleted: 2
1		

surrounded by Salinas de Ambargasta (East), Sierra de Ambargasta and Sierra de Sumampa (South), Salina del Saladillo (North) and delta of the Dulce River and Mar Chiquita (National Park Ansenuza Lagoon (Northeast) (black dots in Fig. 14).

Deleted: 2

Niche modeling. The niche model of *C. cactorum* had an AUC value of 0.875 and an omission rate of zero under a five percentile threshold corresponding to a suitability value of 0.074. The main environmental variables that better explained the distribution of the moth were related to precipitation and temperature on the soil surface and within the upper soil layer (10 cm depth), as well as the soil carbon content. These correspond to: average temperature of the driest quarter (relative contribution to the model, 30%), maximum soil temperature of the warmest month (relative contribution to the model, 16.1%), annual temperature range (relative contribution to the model, 14.6%), precipitation seasonality (relative contribution to the model, 14.3%), mean soil temperature of the wettest quarter (relative contribution to the model, 13.7%), and soil organic carbon density (relative contribution to the model, 9.9%). A higher environmental suitability was detected in the west region where more genetic groups were found. From the west to the north and east areas of the distribution, the environmental suitability declines consistently (Fig. 2).

Deleted: S1

genetic distance matrix ($\beta_E = 0.506$, P = 0.032) supporting the hypothesis of Isolation by

Environment (IBE). On the contrary, the same analysis rejected the hypothesis of Isolation

by Distance (IBD) ($\beta_D = 0.053$, P = 0.793) (that is, there is no significant association

Environmental-genetic association. The MMRR analysis showed that the environmental

distance matrix (based on the prediction of the niche model) was significantly related to the

Formatted: Font color: Red

between genetic and geographic distance matrices. The data better support the hypothesis

of environmental filters influencing the genetic structure and dispersal of *C. cactorum* than geographic distance.

Discussion

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

Among plant-natural enemy interactions, environmental conditions and host species affect the distribution of the genetic variation of consumers (Mopper & Strauss, 1994; Whitham et al., 2003; Wand & Bradburd, 2014; Wang et al., 2017). Our analyses demonstrate the

existence of a significant genetic structure of *C. cactorum* in Argentina associated with soil

and climatic variables besides the presence of the exotic host O. ficus-indica (introduced in

this region about 500 years ago). While the western part of the distribution comprises more

genetic diversity (four genetic groups) and has higher environmental suitability, the genetic groups in the east and north correspond to areas with lower environmental suitability. The

environmental suitability of the western region corresponds to an area with high

environmental heterogeneity (Oyardazabal et al., 2018) but climatically more stable during

the Quaternary (Poveda-Martínez et al., 2023) representing a Pleistocene refuge for

biodiversity during the last glaciation (Baranzelli et al., 2017; Robbiati et al., 2021).

Furthermore, the suitability for *C. cactorum* in the sampled region seems to be highly

influenced by temperature and precipitation above and below ground, in combination with

other soil characteristics. Genetic analyses, allowed us to identify barriers corresponding to

mountain ranges, salt flats, wetlands, and the largest lagoon in central Argentina (Mar

Chiquita). These barriers delimited areas with significant variation in temperature and

precipitation that influenced the genetic clustering of prickly pear moth populations and

Deleted: interact to

Formatted: Font color: Red

Deleted:

may represent major environmental filters for its distribution, dispersal, and genetic variation.

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

The levels of genetic diversity estimated by heterozygosity showed deficiency ($F_{\rm IS}$ > 0) in most of the samples of *C. cactorum*, excepting sampling site 14 (Yuqueri). Deficiency of heterozygotes and a high proportion of null alleles (> 20%) are a common phenomenon among Lepidoptera (Malausa et al., 2007; Sinama et al., 2011; Guillemaud et al., 2015). This condition is associated with high rates of mutation in genetic regions flanking microsatellites, as well as the presence of transposable elements (Sinama et al., 2011). Other factors like gene flow, genetic drift, and the genetic structure of populations (Wahlund effect) can also account for lower-than-expected levels of heterozygotes (Haldane, 1948; Kimura, 1968). When the average heterozygosity for each genetic group was compared with the observed heterozygosity for the entire genetic group, no differences were observed. This suggests that possible Wahlund effects were not likely related to the genetic structure of populations (Waples, 2015). The heterozygosity was rather uniform among the sampling sites, suggesting that there were no strong effects of genetic drift. Furthermore, the east genetic group had the lowest F_{IS} values and is less differentiated from the other groups. Despite significant paired genetic differentiation between sampling sites, the low amount of variance explained by genetic groups suggests that gene flow has been moderate. Levels of paired genetic differentiation among sampling sites (range $F_{ST} = 0.022$ - 0.301) fall within the range detected using nuclear SNPs across a pooled sample of seven hosts within the same region ($F_{ST} = 0.023 - 0.448$) (Poveda-Martínez et al., 2023). Ongoing

genomic analyses will provide more information on selection pressures, demographic

history and potential barriers to gene flow to explain positive $F_{\rm IS}$ values and to unravel the intricate mechanism shaping genetic variation in the cactus moth.

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

Our results indicate the presence of a significant genetic structure of the cactus moth on the exotic O. ficus-indica, a species introduced about five centuries ago during the Spanish arrival to South America (Ervin, 2012). The recent history of the host shift to O. ficus-indica suggests that the environmental heterogeneity within the sampled region plays a more important role than the host on the genetic structure of the cactus moth. This is further supported because since its introduction to South America, O. ficus-indica likely had Jittle chance to evolve specific defensive mechanisms against the cactus moth. The west sampled region (within the Dry Chaco) contained the highest genetic diversity and suitability represented by four genetic groups (1, 2, 3, 5), which are delimited by mountain ranges, salt flats, and wetlands in arid or semi-arid conditions. This finding mirror previous research indicating that Dry Chaco corresponded to a biodiversity refuge during the Quaternary climate changes (Poveda-Martínez et al., 2023), and suggest an association between genetic diversity and environmental suitability (Ochoa-Zavala et al., 2022). Colonization of C. cactorum to O. ficus indica followed an historical phylogeographic pattern seen in other species, promoted by more recent environmental conditions. This is supported by two previous findings: (1) the generalist feeding habit of the cactus moth (Varone et al., 2014) that likely allowed the colonization of O. ficus-indica since its introduction, (2) the absence of a long coevolutionary history of O. ficus-indica, and the cactus moth, and (3) the absence of human-mediated dispersal of O. ficus-indica related to agroindustry that promote admixture among distant populations (Poveda-Martínez et al.,

2023). Since its introduction in the Dutch Antilles in 1956 (Simmonds & Bennett, 1966), a

Deleted:

Moved down [2]: Disentangling the effect of the host and the environment is particularly challenging when consumers interact with various hosts inhabiting different environmental conditions (Wang et al., 2017). For this reason, in the present study, the host species with the wider environmental range was selected to increase the power of molecular markers to examine environmental effects upon genetic variation.

Deleted: The

Deleted: by the fact that

Deleted: likely

Deleted: 8

Formatted: Font color: Red

Formatted: Font color: Red

Formatted: Font: Italic, Font color: Red

pattern recorded for other native species of turtles, birds, crabs, and beetles (Avise, 2000).

Thus, the presence of *C. cactorum* on *O. ficus-indica* in Argentina represents a useful natural setup to disentangle the effect of the host and the environment in a species that interacts with various hosts inhabiting different environmental conditions (Wang et al., 2017).

Ecological niche models in herbivorous insect species have shown that the host plays an important role in their distribution range (Giannini et al., 2013; Simões and Peterson, 2018). For example, an important improvement in the model performance was detected for the tortoise beetle *Eurypedus nigrosignatus* when including host information in their niche models. Besides the presence of the host species, our results indicate that temperature (above and below ground), precipitation (seasonality), and soil organic carbon content can be the most relevant variables to predict the distribution of the cactus moth in the sampled region. Our results add to previous results of niche modeling for *C. cactorum* in North (Soberón et al., 2001) and South America (Poveda-Martínez et al., 2023) using only bioclimatic variables as soil characteristics significantly contributed to the model

prediction. Since the moth pupates approximately in the top 10 cm of soil, temperature

below the growth level, moisture and organic carbon content probably play a major role in

stage when soil humidity increases (Wang et al., 2017; Shi et al., 2021; Thian et al., 2021),

Experimental studies and demographic analyses in different populations of C. cactorum in

pupal survival. Other species of lepidopteran have a high mortality rate during the pupal

but a low content can also affect pupal survival and emergence (Wang et al., 2017).

similar pattern was found in the invaded region of North America (Florida) and the

Caribbean (Andraca-Gómez et al., 2020), where the moth followed the phylogeographic

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

Formatted: Font color: Red

Formatted: Font color: Red

Formatted: Font color: Red

Moved (insertion) [2]

Deleted: better understand how contemporary environmental conditions affect the distribution of genetic variation and environmental barriers to gene flow. Disentangling the effect of the host and the environment is particularly challenging when consumers interact with various hosts inhabiting different environmental conditions (Wang et al., 2017). For this reason, in the present study, the host species with the wider environmental range was selected to increase the power of molecular markers to examine environmental effects upon genetic variation.

Deleted:

Formatted: Font: Italic

Deleted: Ecological niche models have become a central tool for identifying environmental filters and barriers to migration (Razgour et al., 2013; Goudarzi et al., 2019). In turn, environmental filters can provide useful information to identify relevant life stages and traits related to environmental tolerance (Renault et al., 2018).

Deleted: O

South Africa and under experimental conditions in Florida, found a lower development of larvae at <18°C and > 34°C (Zimmermann & Moran, 1991; Legaspi & Legaspi, 2007). In the present study, the greater environmental suitability in the drier western region suggests that pupae are probably more vulnerable to high soil moisture during the summer as precipitation is drastically reduced from the eastern plains of the Pampean region to the semi-arid shrublands and dry forests of Dry Chaco (Oyarzabal et al., 2018). The lower number of populations and the environmental suitability of the eastern group support the expectation that this region is under less benign conditions for moth development on O. ficus-indica. Ecological niche theory proposes that more populations will be found at the center of the ecological niche (Martínez-Meyer et al., 2013; Osorio-Olvera et al., 2020), corresponding to the area with optimal conditions for survival, growth, and reproduction (Lira-Noriega & Manthey, 2014; Osorio-Olvera et al., 2016). Our results support this expectation, as the region with higher environmental suitability following the niche model also corresponds to the region where C. cactorum was more abundant and where more genetic groups were detected. As environmental suitability is not homogeneously distributed within the sampled region, patterns of dispersal and genetic differentiation would be affected by environmental filters (e.g., Acevedo-Limón et al., 2020; Valdez et al., 2020; Hernandez-Leal et al., 2022).

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

In particular, the isolation by environment hypothesis (IBE) following the principles of electric resistance has helped to identify potential environmental barriers to species distribution and gene flow (MacRae, 2006; Wang & Bradburd, 2014). This approximation has increased the predictive power to account for the spatial distribution of genetic variation (McRae & Shah, 2009; McRae & Beier, 2007; Wang & Bradburd, 2014;

Andraca-Gómez et al., 2015). Whereas the IBE hypothesis can be constructed using natural history information, niche models can provide a quantitative more precise estimation of environmental suitability (see Andraca-Gómez et al., 2015 and Poveda-Martínez et al., 2023). The significant effect of the environment on the distribution of genetic variation allowed us to successfully identify important geographic and environmental barriers for gene flow and/or genetic differentiation in C. cactorum. Our results extend previous findings that the central Dry Chaco region comprises the ancestral genetic lineage (Poveda-Martínez et al., 2023), indicating that this area also present high diversity of genetic groups and the presence of significant environmental barriers. One of the strongest barrier separated the westerns groups within the Dry Chaco from sites located in the Pampean province (e.g., Poveda-Martínez et al., 2023). Barriers represented by mountain ranges, salt flats, wetlands, and soil conditions translate to different combinations of humidity and temperature of the upper soil layer where the moth pupates. Therefore, this stage of the life cycle seems to be critical for the environmental tolerance of the moth. Although the presence of a suitable host is a prerequisite for survival, it is not a sufficient condition for the presence of C. cactorum. In fact, during sampling, the moth was not detected at several sites where O. ficus-indica was present (Andraca-Gómez, personal observations). Given the climatic and soil differences among the genetic groups, phenological asynchrony is expected, reducing the opportunities for effective gene flow (Zimmer & Emlen, 2013) and probably a higher heterogeneity in the life history traits of the cactus moth. This may explain the presence of at least four genetic groups within the western region. Overall, our results provide a new piece of evidence to understand the relevance of contemporary environmental conditions on the genetic structuring of this invasive species within its

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

native range.

Deleted: unpublished data

524 525 Acknowledgements 526 The authors thank Paula Zamudio and collaborators (Fundación Miguel Lillo) during field 527 trips and insect maintenance in the lab, and to Marco Tulio Solano de la Cruz and Rubén 528 Pérez-Ishiwara for technical assistance. Ella Vázquez, Travis Marsico, and two anonymous 529 reviewers provided constructive comments to the final version of the manuscript. 530 531 References Acevedo-Limón L, Oficialdegui FJ, Sánchez MI, Clavero M. 2020. Historical, human, 532 and environmental drivers of genetic diversity in the red swamp crayfish (Procambarus 533 clarkii) invading the Iberian Peninsula. Freshwater Biology 65:1460-1474 534 Aguirre-Liguori JA, Ramírez-Barahona S, Gaut BS. 2021. The evolutionary genomics 535 of species' responses to climate change. Nature Ecology and Evolution 5:1350-1360 536 Anderson CD, Epperson BK, Fortin M-J, Holderegger R, James PMA, Rosenberg 537 MS, Scribner KT, Spear S. 2010. Considering spatial and temporal scale in landscape-538 genetic studies of gene flow. Molecular Ecology 19:3565-3575 539 Andraca-Gómez G, Ordano M, Boege K, Domínguez CA, Piñero D, Pérez-Ishiwara R, 540 Pérez-Camacho J, Cañizares M, Fornoni J. 2015. A potential invasion route of 541 542 Cactoblastis cactorum within the Caribbean region matches historical hurricane 543 trajectories. Biological Invasions 17:1397-1406 Andraca-Gómez G, Lombaert E, Ordano M, Perez-Ishiwara R, Boege K, Dominguez 544 CA, Fornoni J. 2020. Local dispersal pathways during the invasion of the cactus moth, 545

Deleted: This study was financed by CONABIO granted to KB, GAG, JF, and CAD, and PAPIIT 210922 granted to JF.

548	Cactoblastis cactorum, within North America and the Caribbean. Scientific Reports 10:
549	<u>11012</u>
550	Arana MD, Natale E, Ferretti N, Romano G, Oggero A, Martínez, G, Posadas P,
551	Morrone JJ. 2021. Esquema biogeográfico de la República Argentina. Opera Lilloana
552	<u>56:1-238.</u>
553	Avise JC. 2000. Phylogeography. The history and formation of species. Harvard University
554	Press, Cambridge. 464
555	Baranzelli MC, Cosacov A, Ferreiro G, Johnson LA, Sérsic AN. 2017. Travelling to the
556	south: phylogeographic spatial diffusion model in Monttea aphylla (Plantaginaceae), an
557	endemic plant of the Monte Desert. PLoS One 12: e0178827.
558	Beauregard F, de Blois S. 2014. Beyond a climate-center view of plant distribution:
559	edaphic variables add value to distribution models. PLoS One 9: e92642.
560	Bolnick DI, Nosil P. 2007. Natural selection in populations subject to a migration load.
561	Evolution 61:2229–2243.
562	Borja-Martínez G, Tapia-Flores D, Shafer AB, Vázquez-Domínguez E. 2022. Highland
563	forest's environmental complexity drives landscape genomics and connectivity of the
564	rodent Peromyscus melanotis. Landscape Ecology 37:1653-1671.
565	Brooks CP, Lambert BH, Sauby KE, Ervin GN, Varone L, Logarzo GA. 2014. Larval
566	morphology and host use confirms ecotypic variation in Cactoblastis cactorum (Berg).
567	Biological Invasions 16:13–22.
568	Brown JL, Weber JJ, Alvarado-Serrano DF, Hickerson MJ, Franks SJ, Carnaval AC.
569	2016. Predicting the genetic consequences of future climate change: The power of coupling

570	spatial demography, the coalescent, and historical landscape changes. American Journal of	
571	Botany 103:153–163.	
572	Camps GA, Martínez-Meyer E, Verga AR, Sersic AN, Cosacov-Martinez A. 2018.	Formatted: Font: Bold
573	Genetic and climatic approaches reveal effects of Pleistocene refugia and climatic stability	
574	in an old giant of the Neotropical Dry Forest, Biological Journal of the Linnean Society	
575	<u>125:401–420.</u>	
576	Chapuis MP, Estoup A. 2007. Microsatellite null alleles and estimation of population	
577	differentiation. Molecular Biology and Evolution 24:621–631.	
578	Coudun C, Gégout JC, Piedallu C, Remeau J.C. 2006. Soil nutritional factors improve	
579	models of plant species distribution: an illustration with Acer campestre (L.) in France.	
580	Journal of Biogeography 33:1750-1763.	
581	Cushman SA, McKelvey KS, Havden J, Schwartz MK, Helberg AEME, Losos EJB.	
582	2006. Gene flow in complex landscapes: testing multiple hypotheses with causal modeling.	
583	American Naturalist 168:486–499.	
584	Dickson BG, Albano CM, Anantharaman R, Beier P, Fargione J, Graves TA, Gray	
585	ME, Hall KR, Lawler J, Leonard PG, Littlefield CE, McClure ML, Novembre J,	
586	Schloss CA, Schumaker NH, Shah VB, Theobald DM. 2019. Circuit-theory applications	
587	to connectivity science and conservation. Conservation Biology 33:239–249.	
588	<u>Dodd AP. 1940.</u> The biological against prickly pear. Commonwealth Prickly Pear Board.	
589	Brisbane, Australia.	
590	Elton CS. 1958. The Ecology of Invasions by Animals and Plants. Springer New York,	
591	<u>NY.</u>	

592	Epperson BK. 2010. Spatial correlations at different spatial scales are themselves highly	
593	correlated in isolation by distance processes. <i>Molecular Ecology Resources</i> 10: 845–853.	
594	Ervin GN. 2012. Indian fig cactus (Opuntia ficus-indica (L.) Miller) in the Americas: an	
595	uncertain history. <i>Haseltonia</i> 17:70-81.	
596	Excoffier L, Lischer HEL. 2010. Arlequin suite ver 3.5: A new series of programs to	
597	perform population genetics analyses under Linux and Windows. Molecular Ecology	
598	<u>Resources 10:564-567.</u>	
599	Giannini TC, Chapman DS, Saraiva AM, Alves-dos-Santos I, Biesmeijer JC. 2013.	
600	Improving species distribution models using biotic interactions: a case study of parasites,	
601	pollinators and plants. <i>Ecography</i> 36: 649-656.	
602	Goudet J. 2002, FSTAT version 2.9.3.2. Department of ecology and evolution, University	
603	of Lausanne.	
604	Goudarzi F, Hemami MR, Rancilhac L, Malekian M, Fakheran S, Elmer KR,	
605	Steinfartz S. 2019. Geographic separation and genetic differentiation of populations are	
606	not coupled with niche differentiation in threatened Kaiser's spotted newt (Neurergus	
607	kaiseri). Scientific Reports 9:6239.	
608	Guillemaud T, Blin A, Le Goff I, Desneux N, Reyes M, Tabone E, Tsagkarakou A,	
609	Niño L, Lombaert E. 2015. The tomato borer, Tuta absoluta, invading the Mediterranean	
610	Basin, originates from a single introduction from Central Chile. Scientific Reports 5.	
611	doi:10.1038/srep08371	
612	Guillot G, Santos F, Estoup A. 2008. Analysing georeferenced population genetics data	
613	with Geneland: a new algorithm to deal with null alleles and a friendly graphical user	
614	interface Riginformatics 24:1406–1407	

616	Hernández-Leal MS, Suárez-Atilano M, Nicasio-Arzeta S, Piñero D, González-	
617	Rodríguez A. 2022. Landscape genetics of the tropical willow Salix humboldtiana:	
618	influence of climate, salinity, and orography in an altitudinal gradient. American Journal of	
619	Botany 109:456-469.	
620	Jaspers C, Ehrlich M, Pujolar JM, Künzel S, Bayer T, Limborg MT, Lombard F,	
621	Browne WE, Stefanova K, Reusch TBH. 2021. Invasion genomics uncover contrasting	
622	scenarios of genetic diversity in a widespread marine invader. Proceedings of the National	
623	Academy of Sciences of the United States of America 118:e2116211118.	
624	Kimura M. 1968. Evolutionary rate at the molecular level. <i>Nature</i> 217:624-626.	
625	Legaspi JC, Legaspi BC. 2007. Life table analysis for Cactoblastis cactorum immatures	
626	and female adults under five constant temperatures: implications for pest management.	
627	Annals of Entomological Society of America 100:497–505.	
628	Lembrechts, J.J., van den Hoogen, J., Aalto, J., Ashcroft, M.B., De Frenne, P.,	
629	Kemppinen, J. Kopecki, M., Luoto, M., Maclaen, I.M.D., Crowther, T.W., et. al. 2022.	Deleted:
630	Global maps of soil temperature. Global Change Biology 28:3110-3144.	Formatted: Font color: Red
		Formatted: Font color: Red, English (U
631	Lira-Noriega A, Manthey JD. 2014. Relationship of genetic diversity and niche centrality:	
632	a survey and analysis. Evolution 68:1082-93.	
633	Löwenberg-Neto P. 2014. Neotropical region: a shapefile of Morrone's biogeographical	
634	regionalisation. Zootaxa 3802:300–300.	
1		

615

635

Haldane JB. 1948. The theory of a cline. Journal of Genetics 48:277-84.

McRae BH. 2006. Isolation by resistance. Evolution 60:1551–1561.

637	McRae BH, Dickson BG, Keitt TH, Shah VB. 2008. Using circuit theory to model	
638	connectivity in ecology, evolution, and conservation. Ecology 89: 2712-2724.	
620	Malaura T. Dalashu, A. Danasud S. Andiet D. Streiff D. Chanal V. Danusust D. 2007	
639	Malausa T, Dalecky A, Ponsard S, Audiot P, Streiff R, Chaval Y, Bourguet D. 2007.	
640	Genetic structure and gene flow in French populations of two Ostrinia taxa: host races or	
641	sibling species? Molecular Ecology 16:4210-22.	
642	Manel S, Schwartz MK, Luikart G, Taberlet P. 2003. Landscape genetics: combining	
643	landscape ecology and population genetics. Trends in Ecology and Evolution 18:189–197.	
644	Mann J. 1969. Cactus-feeding insects and mites. Smithsonian Institution, United States	
645	National Museum Bulletin No. 256.	
646	Manni F, Guerard E, Heyer E. 2004. Geographic patterns of (genetic, morphologic,	Formatted
647	linguistic) variation: how barriers can be detected by using Monmonier's Algorithm.	
	Human Biology 76: 173–190.	
648	<u>11uman Diology 10.173–190.</u>	
648 649	Manthey JD, Moyle RG. 2015. Isolation by environment in White-breasted Nuthatches	
649	Manthey JD, Moyle RG. 2015. Isolation by environment in White-breasted Nuthatches	
649 650	Manthey JD, Moyle RG. 2015. Isolation by environment in White-breasted Nuthatches (Sitta carolinensis) of the Madrean Archipelago sky islands: a landscape genomics	
649 650 651	Manthey JD, Moyle RG. 2015. Isolation by environment in White-breasted Nuthatches (Sitta carolinensis) of the Madrean Archipelago sky islands: a landscape genomics approach. Molecular Ecology 24:3628-38.	
649 650 651	Manthey JD, Moyle RG. 2015. Isolation by environment in White-breasted Nuthatches (Sitta carolinensis) of the Madrean Archipelago sky islands: a landscape genomics approach. Molecular Ecology 24:3628-38. Marsico TD, Wallace LE, Ervin GN, Brooks CP, McClure JE, Welch ME. 2010.	
649 650 651 652 653	Manthey JD, Moyle RG. 2015. Isolation by environment in White-breasted Nuthatches (Sitta carolinensis) of the Madrean Archipelago sky islands: a landscape genomics approach. Molecular Ecology 24:3628-38. Marsico TD, Wallace LE, Ervin GN, Brooks CP, McClure JE, Welch ME. 2010. Geographic patterns of genetic diversity from the native range of Cactoblastis cactorum	
649 650 651 652 653 654	Manthey JD, Moyle RG. 2015. Isolation by environment in White-breasted Nuthatches (Sitta carolinensis) of the Madrean Archipelago sky islands: a landscape genomics approach. Molecular Ecology 24:3628-38. Marsico TD, Wallace LE, Ervin GN, Brooks CP, McClure JE, Welch ME. 2010. Geographic patterns of genetic diversity from the native range of Cactoblastis cactorum (Berg) support the documented history of invasion and multiple introductions for invasive	
649 650 651 652 653 654 655	Manthey JD, Moyle RG. 2015. Isolation by environment in White-breasted Nuthatches (Sitta carolinensis) of the Madrean Archipelago sky islands: a landscape genomics approach. Molecular Ecology 24:3628-38. Marsico TD, Wallace LE, Ervin GN, Brooks CP, McClure JE, Welch ME. 2010. Geographic patterns of genetic diversity from the native range of Cactoblastis cactorum (Berg) support the documented history of invasion and multiple introductions for invasive populations. Biological Invasions 13:857–868.	
649 650 651 652 653 654 655	Manthey JD, Moyle RG. 2015. Isolation by environment in White-breasted Nuthatches (Sitta carolinensis) of the Madrean Archipelago sky islands: a landscape genomics approach. Molecular Ecology 24:3628-38. Marsico TD, Wallace LE, Ervin GN, Brooks CP, McClure JE, Welch ME. 2010. Geographic patterns of genetic diversity from the native range of Cactoblastis cactorum (Berg) support the documented history of invasion and multiple introductions for invasive populations. Biological Invasions 13:857–868. Marti OG, Carpenter JE. 2008. Rearing Cactoblastis cactorum (Lepidoptera: Pyralidae)	Formatted

660	Martínez-Meyer E, Díaz-Porras D, Townsend P, Yáñez-Arenas C. 2013. Ecological	
661	niche structure and range wide abundance patterns of species. Biology Letters 9:1-5.	
662	McFadyen RE. 1985. Larval characteristics of Cactoblastis spp. (Lepidoptera: Pyralidae)	
663	and the selection of species for biological control of prickly pears (Opuntia spp.). Bulletin	
664	of Entomological Research 75:159-168	
665	McRae BH, Beier P. 2007. Circuit theory predicts gene flow in plant and animal	
666	populations. Proceedings of the National Academy of Sciences of the United States of	
667	<u>America</u> 104: 19885–19890.	
668	McRae BH, Shah VB, Mohapatra TK. 2009. Circuitscape user's guide. The University	
669	of California, Santa Barbara.	
670	Mopper S, Strauss SY. (Eds.). 2013. Genetic structure and local adaptation in natural	
671	insect populations: effects of ecology, life history, and behavior. Springer Science &	
672	Business Media.	
673	Morello J, Matteucci SD, Rodriguez AF, Silva ME. 2012. Pampa Mesopotámica, and	
674	Pampa Llana. "Ecorregiones y complejos Ecosistémicos de Argentina." Orientación	
675	Gráfica Editora,	Formatted
676	Morrone JJ, Escalante T, Rodríguez-Tapia G, Carmona A, Arana M, Mercado-	
677	Gómez JD. 2022. Biogeographic regionalization of the Neotropical region: New map and	
678	shapefile. Anais da Academia Brasileira de Ciências 94:e20211167.	
679	Nei M. 1972. Genetic distance between populations. <i>The American Naturalist</i> 106:283-292	
680	Ochoa-Zavala M, Osorio-Olvera L, Cerón-Souza I, Rivera-Ocasio E, Jiménez-Lobato	
681	V, Núñez-Farfán J. 2022. Reduction of genetic variation when far from the niche centroid:	
682	prediction for mangrove species. Frontiers in Conservation Science 2:795365.	

83	Osorio-Olvera L, Barve V, Barve N, Soberón J. 2016. Nichetoolbox: from getting
84	biodiversity data to evaluating species distribution models in a friendly GUI environment,
85	R package version 0.5.1.0.
86	Osorio-Olvera L, Lira-Noriega A, Soberón J, Peterson AT, Falconi M, Contreras-Díaz
87	RG, Martínez-Meyer E, Barve V, Barve N. 2020. ntbox: an R package with graphical
88	user interface for modeling and evaluating multidimensional ecological niches. Methods in
89	Ecology and Evolution 11:1199–1206.
90	Orsini L, Vanoverbeke J, Swillen I, Mergeay J, De Meester L. 2013. Drivers of
91	population genetic differentiation in the wild: isolation by dispersal limitation, isolation by
92	adaptation and isolation by colonization. Molecular Ecology 22:5983–5999.
593	Oyarzabal M, Clavijo J, Oakley L, Biganzoli F, Tognetti P, Barberis I, Maturo HM,
594 595	Aragón R, Campanello PI, Prado D, Oesterheld M. 2018. Unidades de vegetación de la Argentina. <i>Ecologia Austral</i> 28:40-63.
696 697	Pebesma E. 2018. Simple features for R: Standardized support for spatial vector data. <i>the R Journal</i> 10.
598	Pettey FW. 1948. The biological control of prickly pears in South Africa. Science Bulletin
599	of the Department of Agriculture and Forestry, Union of South Africa 271:1-163.
00	Pilowsky JA, Colwell RK, Rahbek C, Fordham DA. 2022. Process-explicit models
01	reveal the structure and dynamics of biodiversity. Science Advances 8:eabj2271.
02	Poveda-Martínez D, Noguerales V, Hight SD, Logarzo G, Emerson BC, Varone L,
03	Hasson E. 2023. Geography, climate and shifts in host plant distribution explain the
04	genomic variation in the cactus moth. Frontiers in Ecology and Evolution 11:1260857.

706	T, Dawson DA, Beaumont M, Jones G. 2013. The shaping of genetic variation in edge-		
707	of-range populations under past and future climate change. <i>Ecology Letters</i> 16: 1258-1266.		
708	Renault D, Laparie M, McCauley SJ, Bonte D. 2018. Environmental adaptations,		
709	ecological filtering, and dispersal central to insect invasions. Annual Review of Entomology		
710	<u>63:345-368.</u>		
711	Ricciardi A, MacIsaac HJ. 2008. Evaluating the effectiveness of ballast water exchange		
712	policy in the Great Lakes. Ecological Applications 18:1321–1323.		
713	Richardson DM. 2011. Invasion science: the road traveled and the roads ahead. In		
714	Richardson DM, ed. Fifty years of invasion ecology: the legacy of Charles Elton. Oxford,		
715	UK: Blackwell Publishing, 397–407.		
716	Robbiati FO, Nores MJ, Anton AM, Fortunato RH. 2021. Stability and fragmentation		
717	versus demographic expansion: different phylogeographic patterns in closely related		
718	sympatric legumes (Senna) from arid and semi-arid zones of mid-latitude South America.		
719	Botanical Journal of the Linnean Society 196:364-383.		
720	Rousset F. 2008. Genepop'007: a complete re-implementation of the genepop software for		
721	Windows and Linux. <i>Molecular Ecology Resources</i> 8: 103–106.		
722	Sexton JP, Hangartner SB, Hoffmann AA. 2014. Genetic isolation by environment or		
723	distance: which pattern of gene flow is most common? Evolution 68:1–15.		
724	Sherpa S, Blum MG, Capblancq T, Cumer T, Rioux D, Després L. 2019. Unravelling		
725	the invasion history of the Asian tiger mosquito in Europe. Molecular Ecology 28:2360-		
726	<u>2377.</u>		

Razgour O, Juste J, Ibanez C, Kiefer A, Rebelo H, Puechmaille SJ, Arlettaz R, Burke

705

/2/	Shi Y, Li LY, Shahid S, Smagghe G, Liu 1X. 2021. Effect of soil moisture on pupation	
728	behavior and inhabitation of Spodoptera frugiperda (Lepidoptera: Noctuidae). Applied	
729	Entomology and Zoology 56:69-74.	
730	Simmonds FJ, Bennett FD. 1966. Biological control of <i>Opuntia</i> spp. by <i>Cactoblastis</i>	
731	cactorum in the Leeward Islands (West Indies). Entomophaga 11:183-189.	
752	energy and the second of the s	
732	Simões MVP, Peterson AT. 2018. Importance of biotic predictors in estimation of	
733	potential invasive areas: the example of the tortoise beetle Eurypedus nigrosignatus, in	
734	Hispaniola. PeerJ 6:e6052.	
735	Simonsen TJ, Brown RL, Sperling FAH. 2008. Tracing an invasion: phylogeography of	
736	Cactoblastis cactorum (Lepidoptera: Pyralidae) in the United States based on	
737	mitochondrial DNA. Annals of the Entomological Society of America 101:899–905.	
/3/	intocholidata D177. Athliais of the Entoniological Society of America 101.077 703.	
738	Sinama M, Dubu, V, Costedoat C, Gilles A, Junker M, Malausa T, et al. 2011.	
739	Challenges of microsatellite development in Lepidoptera: Euphydryas aurinia	
740	(Nymphalidae) as a case study. European Journal of Entomology 108:261-266.	
741	Soberón J, Golubov J, Sarukhán J. 2001. The importance of Opuntia in Mexico and	
742	routes of invasion and impact of <i>Cactoblastis cactorum</i> (Lepidoptera: Pyralidae). Florida	Formatted: Font: Italic
	Entomologist 84: 486–492.	
743	Entomologist 04.400-492.	Formatted: Font: Italic
744	Storfer A, Murphy MA, Evans JS, Goldberg CS, Robinson S, Spear SF, Dezzani R, et	
745	al. 2007. Putting the 'landscape in landscape' genetics. Heredity 98:128-142.	
746	Tion T. Don O. For J. Hossel M. Zhang D. 2021, T	
746	Tian T, Ren Q, Fan J, Haseeb M, Zhang R. 2021. Too dry or too wet soils have a	
747	negative impact on larval pupation of fall armyworm. Journal of Applied Entomology	

146:196–202.

749	Valdez L, Quiroga-Carmona M, D'Elía G. 2020. Genetic variation of the Chilean		
750	endemic long-haired mouse Abrothrix longipilis (Rodentia, Supramyomorpha, Cricetidae)	/	Emmetted
751	in a geographical and environmental context. PeerJ 8:e9517.		Formatted Field Code Changed
752	Varone L, Logarzo GA, Briano JA, Hight SD, Carpenter JE. 2014. Cactoblastis		
	cactorum (Berg) (Lepidoptera: Pyralidae) use of Opuntia host species in Argentina.		
753			
754	Biological Invasions 16:2367–2380.		
755	Wang IJ, Bradburd GS. 2014. Isolation by environment. Molecular Ecology 23:5649-		Deleted:
756	<u>5662.</u>		
757	Wang IJ. 2013. Examining the full effects of landscape heterogeneity on spatial genetic		
758	variation: a multiple matrix regression approach for quantifying geographic and ecological		
759	isolation. Evolution 67:3403-3411.		
760	Wang H, Ma T, Xiao Q, Cao K, Chen X, Wen Y, et al. 2017. Pupation behaviors and		
761	emergence successes of <i>Ectropis grisescens</i> (Lepidoptera: Geometridae) in response to		
762	different substrate types and moisture contents, Environmental Entomology 46:1365–1373,		
763	Wang YZ, Li BY, Hoffmann AA, et al. 2017. Patterns of genetic variation among		
764	geographic and host-plant associated populations of the peach fruit moth Carposina sasakii		
765	(Lepidoptera: Carposinidae). BMC Ecology and Evolution. 17:265.		
766	World DC 2015 Testing for Heads Weighter and still a least the plate Least at		
766	Waples RS. 2015. Testing for Hardy-Weinberg proportions: have we lost the plot? <i>Journal</i>		
767	of Heredity 106:1-19.		
768	Weir BS, Cockerham CC. 1996. Genetic data analysis II: Methods for discrete		
769	population genetic data. Sinauer Assoc. Inc.		
I			

772 773 774	et al. 2003. Community and ecosystem genetics: a consequence of the extended phenotype. Ecology 84:559-573.	
	Ecology 84:559-573.	
774		
	Wright S. 1943. Isolation by distance. Genetics 28:114–38.	
775	Zimmer C, Emlen DJ. 2013. Evolution: Making Sense of life. Roberts and Co. Greenwood	
776	<u>Village.</u>	
777	Zimmermann HG, Moran VC, Hoffmann JH. 2004. Biological control in the	
778	management of invasive alien plants in South Africa, and the role of the Working for Water	
779	Programme: working for water. South African Journal of Science 100:34-40.	
780 781	Zimmermann HG, Bloem S, Klein H. 2007. Biología, historia, amenaza, monitoreo y control de la palomilla del nopal Cactoblastis cactorum. FAO – IAEA.	
782	Zimmermann HG, Moran VC. 1991. Biological control of prickly pear, Opuntia ficus-	
783	indica (Cactaceae), in South Africa. Agriculture, Ecosystems & Environment 37:29-35.	
784		
785		
786	A	Formatted: English (US)

787 788 789	Legends Table 1. List of 24 sampling sites of Cactoblastis cactorum in Argentina.		Deleted: References¶ Acevedo-Limón L, Oficialdegui FJ, Sánchez MI, Clavero M. 2020. Historical, human, and environmental drivers of genetic diversity in the red swamp crayfish (<i>Procambarus</i> clarkii) invading the Iberian Peninsula. Freshwater Biology 65:1460-1474¶
790	Table 2. Statistics of genetic diversity of Cactoblastis cactorum in 24 sampling sites from		Aguirre-Liguori JA, Ramírez-Barahona S, Gaut BS. 2021. The evolutionary genomics of species' responses to climate change. <i>Nature Ecology and Evolution</i> . 5:1350–1360 [§]
791	Argentina for 10 <u>nuclear</u> microsatellite loci: number of alleles (NA), allelic richness (AR)		Anderson CD, Epperson BK, Fortin M-J, Holderegger R, James PMA, Rosenberg MS, Scribner KT, Spear S. 2010. Considering spatial and temporal scale in landscape-genetic
792	(estimated from 9 diploid individuals), expected heterozygosity (H _E), observed		studies of gene flow. <i>Molecular Ecology</i> 19:3565-3575¶ Andraca-Gómez G, Ordano M, Boege K, Domínguez CA,
793	heterozygosity (H ₀), inbreeding coefficient ((F _{IS} (*non-significant values)). Raw data for		Piñero D, Pérez-Ishiwara R, Pérez-Camacho J, Cañizares M, Fornoni J. 2015. A potential invasion route of Cactoblastis cactorum within the Caribbean region ma([1])
794	genetic analyses can be found in https://doi.org/10.6084/m9.figshare.24749082.		Formatted: Font: (Default) Times New Roman, 12 pt
		(Formatted: Font: (Default) Times New Roman, 12 pt
795	Figure 1, A. Geographic location of the 24 sampling sites of <i>Cactoblastis cactorum</i> used	(Deleted: Figure 1. Geographic location of the 24 sam([2])
	V. San C. The Company of the Company	\leq	Deleted: 2
796	for genetic analyses. Samples are distributed in the Chacoan and Pampean biogeographic	1	Deleted: Representation of t
	' (T = 1 N + 2014) TH 1 1 1 1 1 1 TH 1		Deleted: for the 24 sampling sites of <i>Cactoblastis cact</i> [3]
797	provinces (Löwenberg-Neto, 2014). The numbers correspond to those of Table 1. The six		Deleted: The color of the dots represents the genetic $g([4])$
798	genetic groups defined by GENELAND are indicated in colored dots. Sampling sites: 9, 11,	Z	Formatted
		ί	Formatted: Font color: Red,
799	12, 13, 14, 16 (green dots), 1, 6, 18, 20, 22, 23, 24 (yellow dots), 7, 8, 10 (blue dots), 17, 21	//	Formatted: Font color: Red
		- ///	Formatted: Font color: Red
800	(purple dots), 2, 3, 4, 5 (red dots), Letters correspond to Salinas Grandes, SG, Salinas de	////	Commented [TM1]: Why do these have the same ([5])
801	Ambargasta, SA, Laguna Mar Chiquita, LA, Sierra de Ancasti, MN, Sierra de Ambargasta,	/ //	Deleted: .
001	Timourguous, 511, Euguna Fian Cinquia, Eli <u>ppietta de Finousta Fian, pietta de Finousgasua.</u>		Formatted: Font color: Red
802	MN, Sierra de Sumampa, MS, Sierra Grande, MG, Brown lines indicate the geographic	L (Formatted: Font: Bold, Font color: Red,
		1	Formatted: Font color: Red,
803	location of the barriers proposed by the BARRIERS program (the barriers depicted are those	1/1	Formatted: Font color: Red
004	'd	///	Formatted: Font: Bold, Font color: Red,
804	with a percentage of existence greater than $70 \frac{\%}{4}$ after bootstrapping 100 random F_{ST_a}	, \Y	Formatted: Font color: Red,
805	matrices). B. Output of GENELAND analysis of the number of genetic clusters obtained	// /	Formatted: Font color: Red
803	matrices). B. Output of OLIVELAND anarysis of the number of genetic clusters obtained	Y/// ,	Formatted: Font color: Red
806	from the 10,000 iterations with the larger likelihood (left panel). Analysis was performed)/ // //	Formatted: Font: Italic, Font color: Red
		/ // //	Formatted: Font color: Red, Subscript
807	with the uncorrelated allele frequency model option and 100,000 steps, thinning of 100, and	/ // /	Formatted: Font color: Red
		///	Formatted: Font color: Red
808	burn-in of 100. The index of MCMC iteration indicate that Markov chains converged	//	Formatted [6]
809	around six classes (genetic groups). Thus, the higher posterior probability was obtained for	ď	Formatted[7]
603	around six classes (genetic groups). Thus, the higher posterior probability was obtained for	<(Formatted[8]
		(Formatted[9]

919	K = 6 in all 10 independent runs (right panel) (R2 y R14), C. Observed heterozygosity (H ₀	<u> </u>	Deleted: Density distribution of the number of clusters along the chain with a burn period of 200 iterations and 1,000,000
920	± std) for each genetic group calculated as the average H _e for the 10 loci within each group		steps of MCMC. Formatted: Font: (Default) Times New Roman, 12 pt, Font
921	(colored bars) and as the average Ho of sampling site within a given genetic group (white		Formatted: Font: (Default) Times New Roman, 12 pt, Font color: Red
922	bars). D. Matrix of paired genetic distances between genetic groups (all values are		Formatted: Font color: Red
923	significant). The numbers and colors in figures A, C and D are equivalent and represent the	\	Formatted: Subscript
924	six genetic groups.		
925	Figure 2. Suitability map for <i>Cactoblastis cactorum</i> as predicted by the consensus niche		Moved (insertion) [1]
323	2 Salutioney map for Cactoriastis cactoriam as producted by the conscious mone		Deleted: S1
926	<u>model</u> (AUC = 0.875). The best model had an omission rate of zero under a five percentile		Formatted: Font color: Red
927	threshold corresponding to a suitability value of 0.074	***************************************	Formatted: Font color: Red
928	(https://doi.org/10.6084/m9.figshare.24749082), Colors indicate the model predicted		Formatted: Font: (Default) Times New Roman, 12 pt
			Formatted: Font color: Red
929	suitability within the sampled region. Regions with high suitability indicate a higher		Formatted: Font color: Red
930	probability of detecting C. cactorum in Opuntia ficus-indica.		Formatted: Font color: Red
931			
932	Suplementary Material		
933	Table S1. Genetic differentiation values (F_{ST}) between pairs of sampling sites.		
934	Database.	***********	Moved up [1]: Figure S1. Suitability map for Cactoblastis
935			cactorum as predicted by the consensus niche model. Colors indicate the model predicted suitability within the sampled region. Regions with high suitability indicate a higher
333			probability of detecting C. cactorum in Opuntia ficus-indica.
936			
937			

Page 33: [1] Deleted Juan Enrique Fornoni Agnel 12/6/23 6:95:00 AM Page 33: [2] Deleted Juan Enrique Fornoni Agnel 11/22/23 10:17:00 AM Page 33: [3] Deleted Juan Enrique Fornoni Agnel 11/22/23 10:18:00 AM Page 33: [4] Deleted Juan Enrique Fornoni Agnel 11/22/23 10:18:00 AM Page 33: [5] Commented [TM1] Travis Marsico 12/26/23 12:15:00 PM Why do these have the same abbreviation? Page 33: [6] Fornatted Juan Enrique Fornoni Agnel 11/29/23 6:30:00 PM Font: (Default) Times New Roman, 12 pt, Font color: Red Page 33: [8] Fornatted Juan Enrique Fornoni Agnel 11/29/23 6:30:00 PM Font: (Default) Times New Roman, 12 pt, Font color: Red Page 33: [8] Fornatted Juan Enrique Fornoni Agnel 11/29/23 6:30:00 PM Font: (Default) Times New Roman, 12 pt, Font color: Red	Page 33: [2] Deleted Juan Enrique Fornoni Agnel 11/22/23 10:17:00 AM Page 33: [3] Deleted Juan Enrique Fornoni Agnel 11/22/23 10:18:00 AM Page 33: [4] Deleted Juan Enrique Fornoni Agnel 11/22/23 10:18:00 AM Page 33: [5] Commented [TM1] Travis Marsico 12/26/23 12:15:00 PM Why do these have the same abbreviation? Page 33: [6] Formatted Juan Enrique Fornoni Agnel 11/29/23 6:30:00 PM Font: (Default) Times New Roman, 12 pt, Font color: Red Page 33: [7] Formatted Juan Enrique Fornoni Agnel 11/29/23 6:30:00 PM Font: (Default) Times New Roman, 12 pt, Font color: Red Page 33: [8] Formatted Juan Enrique Fornoni Agnel 11/29/23 6:30:00 PM Font: (Default) Times New Roman, 12 pt, Font color: Red				
Page 33: [3] Deleted Juan Enrique Fornoni Agnel 11/22/23 10:18:00 AM Page 33: [4] Deleted Juan Enrique Fornoni Agnel 11/22/23 10:18:00 AM Page 33: [5] Commented [TM1] Travis Marsico 12/26/23 12:15:00 PM Why do these have the same abbreviation? Page 33: [6] Formatted Juan Enrique Fornoni Agnel 11/29/23 6:30:00 PM Font: (Default) Times New Roman, 12 pt, Font color: Red Page 33: [7] Formatted Juan Enrique Fornoni Agnel 11/29/23 6:30:00 PM Font: (Default) Times New Roman, 12 pt, Font color: Red Page 33: [8] Formatted Juan Enrique Fornoni Agnel 11/29/23 6:30:00 PM Font: (Default) Times New Roman, 12 pt, Font color: Red	Page 33: [3] Deleted Juan Enrique Fornoni Agnel 11/22/23 10:18:00 AM Page 33: [4] Deleted Juan Enrique Fornoni Agnel 11/22/23 10:18:00 AM Page 33: [5] Commented [TM1] Travis Marsico 12/26/23 12:15:00 PM Why do these have the same abbreviation? Page 33: [6] Formatted Juan Enrique Fornoni Agnel 11/29/23 6:30:00 PM Font: (Default) Times New Roman, 12 pt, Font color: Red Page 33: [7] Formatted Juan Enrique Fornoni Agnel 11/29/23 6:30:00 PM Font: (Default) Times New Roman, 12 pt, Font color: Red Page 33: [8] Formatted Juan Enrique Fornoni Agnel 11/29/23 6:30:00 PM Font: (Default) Times New Roman, 12 pt, Font color: Red	Page 33: [1] Deleted	Juan Enrique Fornoni Agnel	12/6/23 6:05:00 AM	
Page 33: [3] Deleted Juan Enrique Fornoni Agnel 11/22/23 10:18:00 AM Page 33: [4] Deleted Juan Enrique Fornoni Agnel 11/22/23 10:18:00 AM Page 33: [5] Commented [TM1] Travis Marsico 12/26/23 12:15:00 PM Why do these have the same abbreviation? Page 33: [6] Formatted Juan Enrique Fornoni Agnel 11/29/23 6:30:00 PM Font: (Default) Times New Roman, 12 pt, Font color: Red Page 33: [7] Formatted Juan Enrique Fornoni Agnel 11/29/23 6:30:00 PM Font: (Default) Times New Roman, 12 pt, Font color: Red Page 33: [8] Formatted Juan Enrique Fornoni Agnel 11/29/23 6:30:00 PM Font: (Default) Times New Roman, 12 pt, Font color: Red	Page 33: [4] Deleted Juan Enrique Fornoni Agnel 11/22/23 10:18:00 AM Page 33: [4] Deleted Juan Enrique Fornoni Agnel 11/22/23 10:18:00 AM Page 33: [5] Commented [TM1] Travis Marsico 12/26/23 12:15:00 PM Why do these have the same abbreviation? Page 33: [6] Fornatted Juan Enrique Fornoni Agnel 11/29/23 6:30:00 PM Font: (Default) Times New Roman, 12 pt, Font color: Red Page 33: [7] Fornatted Juan Enrique Fornoni Agnel 11/29/23 6:30:00 PM Font: (Default) Times New Roman, 12 pt, Font color: Red Page 33: [8] Fornatted Juan Enrique Fornoni Agnel 11/29/23 6:30:00 PM Font: (Default) Times New Roman, 12 pt, Font color: Red Page 33: [8] Fornatted Juan Enrique Fornoni Agnel 11/29/23 6:30:00 PM Font: (Default) Times New Roman, 12 pt, Font color: Red	,			
Page 33: [3] Deleted Juan Enrique Fornoni Agnel 11/22/23 10:18:00 AM Page 33: [4] Deleted Juan Enrique Fornoni Agnel 11/22/23 10:18:00 AM Page 33: [5] Commented [TM1] Travis Marsico 12/26/23 12:15:00 PM Why do these have the same abbreviation? Page 33: [6] Formatted Juan Enrique Fornoni Agnel 11/29/23 6:30:00 PM Font: (Default) Times New Roman, 12 pt, Font color: Red Page 33: [7] Formatted Juan Enrique Fornoni Agnel 11/29/23 6:30:00 PM Font: (Default) Times New Roman, 12 pt, Font color: Red Page 33: [8] Formatted Juan Enrique Fornoni Agnel 11/29/23 6:30:00 PM Font: (Default) Times New Roman, 12 pt, Font color: Red	Page 33: [4] Deleted Juan Enrique Fornoni Agnel 11/22/23 10:18:00 AM Page 33: [4] Deleted Juan Enrique Fornoni Agnel 11/22/23 10:18:00 AM Page 33: [5] Commented [TM1] Travis Marsico 12/26/23 12:15:00 PM Why do these have the same abbreviation? Page 33: [6] Fornatted Juan Enrique Fornoni Agnel 11/29/23 6:30:00 PM Font: (Default) Times New Roman, 12 pt, Font color: Red Page 33: [7] Fornatted Juan Enrique Fornoni Agnel 11/29/23 6:30:00 PM Font: (Default) Times New Roman, 12 pt, Font color: Red Page 33: [8] Fornatted Juan Enrique Fornoni Agnel 11/29/23 6:30:00 PM Font: (Default) Times New Roman, 12 pt, Font color: Red Page 33: [9] Fornatted Juan Enrique Fornoni Agnel 11/29/23 6:30:00 PM Font: (Default) Times New Roman, 12 pt, Font color: Red				
Page 33: [4] Deleted Juan Enrique Fornoni Agnel 11/22/23 10:18:00 AM Page 33: [5] Commented [TM1] Travis Marsico 12/26/23 12:15:00 PM Why do these have the same abbreviation? Page 33: [6] Formatted Juan Enrique Fornoni Agnel 11/29/23 6:30:00 PM Font: (Default) Times New Roman, 12 pt, Font color: Red Page 33: [7] Formatted Juan Enrique Fornoni Agnel 11/29/23 6:30:00 PM Font: (Default) Times New Roman, 12 pt, Font color: Red Page 33: [8] Formatted Juan Enrique Fornoni Agnel 11/29/23 6:30:00 PM Font: (Default) Times New Roman, 12 pt, Font color: Red	Page 33: [4] Deleted Juan Enrique Fornoni Agnel 11/22/23 10:18:00 AM Page 33: [5] Commented [TM1] Travis Marsico 12/26/23 12:15:00 PM Why do these have the same abbreviation? Page 33: [6] Formatted Juan Enrique Fornoni Agnel 11/29/23 6:30:00 PM Font: (Default) Times New Roman, 12 pt, Font color: Red Page 33: [7] Formatted Juan Enrique Fornoni Agnel 11/29/23 6:30:00 PM Font: (Default) Times New Roman, 12 pt, Font color: Red Page 33: [8] Formatted Juan Enrique Fornoni Agnel 11/29/23 6:30:00 PM Font: (Default) Times New Roman, 12 pt, Font color: Red Page 33: [9] Formatted Juan Enrique Fornoni Agnel 11/29/23 6:30:00 PM	Page 33: [2] Deleted	Juan Enrique Fornoni Agnel	11/22/23 10:17:00 AM	
Page 33: [4] Deleted Juan Enrique Fornoni Agnel 11/22/23 10:18:00 AM Page 33: [5] Commented [TM1] Travis Marsico 12/26/23 12:15:00 PM Why do these have the same abbreviation? Page 33: [6] Formatted Juan Enrique Fornoni Agnel 11/29/23 6:30:00 PM Font: (Default) Times New Roman, 12 pt, Font color: Red Page 33: [7] Formatted Juan Enrique Fornoni Agnel 11/29/23 6:30:00 PM Font: (Default) Times New Roman, 12 pt, Font color: Red Page 33: [8] Formatted Juan Enrique Fornoni Agnel 11/29/23 6:30:00 PM Font: (Default) Times New Roman, 12 pt, Font color: Red	Page 33: [4] Deleted Juan Enrique Fornoni Agnel 11/22/23 10:18:00 AM Page 33: [5] Commented [TM1] Travis Marsico 12/26/23 12:15:00 PM Why do these have the same abbreviation? Page 33: [6] Formatted Juan Enrique Fornoni Agnel 11/29/23 6:30:00 PM Font: (Default) Times New Roman, 12 pt, Font color: Red Page 33: [7] Formatted Juan Enrique Fornoni Agnel 11/29/23 6:30:00 PM Font: (Default) Times New Roman, 12 pt, Font color: Red Page 33: [8] Formatted Juan Enrique Fornoni Agnel 11/29/23 6:30:00 PM Font: (Default) Times New Roman, 12 pt, Font color: Red Page 33: [9] Formatted Juan Enrique Fornoni Agnel 11/29/23 6:30:00 PM	r			
Page 33: [5] Commented [TM1] Travis Marsico 12/26/23 12:15:00 PM Why do these have the same abbreviation? Page 33: [6] Formatted Juan Enrique Fornoni Agnel 11/29/23 6:30:00 PM Font: (Default) Times New Roman, 12 pt, Font color: Red Page 33: [7] Formatted Juan Enrique Fornoni Agnel 11/29/23 6:30:00 PM Font: (Default) Times New Roman, 12 pt, Font color: Red Page 33: [8] Formatted Juan Enrique Fornoni Agnel 11/29/23 6:30:00 PM Font: (Default) Times New Roman, 12 pt, Font color: Red	Page 33: [5] Commented [TM1] Travis Marsico 12/26/23 12:15:00 PM Why do these have the same abbreviation? Page 33: [6] Formatted Juan Enrique Fornoni Agnel 11/29/23 6:30:00 PM Font: (Default) Times New Roman, 12 pt, Font color: Red Page 33: [7] Formatted Juan Enrique Fornoni Agnel 11/29/23 6:30:00 PM Font: (Default) Times New Roman, 12 pt, Font color: Red Page 33: [8] Formatted Juan Enrique Fornoni Agnel 11/29/23 6:30:00 PM Font: (Default) Times New Roman, 12 pt, Font color: Red Page 33: [9] Formatted Juan Enrique Fornoni Agnel 11/29/23 6:30:00 PM	Page 33: [3] Deleted	Juan Enrique Fornoni Agnel	11/22/23 10:18:00 AM	
Page 33: [5] Commented [TM1] Travis Marsico 12/26/23 12:15:00 PM Why do these have the same abbreviation? Page 33: [6] Formatted Juan Enrique Fornoni Agnel 11/29/23 6:30:00 PM Font: (Default) Times New Roman, 12 pt, Font color: Red Page 33: [7] Formatted Juan Enrique Fornoni Agnel 11/29/23 6:30:00 PM Font: (Default) Times New Roman, 12 pt, Font color: Red Page 33: [8] Formatted Juan Enrique Fornoni Agnel 11/29/23 6:30:00 PM Font: (Default) Times New Roman, 12 pt, Font color: Red	Page 33: [5] Commented [TM1] Travis Marsico 12/26/23 12:15:00 PM Why do these have the same abbreviation? Page 33: [6] Formatted Juan Enrique Fornoni Agnel 11/29/23 6:30:00 PM Font: (Default) Times New Roman, 12 pt, Font color: Red Page 33: [7] Formatted Juan Enrique Fornoni Agnel 11/29/23 6:30:00 PM Font: (Default) Times New Roman, 12 pt, Font color: Red Page 33: [8] Formatted Juan Enrique Fornoni Agnel 11/29/23 6:30:00 PM Font: (Default) Times New Roman, 12 pt, Font color: Red Page 33: [9] Formatted Juan Enrique Fornoni Agnel 11/29/23 6:30:00 PM	,			→
Page 33: [5] Commented [TM1] Travis Marsico 12/26/23 12:15:00 PM Why do these have the same abbreviation? Page 33: [6] Formatted Juan Enrique Fornoni Agnel 11/29/23 6:30:00 PM Font: (Default) Times New Roman, 12 pt, Font color: Red Page 33: [7] Formatted Juan Enrique Fornoni Agnel 11/29/23 6:30:00 PM Font: (Default) Times New Roman, 12 pt, Font color: Red Page 33: [8] Formatted Juan Enrique Fornoni Agnel 11/29/23 6:30:00 PM Font: (Default) Times New Roman, 12 pt, Font color: Red	Page 33: [5] Commented [TM1] Travis Marsico 12/26/23 12:15:00 PM Why do these have the same abbreviation? Page 33: [6] Formatted Juan Enrique Fornoni Agnel 11/29/23 6:30:00 PM Font: (Default) Times New Roman, 12 pt, Font color: Red Page 33: [7] Formatted Juan Enrique Fornoni Agnel 11/29/23 6:30:00 PM Font: (Default) Times New Roman, 12 pt, Font color: Red Page 33: [8] Formatted Juan Enrique Fornoni Agnel 11/29/23 6:30:00 PM Font: (Default) Times New Roman, 12 pt, Font color: Red Page 33: [9] Formatted Juan Enrique Fornoni Agnel 11/29/23 6:30:00 PM				
Page 33: [5] Commented [TM1] Travis Marsico 12/26/23 12:15:00 PM Why do these have the same abbreviation? Page 33: [6] Formatted Juan Enrique Fornoni Agnel 11/29/23 6:30:00 PM Font: (Default) Times New Roman, 12 pt, Font color: Red Page 33: [7] Formatted Juan Enrique Fornoni Agnel 11/29/23 6:30:00 PM Font: (Default) Times New Roman, 12 pt, Font color: Red Page 33: [8] Formatted Juan Enrique Fornoni Agnel 11/29/23 6:30:00 PM Font: (Default) Times New Roman, 12 pt, Font color: Red	Page 33: [5] Commented [TM1] Travis Marsico 12/26/23 12:15:00 PM Why do these have the same abbreviation? Page 33: [6] Formatted Juan Enrique Fornoni Agnel 11/29/23 6:30:00 PM Font: (Default) Times New Roman, 12 pt, Font color: Red Page 33: [7] Formatted Juan Enrique Fornoni Agnel 11/29/23 6:30:00 PM Font: (Default) Times New Roman, 12 pt, Font color: Red Page 33: [8] Formatted Juan Enrique Fornoni Agnel 11/29/23 6:30:00 PM Font: (Default) Times New Roman, 12 pt, Font color: Red Page 33: [9] Formatted Juan Enrique Fornoni Agnel 11/29/23 6:30:00 PM	Page 33: [4] Deleted	Juan Enrique Fornoni Agnel	11/22/23 10:18:00 AM	
Why do these have the same abbreviation? Page 33: [6] Formatted Juan Enrique Fornoni Agnel 11/29/23 6:30:00 PM Font: (Default) Times New Roman, 12 pt, Font color: Red Page 33: [7] Formatted Juan Enrique Fornoni Agnel 11/29/23 6:30:00 PM Font: (Default) Times New Roman, 12 pt, Font color: Red Page 33: [8] Formatted Juan Enrique Fornoni Agnel 11/29/23 6:30:00 PM Font: (Default) Times New Roman, 12 pt, Font color: Red	Why do these have the same abbreviation? Page 33: [6] Formatted Juan Enrique Fornoni Agnel 11/29/23 6:30:00 PM Font: (Default) Times New Roman, 12 pt, Font color: Red Page 33: [7] Formatted Juan Enrique Fornoni Agnel 11/29/23 6:30:00 PM Font: (Default) Times New Roman, 12 pt, Font color: Red Page 33: [8] Formatted Juan Enrique Fornoni Agnel 11/29/23 6:30:00 PM Font: (Default) Times New Roman, 12 pt, Font color: Red Page 33: [9] Formatted Juan Enrique Fornoni Agnel 11/29/23 6:30:00 PM		1 3		4
Why do these have the same abbreviation? Page 33: [6] Formatted Juan Enrique Fornoni Agnel 11/29/23 6:30:00 PM Font: (Default) Times New Roman, 12 pt, Font color: Red Page 33: [7] Formatted Juan Enrique Fornoni Agnel 11/29/23 6:30:00 PM Font: (Default) Times New Roman, 12 pt, Font color: Red Page 33: [8] Formatted Juan Enrique Fornoni Agnel 11/29/23 6:30:00 PM Font: (Default) Times New Roman, 12 pt, Font color: Red	Why do these have the same abbreviation? Page 33: [6] Formatted Juan Enrique Fornoni Agnel 11/29/23 6:30:00 PM Font: (Default) Times New Roman, 12 pt, Font color: Red Page 33: [7] Formatted Juan Enrique Fornoni Agnel 11/29/23 6:30:00 PM Font: (Default) Times New Roman, 12 pt, Font color: Red Page 33: [8] Formatted Juan Enrique Fornoni Agnel 11/29/23 6:30:00 PM Font: (Default) Times New Roman, 12 pt, Font color: Red Page 33: [9] Formatted Juan Enrique Fornoni Agnel 11/29/23 6:30:00 PM	t			
Why do these have the same abbreviation? Page 33: [6] Formatted Juan Enrique Fornoni Agnel 11/29/23 6:30:00 PM Font: (Default) Times New Roman, 12 pt, Font color: Red Page 33: [7] Formatted Juan Enrique Fornoni Agnel 11/29/23 6:30:00 PM Font: (Default) Times New Roman, 12 pt, Font color: Red Page 33: [8] Formatted Juan Enrique Fornoni Agnel 11/29/23 6:30:00 PM Font: (Default) Times New Roman, 12 pt, Font color: Red	Why do these have the same abbreviation? Page 33: [6] Formatted Juan Enrique Fornoni Agnel 11/29/23 6:30:00 PM Font: (Default) Times New Roman, 12 pt, Font color: Red Page 33: [7] Formatted Juan Enrique Fornoni Agnel 11/29/23 6:30:00 PM Font: (Default) Times New Roman, 12 pt, Font color: Red Page 33: [8] Formatted Juan Enrique Fornoni Agnel 11/29/23 6:30:00 PM Font: (Default) Times New Roman, 12 pt, Font color: Red Page 33: [9] Formatted Juan Enrique Fornoni Agnel 11/29/23 6:30:00 PM	k			
Page 33: [6] Formatted Juan Enrique Fornoni Agnel 11/29/23 6:30:00 PM Font: (Default) Times New Roman, 12 pt, Font color: Red Page 33: [7] Formatted Juan Enrique Fornoni Agnel 11/29/23 6:30:00 PM Font: (Default) Times New Roman, 12 pt, Font color: Red Page 33: [8] Formatted Juan Enrique Fornoni Agnel 11/29/23 6:30:00 PM Font: (Default) Times New Roman, 12 pt, Font color: Red	Page 33: [6] Formatted Juan Enrique Fornoni Agnel 11/29/23 6:30:00 PM Font: (Default) Times New Roman, 12 pt, Font color: Red Page 33: [7] Formatted Juan Enrique Fornoni Agnel 11/29/23 6:30:00 PM Font: (Default) Times New Roman, 12 pt, Font color: Red Page 33: [8] Formatted Juan Enrique Fornoni Agnel 11/29/23 6:30:00 PM Font: (Default) Times New Roman, 12 pt, Font color: Red Page 33: [9] Formatted Juan Enrique Fornoni Agnel 11/29/23 6:30:00 PM	Page 33: [5] Commented	[TM1] Travis Marsico 12/26/	23 12:15:00 PM	
Font: (Default) Times New Roman, 12 pt, Font color: Red Page 33: [7] Formatted Juan Enrique Fornoni Agnel 11/29/23 6:30:00 PM Font: (Default) Times New Roman, 12 pt, Font color: Red Page 33: [8] Formatted Juan Enrique Fornoni Agnel 11/29/23 6:30:00 PM Font: (Default) Times New Roman, 12 pt, Font color: Red	Font: (Default) Times New Roman, 12 pt, Font color: Red Page 33: [7] Formatted Juan Enrique Fornoni Agnel 11/29/23 6:30:00 PM Font: (Default) Times New Roman, 12 pt, Font color: Red Page 33: [8] Formatted Juan Enrique Fornoni Agnel 11/29/23 6:30:00 PM Font: (Default) Times New Roman, 12 pt, Font color: Red Page 33: [9] Formatted Juan Enrique Fornoni Agnel 11/29/23 6:30:00 PM	Why do these have the	same abbreviation?		
Font: (Default) Times New Roman, 12 pt, Font color: Red Page 33: [7] Formatted Juan Enrique Fornoni Agnel 11/29/23 6:30:00 PM Font: (Default) Times New Roman, 12 pt, Font color: Red Page 33: [8] Formatted Juan Enrique Fornoni Agnel 11/29/23 6:30:00 PM Font: (Default) Times New Roman, 12 pt, Font color: Red	Font: (Default) Times New Roman, 12 pt, Font color: Red Page 33: [7] Formatted Juan Enrique Fornoni Agnel 11/29/23 6:30:00 PM Font: (Default) Times New Roman, 12 pt, Font color: Red Page 33: [8] Formatted Juan Enrique Fornoni Agnel 11/29/23 6:30:00 PM Font: (Default) Times New Roman, 12 pt, Font color: Red Page 33: [9] Formatted Juan Enrique Fornoni Agnel 11/29/23 6:30:00 PM				
Page 33: [7] Formatted Juan Enrique Fornoni Agnel 11/29/23 6:30:00 PM Font: (Default) Times New Roman, 12 pt, Font color: Red Page 33: [8] Formatted Juan Enrique Fornoni Agnel 11/29/23 6:30:00 PM Font: (Default) Times New Roman, 12 pt, Font color: Red	Page 33: [7] Formatted Juan Enrique Fornoni Agnel 11/29/23 6:30:00 PM Font: (Default) Times New Roman, 12 pt, Font color: Red Page 33: [8] Formatted Juan Enrique Fornoni Agnel 11/29/23 6:30:00 PM Font: (Default) Times New Roman, 12 pt, Font color: Red Page 33: [9] Formatted Juan Enrique Fornoni Agnel 11/29/23 6:30:00 PM	Page 33: [6] Formatted	Juan Enrique Fornoni Agnel	11/29/23 6:30:00 PM	
Font: (Default) Times New Roman, 12 pt, Font color: Red Page 33: [8] Formatted Juan Enrique Fornoni Agnel 11/29/23 6:30:00 PM Font: (Default) Times New Roman, 12 pt, Font color: Red	Font: (Default) Times New Roman, 12 pt, Font color: Red Page 33: [8] Formatted Juan Enrique Fornoni Agnel 11/29/23 6:30:00 PM Font: (Default) Times New Roman, 12 pt, Font color: Red Page 33: [9] Formatted Juan Enrique Fornoni Agnel 11/29/23 6:30:00 PM	Font: (Default) Times	New Roman, 12 pt, Font color: F	ed	⊸
Font: (Default) Times New Roman, 12 pt, Font color: Red Page 33: [8] Formatted Juan Enrique Fornoni Agnel 11/29/23 6:30:00 PM Font: (Default) Times New Roman, 12 pt, Font color: Red	Font: (Default) Times New Roman, 12 pt, Font color: Red Page 33: [8] Formatted Juan Enrique Fornoni Agnel 11/29/23 6:30:00 PM Font: (Default) Times New Roman, 12 pt, Font color: Red Page 33: [9] Formatted Juan Enrique Fornoni Agnel 11/29/23 6:30:00 PM	Dogo 22. [7] E	Lucy Engines Formani Acrost	11/20/22 6.20.00 DM	
Page 33: [8] Formatted Juan Enrique Fornoni Agnel 11/29/23 6:30:00 PM Font: (Default) Times New Roman, 12 pt, Font color: Red	Page 33: [8] Formatted Juan Enrique Fornoni Agnel 11/29/23 6:30:00 PM Font: (Default) Times New Roman, 12 pt, Font color: Red Page 33: [9] Formatted Juan Enrique Fornoni Agnel 11/29/23 6:30:00 PM				
Font: (Default) Times New Roman, 12 pt, Font color: Red	Font: (Default) Times New Roman, 12 pt, Font color: Red Page 33: [9] Formatted Juan Enrique Fornoni Agnel 11/29/23 6:30:00 PM	Font: (Default) Times	New Roman, 12 pt, Font color: F	Red	◄ ····
	Page 33: [9] Formatted Juan Enrique Fornoni Agnel 11/29/23 6:30:00 PM	Page 33: [8] Formatted	Juan Enrique Fornoni Agnel	11/29/23 6:30:00 PM	
	Page 33: [9] Formatted Juan Enrique Fornoni Agnel 11/29/23 6:30:00 PM		-	ed.	4
Page 33: [9] Formatted Juan Enrique Fornoni Agnel 11/29/23 6:30:00 PM		Lonc. (Delault) Tilles	ivev Roman, 12 pt, i ont color. F	ncu	
	Font: (Default) Times New Roman, 12 pt, Font color: Red	Page 33: [9] Formatted	Juan Enrique Fornoni Agnel	11/29/23 6:30:00 PM	