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Climatic and soil characteristics account for the genetic
structure of the invasive cactus moth Cactoblastis cactorum,
in its native range in Argentina
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Background. Knowledge of the physical and environmental conditions that may limit the
migration of invasive species is crucial to assess the potential for expansion outside their
native ranges. The cactus moth, Cactoblastis cactorum, is native to South America
(Argentina, Paraguay, Uruguay and South of Brazil) and has been introduced and invaded
the Caribbean and southern United States, among other regions. In North America there is
an ongoing process of range expansion threatening cacti biodiversity of the genus Opuntia
and the commercial proûts of the domesticated Opuntia ûcus-indica. Methods. To further
understand what inûuences the distribution and genetic structure of this otherwise
important threat to native and managed ecosystems, in the present study we combined
ecological niche modeling and population genetic analyses to identify potential
environmental barriers in the native region of Argentina. Samples were collected on the
host with the wider distribution range, O. ûcus-indica. Results. Signiûcant genetic
structure was detected using 10 nuclear microsatellites and 24 sampling sites. At least six
genetic groups delimited by mountain ranges, salt ûats and wetlands were mainly located
to the west of the Dry Chaco ecoregion. Niche modeling supports that this region has high
environmental suitability where the upper soil temperature and humidity, soil carbon
content and precipitation were the main environmental factors that explain the presence
of the moth. Environmental ûlters such as the upper soil layer may be critical for pupal
survival and consequently for the establishment of populations in new habitats. Whereas
the presence of available hosts is a necessary conditions for insect survival, upper soil and
climatic characteristics will determine the opportunities for a successful establishment.
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21

22 Summary

23 Background. Knowledge of the physical and environmental conditions that may limit the 

24 migration of invasive species is crucial to assess the potential for expansion outside their native 

25 ranges. The cactus moth, Cactoblastis cactorum, is native to South America (Argentina, 

26 Paraguay, Uruguay and South of Brazil) and has been introduced and invaded the Caribbean and 

27 southern United States, among other regions. In North America there is an ongoing process of 

28 range expansion threatening cacti biodiversity of the genus Opuntia and the commercial profits 

29 of the domesticated Opuntia ficus-indica.

30 Methods. To further understand what influences the distribution and genetic structure of this 

31 otherwise important threat to native and managed ecosystems, in the present study we combined 

32 ecological niche modeling and population genetic analyses to identify potential environmental 

33 barriers in the native region of Argentina. Samples were collected on the host with the wider 

34 distribution range, O. ficus-indica.

35 Results. Significant genetic structure was detected using 10 nuclear microsatellites and 24 

36 sampling sites. At least six genetic groups delimited by mountain ranges, salt flats and wetlands 

37 were mainly located to the west of the Dry Chaco ecoregion. Niche modeling supports that this 

38 region has high environmental suitability where the upper soil temperature and humidity, soil 

39 carbon content and precipitation were the main environmental factors that explain the presence 

40 of the moth. Environmental filters such as the upper soil layer may be critical for pupal survival 

41 and consequently for  the establishment of populations in new habitats. Whereas the presence of 
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42 available hosts is a necessary conditions for insect survival, upper soil and climatic 

43 characteristics will determine the opportunities for a successful establishment. 

44 Keywords: biological invasions, gene flow, Lepidoptera, migration, population genetics, prickly 

45 pear cacti 

46

47

48 Introduction

49 Since Elton�s book on the Ecology of Invasions by Animals and Plants (1958), the field of 

50 invasion biology has grown exponentially (Ricciardi & MacIsaac, 2008), but our ability to 

51 predict which physical and biotic factors will prevent the expansion of invasive species in their 

52 non-native range is still poorly developed (Richardson, 2011). So far, rates of invasion have 

53 increased during the last century despite control and management practices (Jaspers et al., 2021), 

54 suggesting that being able to predict the invasion dynamic will open new opportunities to cope  

55 this threat. A central element in predicting the potential migration of invasive species in foreign 

56 regions is the analysis of the natural barriers that define the spatial distribution in their native 

57 habitat (Sherpa et al., 2019). Thus, understanding native spatial patterns of dispersal of 

58 individuals and genes is a first line of evidence to identify potential environmental barriers as 

59 input for predictive models of invasion and population management.

60 The simplest hypothesis about gene flow establishes that this is mainly determined by the 

61 geographic distance that separates two or more populations (Isolation by Distance, IBD) (Wright, 

62 1943). However, to find a pattern of IBD, it is necessary that the flow between populations is 

63 constant, that nothing interferes with the movement of genes in all directions (neither physical 
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64 nor environmental barriers), and that other evolutionary processes like drift or selection are 

65 weaker than the intensity of gene flow (Bolnick & Nosil, 2007, Epperson, 2010). Also, the IBD 

66 analysis does not provide information on whether environmental factors are interacting with 

67 evolutionary processes (Manel et al., 2003). To identify how the environment can contribute to 

68 facilitate or reduce the rates of movement of genes between different populations, tools have 

69 been developed in recent years to analyze various gene flow hypotheses (Anderson et al., 2010). 

70 Circuit theory has been used to build testable hypotheses of gene flow based on the ecology of 

71 the species and the presence of potential environmental and physical barriers (e.g., MacRae, 

72 2009; Andraca-Gómez et al., 2015; Dickson et al., 2019). This information is used to construct 

73 resistance matrices that represent the probabilities of gene flow between all pairs of populations. 

74 In areas of low resistance, movement of genes between populations is more likely, while high-

75 resistance areas represent geographic and environmental barriers (Cushman et al., 2006; McRae, 

76 2006). This methodological approach is essential to test more realistic hypotheses of gene flow 

77 (Isolation by Environment, IBE) (Osrini et al., 2013, Sexton et al., 2014). However, to our 

78 knowledge, there have been few attempts to identify environmental barriers to gene flow of 

79 invasive species in their native range (Sherpa et al., 2019; Acevedo-Limón et al., 2020; Poveda-

80 Martínez et al., 2023). This kind of evidence is essential for population management as input for 

81 invasion dynamic modeling to predict the expansion range in non-native regions (Brown et al. 

82 2016; Aguirre-Liguori et al., 2021; Pilowsky et al., 2022).

83 The invasive cactus moth, Cactoblastis cactorum (Berg) (Pyralidae: Phycitinae), offers a 

84 unique opportunity to evaluate environmental barriers in the native range of an invasive species 

85 because inhabit a wide range of environmental conditions. C. cactorum is a cactophagous 

86 herbivore that feeds on the stems (cladodes) of the prickly pear cacti (Opuntia sp.). It is native to 
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87 South America (mainly Argentina) and was initially used as a biological control agent against 

88 Opuntia in Australia, South Africa, and the Caribbean (Zimmermann et al., 2007). After being 

89 introduced in the Caribbean in 1956 (Simmond & Bennett, 1966), the cactus moth was dispersed 

90 to North America via commercial transportation and hurricanes (Simonsen et al., 2008; Marsico 

91 et al., 2010; Andraca-Gómez et al., 2015, 2020), entering Florida in 1989, and since then, 

92 representing a major threat to the biodiversity and commercial production of Opuntia in Mexico 

93 (Soberón et al., 2001). Mexico is known to be one of the highest cacti biodiversity hotspots 

94 worldwide, as well as one of the main producers of Opuntia. Therefore, identifying 

95 environmental conditions that constrain the presence of C. cactorum in its native range will help 

96 future efforts to predict the spatial invasion dynamics before reaching the major areas of Opuntia 

97 diversity in North America.

98 Previous studies in the native region (Argentina) using insect samples from seven host 

99 species of Opuntia revealed the presence of four genetic groups based on mitochondrial DNA 

100 (COI) (Marsico et al., 2010). Morphological differentiation of larvae was detected among the 

101 four genetic groups, which also were associated with different host usage, suggesting a possible 

102 host effect on ecotypic differences (Brooks et al., 2014). Although some degree of preference to 

103 oviposit on the exotic O. ficus-indica rather than on other native species was recorded, C. 

104 cactorum behave as a generalist with little host preference (Varone et al., 2014). Recent analyses 

105 using genome wide SNPs and niche modelling data indicated that past climatic changes during 

106 the Quaternary and shifts in host use conditioned the actual distribution of genetic variation of C. 

107 cactorum in Argentina (Poveda-Martínez et al., 2023). Ecological niche modelling using 

108 bioclimatic variables indicated that environmental suitability increases since the last glacial 

109 maximum (ca. 21 ky) from the west to the east, north and south of the present distribution 
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110 (Poveda-Martínez et al., 2023). During the Spanish settlement in  South America, five centuries 

111 ago, O. ficus-indica was introduced and likely colonized by C. cactorum since then (Erwin, 

112 2012). The genetic structure of C. cactorum estimated across seven native hosts species suggest 

113 no evidence that the introduction of O. ficus-indica in the native range and the subsequent 

114 human-commercial dispersal have promoted contemporary admixture between distant 

115 populations (Poveda-Martínez et al. 2023). Within Argentina, O. ficus-indica occupies a larger 

116 area and a wider environmental range than any of the other native Opuntia species (Varone et al., 

117 2014), representing a suitable system to examine possible contemporary environmental effects 

118 on genetic variation and structure without strong historical effects nested within native hosts 

119 distribution (e.g., Poveda-Martínez et al., 2023). To control these sources of variation and to 

120 explore the contemporary environmental factors that affect the genetic structure of the species, in 

121 the present study, species specific nuclear microsatellites were used to characterize the 

122 geographic pattern of genetic variation C. cactorum associated with the distribution of O. ficus-

123 indica. 

124 Genetic analyses were combined with ecological niche modelling to test the hypothesis 

125 that environmental conditions affected the genetic structure of the species. Given that the insect 

126 pupates in the upper soil layer (Zimmerman et al., 2004) and is sensitive to temperature (Legaspi 

127 & Legaspi, 2007), we estimated its niche using soil and climatic variables to identify 

128 environmental barriers to species distribution. In addition, incorporating soil information in 

129 ecological niche models is known to reduce overestimation of expected suitability (Coudum et 

130 al., 2006; Beauregard & de Blois, 2014). The predictive model was used to build the Isolation by 

131 Environment (IBE) hypothesis represented by the resistance matrix to gene flow between pairs 

132 of sampling sites. A significant correlation between resistance and genetic differentiation 
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133 matrices would indicate the existence of environmental barriers limiting dispersal (Hernández-

134 Leal et al., 2022). 

135 In the present study, we identified geographic and environmental (bioclimatic and soil) 

136 characteristics that may function as barriers for gene flow. Specifically, we (1) determined the 

137 existence of a significant genetic structure within the sampled region of Argentina where C. 

138 cactorum is associated with O. ficus-indica, (2) identified climatic and soil variables within the 

139 sampled region that better explain the distribution of C. cactorum following a niche modeling 

140 approach, and (3) combined these two pieces of evidence to test whether environmental 

141 conditions explain the geographic pattern of genetic differentiation (McRae, 2009; Andraca-

142 Gómez et al., 2015; Borja-Martínez et al., 2022).

143

144 Methods

145 Study species

146 Cactoblastis cactorum is distributed in tropical and subtropical regions in South America, 

147 between 0 and 1200 masl in Uruguay, south of Paraguay and Brazil, and in the central and 

148 northern part of Argentina (Mann, 1969; McFadyen, 1985; Varone et al., 2014), comprising the 

149 Chaco and Pampean biogeographical provinces (Morello et al., 2012; Oyarzábal et al., 2018, 

150 Arana et al., 2021, Morrone et al., 2022). Within this area, it uses several native host species of 

151 prickly pear cacti (Opuntia anaconda, O. megapotamica, O. elata, O. anacantha, O. 

152 bonaerensis, O. cardiosperma, O. surfurea, O. quimilo, O. rioplatensis, O. penicilligera) and the 

153 exotic O. ficus-indica (Marsico et al., 2010; Varone et al., 2014). The life cycle encompasses a 

154 gregarious larval stage within the cladodes, a pupal stage in the soil (approximately 5-10 cm in 
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155 depth) and a free adult stage (Andraca-Gómez personal observation). The whole cycle lasts 

156 between 4-5 months and depends on environmental conditions (Dood, 1940; Pettey, 1948; Mann, 

157 1969). In particular, temperature determines the percent of hatches (Legaspi & Legaspi, 2007, 

158 Marti & Carpenter, 2008).

159

160 Data collection

161 Between 2011 and 2012, 508 larvae were collected from 24 sites within the distribution range of 

162 C. cactorum in Argentina; mainly in the Chaco and Pampa biogeographic provinces and included 

163 three ecoregions (Sampling approved by the Servicio Nacional de de Sanidad y Calidad 

164 Agroalimentaria from Argentina) (Table 1, Fig. 1, Löwenberg-Neto, 2014)). During two 

165 consecutive years, between February and March, one larva per cladode was collected, 

166 georeferenced and deposited in 1.5 ml vials with alcohol (96%) until DNA extraction. The 

167 samples were collected in the widely distributed exotic host, O. ficus-indica. Sample sizes varied 

168 between 10 and 30 individuals per site (Table 1, Fig. 1). DNA extraction was performed with the 

169 DNEasy® blood & tissue kit (QIAGEN, Maryland, USA, cat.60504) and the resulting product 

170 was diluted to 20  to warrant PCR amplification. We used microsatellites specifically 

171 developed for C. cactorum (Andraca-Gómez et al., 2020). The resulting PCR products were sent 

172 to the Core DNA Sequence Facility at the University of Illinois and analyzed in an Applied 

173 Biosystems sequencer (3730 xl). The GeneMarker program (version 2.20 demo) was used to 

174 genotype individual larvae.

175

176 Genetic analyses
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177 The presence of Hardy-Weinberg equilibrium and linkage disequilibrium at each location was 

178 tested with Genepop (web version, Rousset , 2008) while null alleles among loci were estimated 

179 with FreeNA. Loci with more than 20% of null alleles were eliminated from the analyses 

180 (Chapuis & Estoup, 2007), as well as those that were out of the Hardy-Weinberg equilibrium in 

181 more than 50% of the locations. FSTAT (version 2.9.3.2, Goudet, 2002) was used to calculate the 

182 number of alleles, the allele richness, the observed and expected heterozygosity, and 

183 differentiation between all pairs of sites and genetic groups (FST) (Weir & Cokerman, 1996; 

184 Chapuis & Estoup, 2007).

185

186 Genetic structure

187 First, a Bayesian grouping approximation was implemented in GENELAND (version 4.0) 

188 (Guillot et al., 2008) in R Core Team (2023), to determine the existence of significant population 

189 genetic structure. GENELAND identifies groups of populations based on genetic similarity and 

190 geographic proximity. The analysis was performed in 10 independent runs of Monte Carlo 

191 Markov Chains (MCMC) with 1,000,000 iterations each and a minimum group value (k) of 1 and 

192 a maximum of 24. Assuming a significant genetic structure, uncorrelated allelic frequencies were 

193 chosen. We also incorporated the possible genetic ambiguity (excess homozygotes) in the 

194 grouping algorithm, assuming the existence of null alleles. The location of each individual in the 

195 analysis was included as a geographic coordinate in decimal degrees with a minimum distance of 

196 0.001 ° (approximately equivalent to 100 meters). Burning was applied to the first 10 % (200 

197 chains) of the total iterations.

PeerJ reviewing PDF | (2023:09:90876:0:2:NEW 5 Oct 2023)

Manuscript to be reviewed



198 Second, to detect the presence of potential barriers to gene flow, we used the program 

199 BARRIERS (Version 2.2; Manni et al., 2004). This applies the Monmonier and Delaunay 

200 methods of triangulation of spatial coordinates of sampled sites and generates a map representing 

201 the relationship between the populations and the areas where the possible barriers can be found. 

202 We allowed a maximum of five barriers based on the number of genetic groups obtained by 

203 GENELAND. Genetic groups of populations were assigned a significance value after 

204 bootstrapping a set of 100 distance matrices using Nei (1972) genetic distance estimations. The 

205 100 matrices required by the program were generated by resampling individuals within the 

206 populations using the program MSA (version 4.051). A multivariate analysis of molecular 

207 variance (AMOVA) was performed to decompose the total amount of genetic variation among 

208 and within genetic groups (Arlequin 3.5; Excoffier & Lischer, 2010).

209

210 Ecological niche modeling and environmental barriers

211 To identify environmental barriers related to genetic grouping of sampled sites, niche modeling 

212 and isolation by resistance analyzes were combined (Manthey & Moyle, 2015) (McRae & Beier, 

213 2007; McRae et al., 2008). The MaxEnt algorithm executed in the ntbox package in R (Osorio-

214 Olvera et al., 2020) was used to build a niche model hypothesis for the sampled area of C. 

215 cactorum. To carry out the modeling, we used 40 sites in Argentina where individuals of C. 

216 cactorum were observed during sampling. To build the model, climatic and soil variables were 

217 gathered from WorldClim (https://www.worldclim.org/data/bioclim.html), Soil (Biosoil) 

218 (https://zenodo.org/record/4558732) (Lembrechts et al., 2021) and SoilGrids 

219 (https://www.isric.org/explore/soilgrids) databases. We curated our occurrence data using 

220 standard steps in ecological niche modeling literature and using the approach of Cobos et al. 
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221 (2018). We eliminated spatial duplicates by using a threshold distance of 0.04 grades (~ 2.5 km 

222 at the equator). To avoid collinearity-related problems, we estimated the correlation among each 

223 pair of predictors and kept only those with correlation values < 0.7. We ran iteratively MaxEnt 

224 models using its auto features and explored variable contribution via the Jackknife test on AUC 

225 values (area under the receiver operating characteristic (ROC) curve). After each run, we 

226 removed the least contributing variable from the list of non-correlated environmental variables. 

227 After the selection model procedure, using AUC and the ROC curve, we ended up with the six 

228 best environmental variables that had the highest contribution in most of the models. The final 

229 model prediction (suitability map) was used to construct the resistance matrix in 

230 CIRCUITSCAPE (version 3.5, McRae & Shah, 2009; Andraca-Gómez et al., 2020). Geographic 

231 points with low suitability delineate areas of high resistance for establishment, suggesting the 

232 presence of a geographic or environmental barrier. Multiple matrix regression with 

233 randomization (MMRR) was performed using the genetic distance matrix based on FST values 

234 between pairs of sites as the response variable against the geographic distance matrix and the 

235 resistance (environmental) matrix following the niche model prediction (Wang, 2013). The 

236 distance matrix was adjusted to control for the great-circle distance (i.e., shortest distance 

237 between two points on the surface of a sphere) using the package sf in R (Pebesma, 2018).

238

239 Results

240 Genetic variation and structure. After an initial study, 4 out of 14 nuclear microsatellite loci 

241 were eliminated because they had a null allele frequency greater than 20%. A total of 152 

242 polymorphic loci were used in the final analyzes. Among the 24 locations sampled, the allele 

243 richness varied between 3.36 and 5.78 and the observed heterozygosity (Ho) between 0.36 and 
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244 0.63 (Table 2). All sites, excepting population 14 (Yuquerí), had fewer heterozygotes than 

245 expected under the Hardy-Weinberg equilibrium (FIS > 0, Table 2). Significant paired genetic 

246 differentiation among sites ranged from FST = 0.0228 between locations 22 and 24 to FST = 

247 0.3011 between locations 4 and 12. The mean level of genetic differentiation for the whole set of 

248 sampling sites was FST = 0.178. Within the sample region, the analysis of genetic structure using 

249 GENELAND indicated that the most probable number of genetic groups was six (Fig. 2B). 

250 Genetic groups (hereafter populations) were defined by a probability of assignment between 0.30 

251 and 0.36 (Fig. 2A). The 15th collection site  corresponds to an isolated group in the northern 

252 Yungas ecoregion, within a mountain forest near the Dry Chaco. On the east side of the 

253 distribution, within the Pampean province, there is a group of six sampling sites (green dots in 

254 Fig. 2A) corresponding to the Espinal ecoregion with humid flats between the Paraná and 

255 Uruguay rivers. On the west area of the distribution within the Dry Chaco ecoregion, there are 

256 four genetic groups: a northwestern group ( yellow dots in Fig. 2A), a southwestern group (blue 

257 dots in Fig. 2A), and two groups in the middle, one on the east border (purple dots in Fig. 2A) 

258 and another on the west border (red dots in Fig. 2A). The results of AMOVA indicated that the 

259 variation within sites accounted for most of the genetic variation (81.8%) followed by the 

260 variation among sites within genetic groups (9.9%) and the variation among genetic groups 

261 (8.26%). Genetic differentiation among genetic groups was FCT = 0.078 (Fig. 2D). 

262 Heterozygosity for each genetic group estimated using the pooled sample of sites was similar to 

263 the average Ho when using each site as a replicate (Fig. 2C). The presence of potential barriers to 

264 gene flow with a probability of more than 50% existence strongly matched the clustering 

265 proposed by GENELAND (Fig. 2A). The barriers with higher probability delimited the four 

266 genetic groups within the west region of the distribution range, while less intense barriers 
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267 separated the north and east regions (Fig. 2A). Clusters 1, 2, 3, and 5, correspond to the Dry 

268 Chaco ecoregion, while cluster 6 corresponds to the Yungas ecoregion close to the Dry Chaco. 

269 Cluster 4 is located within the Pampean province, in a humid flat, within the Espinal ecoregion. 

270 Clusters 1, 2, 3, and 5 within the Dry Chaco are separated by mountain ranges, salt flats, and 

271 wetlands in arid or semi-arid conditions. Group 1 in the north (yellow dots in Fig. 2A) 

272 corresponds to forests and shrublands, to the north of Salinas Grandes and south of the wetlands 

273 of the Salado river. Group 2 is located in salt flats within the Monte ecoregion surrounded by the 

274 Sierra de Ancasti to the north and Salinas Grandes to the west (red dots in Fig. 2A). Group 3 

275 corresponds to dry forests and shrublands in a zone of low mountains, south of Salinas Grandes 

276 and west of Sierra Grande (blue dots in Fig. 2A). Group 5 is located within an area surrounded 

277 by Salinas de Ambargasta (East), Sierra de Ambargasta and Sierra de Sumampa (South), Salina 

278 del Saladillo (North) and delta of the Dulce River and Mar Chiquita (National Park Ansenuza 

279 Lagoon (Northeast) (black dots in Fig. 2A).

280

281 Niche modeling. The niche model of C. cactorum had an AUC value of 0.875 and an omission 

282 rate of zero under a five percentile threshold corresponding to a suitability value of 0.074. The 

283 main environmental variables that better explained the distribution of the moth were related to 

284 precipitation and temperature on the soil surface and within the upper soil layer (10 cm depth), as 

285 well as the soil carbon content. These correspond to: average temperature of the driest quarter 

286 (relative contribution to the model, 30%), maximum soil temperature of the warmest month 

287 (relative contribution to the model, 16.1%), annual temperature range (relative contribution to 

288 the model, 14.6%), precipitation seasonality (relative contribution to the model, 14.3%), mean 

289 soil temperature of the wettest quarter (relative contribution to the model, 13.7%), and soil 
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290 organic carbon density (relative contribution to the model, 9.9%). A higher environmental 

291 suitability was detected in the west region where more genetic groups were found. From the west 

292 to the north and east areas of the distribution, the environmental suitability declines consistently 

293 (Fig. S1).

294 Environmental-genetic association. The MMRR analysis showed that the environmental distance 

295 matrix (based on the prediction of the niche model) was significantly related to the genetic 

296 distance matrix E = 0.506, P = 0.032) supporting the hypothesis of Isolation by Environment 

297 (IBE). On the contrary, the same analysis rejected the hypothesis of Isolation by Distance (IBD) 

298 D = 0.053, P = 0.793) (that is, there is no significant association between genetic and 

299 geographic distance matrices. Thus, environmental filters conditioned the genetic structure and 

300 dispersal of C. cactorum.

301

302 Discussion

303 Our analyzes demonstrate the existence of a significant genetic structure of C. cactorum in 

304 Argentina associated with the exotic host O. ficus-indica, introduced in this region about 500 

305 years ago. While the western part of the distribution comprises more genetic diversity (four 

306 genetic groups) and has higher environmental suitability, the genetic groups in the east and north 

307 correspond to areas with lower environmental suitability. The environmental suitability of the 

308 western region corresponds to an area with high environmental heterogeneity (Oyardazabal et al., 

309 2018) but climatically more stable during the Quaternary (Poveda-Martínez et al., 2023) 

310 representing a Pleistocene refuge for biodiversity during the last glaciation (Baranzelli et al., 

311 2017; Robbiati et al., 2021). Furthermore, the suitability for C. cactorum in the sampled region 
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312 seems to be highly influenced by temperature and precipitation above and below ground, in 

313 combination with other soil characteristics. Genetic analyses, allowed us to identify barriers 

314 corresponding to mountain ranges, salt flats, wetlands, and the largest lagoon in central 

315 Argentina (Mar Chiquita). These barriers delimited areas with significant variation in 

316 temperature and precipitation that influenced the genetic clustering of prickly pear moth 

317 populations and may represent major environmental filters for its distribution, dispersal, and 

318 genetic variation.

319 The levels of genetic diversity estimated by heterozygosity showed deficiency (FIS > 0) 

320 in most of the samples of C. cactorum, excepting sampling site 14 (Yuquerí). Deficiency of 

321 heterozygotes and a high proportion of null alleles (> 20%) are a common phenomenon among 

322 Lepidoptera (Malausa et al., 2007; Sinama et al., 2011; Guillemaud et al., 2015). This condition 

323 is associated with high rates of mutation in genetic regions flanking microsatellites, as well as the 

324 presence of transposable elements (Sinama et al., 2011). Other factors like gene flow, genetic 

325 drift, and the genetic structure of populations (Wahlund effect) can also account for lower-than-

326 expected levels of heterozygotes (Haldane, 1948; Kimura, 1968). When the average 

327 heterozygosity for each genetic group was compared with the observed heterozygosity for the 

328 entire genetic group, no differences were observed. This suggests that possible Wahlund effects 

329 were not likely related to the genetic structure of populations (Waples, 2015). The heterozygosity 

330 was rather uniform among the sampling sites, suggesting that there were no strong effects of 

331 genetic drift. Furthermore, the east genetic group had the lowest FIS values and is less 

332 differentiated from the other groups. Despite significant paired genetic differentiation between 

333 sampling sites, the low amount of variance explained by genetic groups suggests that gene flow 

334 has been moderate. Levels of paired genetic differentiation among sampling sites (range FST = 
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335 0.022 - 0.301) fall within the range detected using nuclear SNPs across a pooled sample of seven 

336 hosts within the same region (FST = 0.023 - 0.448) (Poveda-Martínez et al., 2023). Ongoing 

337 genomic analysis will provide more information to explain positive FIS values and to unravel the 

338 causes of genetic differentiation.

339 Among plant-natural enemy interactions, environmental conditions and host species are 

340 known to affect the distribution of the genetic variation of consumers (Mopper & Strauss, 1994; 

341 Whitham et al., 2003; Wand & Bradburd, 2014; Wang et al., 2017). Disentangling the effect of 

342 these sources of variation is particularly challenging when consumers interact with various hosts 

343 inhabiting different environmental conditions (Wang et al., 2017). For this reason, in the present 

344 study, the host species with the wider environmental range was selected to increase the power of 

345 molecular markers to examine environmental effects upon genetic variation. The results indicate 

346 the presence of a significant genetic structure of the cactus moth on the exotic O. ficus-indica, a 

347 species introduced about five centuries ago during the Spanish arrival to South America (Ervin, 

348 2012). The west sampled region (within the Dry Chaco) contained the highest genetic diversity 

349 and suitability represented by four genetic groups (1, 2, 3, 5), which are delimited by geographic 

350 barriers. This finding mirror previous research indicating that Dry Chaco corresponded to a 

351 biodiversity refuge during the Quaternary climate changes (Poveda-Martínez et al., 2023), and 

352 suggest  an association between genetic diversity and environmental suitability (Ochoa-Zavala et 

353 al., 2022). Colonization of C. cactorum to O. ficus indica followed an historical phylogeographic 

354 pattern seen in other species, promoted by more recent environmental conditions. This is 

355 supported by two previous findings: (1) the generalist feeding habit of the cactus moth (Varone 

356 et al., 2014) that likely allowed the colonization of O. ficus-indica since its introduction, and (2) 

357 the absence of human-mediated dispersal of O. ficus-indica related to agroindustry that promote 
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358 admixture among distant populations (Poveda-Martínez et al., 2023). Since its introduction in the 

359 Dutch Antilles in 1956 (Simmonds & Bennett, 1966), a similar pattern was found in the invaded 

360 region of North America (Florida) and the Caribbean (Andraca-Gómez et al., 2020), where the 

361 moth followed the phylogeographic pattern recorded for other native species of turtles, birds, 

362 crabs, and beetles (Avise, 2000). Thus, the presence of C. cactorum on O. ficus-indica in 

363 Argentina represent a useful natural setup to better understand how contemporary environmental 

364 conditions affect the distribution of genetic variation and environmental barriers to gene flow. 

365 Ecological niche models have become a central tool for identifying environmental filters 

366 and barriers to migration (Razgour et al., 2013; Goudarzi et al., 2019). In turn, environmental 

367 filters can provide useful information to identify relevant life stages and traits related  to 

368 environmental tolerance (Renault et al., 2018). Our results indicate that temperature (above and 

369 below ground), precipitation (seasonality), and soil organic carbon content can be the most 

370 relevant variables to predict the distribution of the cactus moth in the sampled region. Our results 

371 add to previous results of niche modeling for C. cactorum in North (Soberón et al., 2001) and 

372 South America (Poveda-Martínez et al., 2023) using only bioclimatic variables as soil 

373 characteristics significantly contributed to the model prediction. Since the moth pupates 

374 approximately in the top 10 cm of soil, temperature below the growth level, moisture and organic 

375 carbon content probably play a major role in pupal survival. Other species of lepidopteran have a 

376 high mortality rate during the pupal stage when soil humidity increases (Wang et al., 2017; Shi et 

377 al., 2021; Thian et al., 2021), but a low content can also affect pupal survival and emergence 

378 (Wang et al., 2017). Experimental studies and demographic analyses in different populations of 

379 C. cactorum in South Africa and under experimental conditions in Florida, found a lower 

380 development of larvae at <18°C and > 34°C (Zimmermann & Moran, 1991; Legaspi & Legaspi, 
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381 2007). In the present study, the greater environmental suitability in the drier western region 

382 suggests that pupae are probably more vulnerable to high soil moisture during the summer as 

383 precipitation is drastically reduced from the eastern plains of the Pampean region to the semi-arid 

384 shrublands and dry forests of Dry Chaco (Oyarzabal et al., 2018). The lower number of 

385 populations and the environmental suitability of the eastern group support the expectation that 

386 this region is under less benign conditions for moth development on O. ficus-indica. Ecological 

387 niche theory proposes that more populations will be found at the center of the ecological niche 

388 (Martínez-Meyer et al., 2013; Osorio-Olvera et al., 2020), corresponding to the area with optimal 

389 conditions for survival, growth, and reproduction (Lira-Noriega & Manthey, 2014; Osorio-

390 Olvera et al., 2016). Our results support this expectation, as the region with higher environmental 

391 suitability following the niche model also corresponds to the region where C. cactorum was 

392 more abundant and where more genetic groups were detected. As environmental suitability is not 

393 homogeneously distributed within the sampled region, patterns of dispersal and genetic 

394 differentiation would be affected by environmental filters (e.g., Acevedo-Limón et al., 2020; 

395 Valdez et al., 2020; Hernandez-Leal et al., 2022).

396 In particular, the isolation by environment hypothesis (IBE) following the principles of 

397 electric resistance has helped to identify potential environmental barriers to species distribution 

398 and gene flow (MacRae, 2006; Wang & Bradburd, 2014). This approximation has increased the 

399 predictive power to account for the spatial distribution of genetic variation (McRae & Shah, 

400 2009; McRae & Beier, 2007; Wang & Bradburd, 2014; Andraca-Gómez et al., 2015). Whereas 

401 the IBE hypothesis can be constructed using natural history information, niche models can 

402 provide a quantitative more precise estimation of environmental suitability (see Andraca-Gómez 

403 et al., 2015  and Poveda-Martínez et al., 2023). The significant effect of the environment on the 
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404 distribution of genetic variation allowed us to successfully identify important geographic and 

405 environmental barriers for gene flow and/or genetic differentiation in C. cactorum. Our results 

406 extend previous findings that the central Dry Chaco region comprises the ancestral genetic 

407 lineage (Poveda-Martínez et al., 2023), indicating that this area also present high diversity of 

408 genetic groups and the presence of significant environmental barriers. One of the strongest 

409 barrier separated the westerns groups within the Dry Chaco from sites located in the Pampean 

410 province (e.g., Poveda-Martínez et al., 2023). Barriers represented by mountain ranges, salt flats, 

411 wetlands, and soil conditions translate to different combinations of humidity and temperature of 

412 the upper soil layer where the moth pupates. Therefore, this stage of the life cycle seems to be 

413 critical for the environmental tolerance of the moth. Although the presence of a suitable host is a 

414 prerequisite for survival, it is not a sufficient condition for the presence of C. cactorum. In fact, 

415 during sampling, the moth was not detected at several sites where O. ficus-indica was present 

416 (Andraca-Gómez, unpublished data). Given the climatic and soil differences among the genetic 

417 groups, phenological asynchrony is expected, reducing the opportunities for effective gene flow 

418 (Zimmer & Emlen, 2013) and probably a higher heterogeneity in the life history traits of the 

419 cactus moth. This may explain the presence of at least four genetic groups within the western 

420 region. Overall, our results provide a new piece of evidence to understand the relevance of 

421 contemporary environmental conditions on the genetic structuring of this invasive species within 

422 its native range.
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681 Legends

682 Table 1. List of 24 sampling sites of Cactoblastis cactorum in Argentina.

683 Table 2. Statistics of genetic diversity of Cactoblastis cactorum in 24 sampling sites from 

684 Argentina for 10 microsatellite loci: number of alleles (NA), allelic richness (AR) (estimated 

685 from 9 diploid individuals), expected heterozygosity (HE), observed heterozygosity (HO), 

686 inbreeding coefficient ((FIS (*non-significant values)).

687 Figure 1. Geographic location of the 24 sampling sites of Cactoblastis cactorum used for genetic 

688 analyses. Samples are distributed in two biogeographic provinces (Löwenberg-Neto, 2014). The 

689 numbers correspond to those of Table 1. 

690 Figure 2. A. Representation of the six genetic groups defined by GENELAND for the 24 

691 sampling sites of Cactoblastis cactorum in Argentina. The color of the dots represents the 

692 genetic group that was assigned by the GENELAND program. Sampling sites: 9, 11, 12, 13, 14, 

693 16 (green dots), 1, 6, 18, 20, 22, 23, 24 (yellow dots), 7, 8, 10 (blue dots), 17, 21 (purple dots), 2, 

694 3, 4, 5 (red dots),  Letters correspond to Salinas Grandes, SG, Salinas de Ambargasta, SA, 

695 Laguna Mar Chiquita, LA. Brown lines indicate the geographic location of the barriers proposed 

696 by the BARRIERS program (the barriers depicted are those with a percentage of existence greater 

697 than 70). B. Density distribution of the number of clusters along the chain with a burning period 

698 of 200 iterations and 1,000,000 steps of MCMC. C. Observed heterozygosity (HO ± std) for each 

699 genetic group calculated as the average Ho for the 10 loci within each group (colored bars) and 

700 as the average Ho of sampling site within a given genetic group (white bars). D. Matrix of paired 

701 genetic distances between genetic groups (all values are significant). The numbers and colors in 

702 figures A, C and D are equivalent and represent the six genetic groups.
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704 Suplementary Material

705 Table S1. Genetic differentiation values (FST) between pairs of sampling sites.

706 Figure S1. Suitability map for Cactoblastis cactorum as predicted by the consensus niche model. 

707 Colors indicate the model predicted suitability within the sampled region. Regions with high 

708 suitability indicate a higher probability of detecting C. cactorum in Opuntia ficus-indica.

709 Database. 

710

711
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Table 1. List of 24 sampling sites of Cactoblastis cactorum in Argentina.

Table 1. List of 24 sampling sites of Cactoblastis cactorum in Argentina.
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1

Sampling sites Biogeographic 

province

Ecoregion Coordinates Number of 

individuals

1. Huasapampa Chacoan Dry Chaco 27°54.839�S 65°33.805�O 30

2. Icaño Chacoan Dry Chaco 28°55.996�S 65°17.955�O 27

3. Hipódromo las Rosas Chacoan Dry Chaco 28°33.111�S 65°44.912�O 20

4. Recreo Chacoan Dry Chaco 29°16.346�S 65°04.230�O 24

5. San Martín Chacoan Dry Chaco 29°13.239�S 65°46.299�O 18

6. El Talar Chacoan Dry Chaco 28°05.028�S 65°18.595�O 30

7. San Isidro Chacoan Dry Chaco 32°08.933�S 65°06.292�O 19

8. Cruz del Eje Chacoan Dry Chaco 30°42.304�S 64°48.602�O 30

9. El Fortín Pampean Espinal 31°57.88�S 62°19.721�O 21

10. Quilino Chacoan Dry Chaco 30°13.655�S 64°28.928�O 30

11. Las Varillas Pampean Espinal 31°51.463�S 62°43.197�O 19

12. Ayuí Pampean Espinal 31°11.727�S 58°02.797�O 15

13. Federal Pampean Espinal 30°55.835�S 58°46.396�O 16

14. Yuquerí Pampean Espinal 31°22.917�S 58°07.718�O 15

15. El Carmen Chacoan Yungas 24°19.764�S 65°14.988�O 30

16. Sastre Pampean Espinal 31°44.344�S 61°50.193�O 10

17. El Cuarenta y Nueve Chacoan Dry Chaco 29°02.934�S 63°57.510�O 30

18. Hock Chacoan Dry Chaco 28°21.299�S 64°19.046�O 30

19. La Banda Chacoan Dry Chaco 27°44.937�S 64°12.232�O 11

20. La Puerta Chacoan Dry Chaco 27°37.915�S 64°37.281�O 26

21. Pozo Escondido Chacoan Dry Chaco 29°28.253�S 63°39.135�O 30

22. Ruta Nueve Chacoan Dry Chaco 27°45.027�S 64°23.532�O 12

23. Vilmer Chacoan Dry Chaco 27°45.982�S 64°09.632�O 15

24. Tucumán Chacoan Dry Chaco 27°07.269�S 64°55.704�O 26

2

3

4

5

6

7

8

9
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Table 2. Genetic diversity estimates for 24 sampling sites for Cactoblastic cactorum in
Argentina.

Table 2. Statistics of genetic diversity of Cactoblastis cactorum in 24 sampling sites from
Argentina for 10 microsatellite loci: number of alleles (NA), allelic richness (AR) (estimated
from 9 diploid individuals), expected heterozygosity (HE), observed heterozygosity (HO),

inbreeding coeûcient ((FIS (*non-signiûcant values)).
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1

Sampling sites NA AA HS HO FI�

1. Huasapampa 6 (2.494) 4.736 (1.799) 0.684 (0.215) 0.491 (0.222) 0.282

2. Icaño 5.7 (1.16) 4.503 (0.992) 0.626 (0.194) 0.444 (0.188) 0.291

3. Hipódromo las Rosas 4.9 (2.132) 3.940 (1.458) 0.560 (0.238) 0.41 (0.251) 0.272

4. El Recreo 4.8 (2.251) 3.834 (1.646) 0.538 (0.240) 0.365 (0.180) 0.323

5. San Martín 4.1 (1.524) 3.773 (1.170) 0.578 (0.188) 0.448 (0.218) 0.231

6. El Talar 5.9 (2.685) 4.789 (1.841) 0.655 (0.250) 0.427 (0.191) 0.348

7. San Isidro 5.4 (2.413) 4.556 (1.879) 0.628 (0.270) 0.377 (0.274) 0.399

8. Cruz del eje 7.2 (2.57) 5.508 (1.870) 0.708 (0.219) 0.487 (0.161) 0.313

9. El Fortín 5.9 (1.595) 4.742 (1.247) 0.670 (0.184) 0.551 (0.177) 0.177

10. Quilino 6.3 (2.058) 5.133 (1.548) 0.695 (0.209) 0.458 (0.214) 0.207

11. Las Varillas 6.8 (1.814) 4.934 (1.100) 0.681 (0.098) 0.515 (0.140) 0.247

12. Ayuí 3.8 (1.687) 3.365 (1.349) 0.533 (0.235) 0.441 (0.244) 0.171

13. Federal 5.4 (1.578) 4.649 (1.301) 0.664 (0.187) 0.526 (0.233) 0.207

14. Yuquerí 4.2 (1.619) 3.732 (1.237) 0.586 (0.243) 0.560 (0.278) 0.052*

15. El Carmen 6.8 (1.814) 5.008 (1.371) 0.653 (0.188) 0.508 (0.189) 0.225

16. Sastre 5.5 (1.581) 5.333 (1.597) 0.645 (0.232) 0.474 (0.210) 0.275

17. El Cuarenta y nueve 6.7 (2.003) 5.468 (1.611) 0.722 (0.174) 0.417 (0.190) 0.423

18. Hock 6.2 (1.687) 4.967 (1.182) 0.730 (0.133) 0.440 (0.194) 0.402

19. La Banda 4.4 (1.174) 4.219 (1.157) 0.608 (0.135) 0.427 (0.268) 0.307

20. La Puerta 6.1 (1.912) 4.914 (1.310) 0.703 (0.134) 0.582 (0.148) 0.175

21. Pozo Escondido 7.1 (2.685) 5.502 (1.611) 0.719 (0.176) 0.459 (0.251) 0.365

22. Ruta 9 6 (2.211) 5.577 (1.986) 0.725 (0.213) 0.633 (0.261) 0.131

23. Vilmer 5.4 (1.713) 4.720 (1.399) 0.692 (0.150) 0.477 (0.229) 0.319

24. Tucumán 6.8 (2.15) 5.458 (1.483) 0.719 (0.132) 0.541 (0.223) 0.251

2

3

4
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Figure 1
Figure 1. Geographic location of the 24 sampling sites of Cactoblastis cactorum.

Figure 1. Geographic location of the 24 sampling sites of Cactoblastis cactorum used for
genetic analyses. Samples are distributed in two biogeographic provinces (Löwenberg-Neto,
2014). The numbers correspond to those of Table 1.
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Figure 2
Figure 2. A. Results from GENELAND analysis of Cactoblastis cactorum within the
sampled region of Argentina, number of genetic cluster, heterozigocity and paired
genetic diûerentiation among groups.

Figure 2. A. Representation of the six genetic groups deûned by GENELAND for the 24
sampling sites of Cactoblastis cactorum in Argentina. The color of the dots represents the
genetic group that was assigned by the GENELAND program. Sampling sites: 9, 11, 12, 13,
14, 16 (green dots), 1, 6, 18, 20, 22, 23, 24 (yellow dots), 7, 8, 10 (blue dots), 17, 21 (purple
dots), 2, 3, 4, 5 (red dots), Letters correspond to Salinas Grandes, SG, Salinas de
Ambargasta, SA, Laguna Mar Chiquita, LA. Brown lines indicate the geographic location of
the barriers proposed by the BARRIERS program (the barriers depicted are those with a
percentage of existence greater than 70). B. Density distribution of the number of clusters
along the chain with a burning period of 200 iterations and 1,000,000 steps of MCMC. C.

Observed heterozygosity (HO ± std) for each genetic group calculated as the average Ho for

the 10 loci within each group (colored bars) and as the average Ho of sampling site within a
given genetic group (white bars). D. Matrix of paired genetic distances between genetic
groups (all values are signiûcant). The numbers and colors in ûgures A, C and D are
equivalent and represent the six genetic groups.
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