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Abstract: In the present work, morphology and mitogenomes are utilized to resolve the relationship 

between four erythroneurine leafhoppers (Hemiptera, Cicadellidae, Typhlocybinae, Erythroneurini): 

Arboridia (Arboridia) rongchangensis sp. nov., Thaia (Thaia) jiulongensis sp. nov., Mitjaevia 

bifurcata and Mitjaevia diana , the two new species are described and illustrated. The mitochondrial 

gene sequences of these four species were determined to update the mitochondrial genome database 

of Erythroneurini. The mitochondrial genomes of four species shared high parallelism in nucleotide 

composition, base composition and gene order, comprising 13 protein-coding genes (PCGs), 22 

transfer RNAs (tRNAs), 2 ribosomal RNAs (rRNAs) and a AT control region, which was consistent 

with majority of species in Cicadellidae; all genes revealed common trait of a positive AT skew and 

negative GC skew. The mitogenomes of four species were ultra-conservative in structure, and which 

is analogous to that of others in size and A+T content. Phylogenetic trees based on the mitogenome 

data of these species and another 24 species were built employing the maximum likelihood and 

Bayesian inference methods. The results indicated that the four species belong to the tribe 
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Erythroneurini, M. diana is the sister-group relationship of M. protuberanta + M. bifurcata. The two 

species Arboridia (Arboridia) rongchangensis sp. nov. and Thaia (Thaia) jiulongensis sp. nov. also 

have a relatively close genetic relationship with the genus Mitjaevia. 
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Introduction 

The tribe Erythroneurini Young, 1952, the largest tribe in the leafhopper subfamily 

Typhlocybinae, (Hemiptera, Cicadellidae), comprising 204 genera and nearly 2000 described 

species (Young, 1952; Dmitriev, 2003; Song & Li, 2016; Song & Li, 2017), and is widely distributed 

in all major zoogeographic regions of the world (Chen et al., 2021a). As plant sap sucking insects 

they are among the main pests of agriculture, including fruit trees and vegetables and their small 

size makes them difficult to detect and identify. Damage to plants is by egg laying and as virus 

vectors of plant pathogens (Womack & Schuster, 1986; Bellota, 2011; Bosco et al., 2007). Moreover, 

erythroneurine species have adapted to various habitats and plants such as trees, rocks, grasslands, 

sandy substrates, and bushy areas etc (Morris, 1971; Roddee et al., 2018). The species of 

Erythroneurini have been divided and classified by researchers in different ways, as a result of high 

morphological diversity and wide geographical distributions. 

China is the country with the most widely distributed, fully developed and most complete types 

of karst landforms in the world, which are mainly concentrated in carbonate outcropping areas, of 

which Guangxi, Guizhou, and eastern Yunnan account for the largest area (Xiong et al., 2008). 

Guizhou is an important part of the Yunnan-Guizhou Plateau and is believed to be the most well-

developed representative of karst areas. The terrain is violently undulating, the types of landforms 

are diverse, and the composition of surface material and soil types is complex. Additionally, the 
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climate of this area is warm and humid, with small annual temperature changes, warm in winter and 

cool in summer (Zhu et al., 2020), resulting in high biodiversity (Luo et al., 2016; Zhu, 2007). Many 

new species of Erythroneurini were discovered in karst regions from Guizhou (Chen et al., 2020; 

Song et al., 2011; Zhang et al., 2021).  

    Phylogenetic relationships of major lineages of Cicadellidae have been researched for many 

years (Chen & Li, 2014; Wang et al., 2020a; Wang et al., 2020b). More recently, diverse molecular 

markers have been applied to perform phylogenetic inferences of Hemiptera, which consist of shape 

characteristic, mitochondrial genes, nuclear genes and a combination of them, together with 

transcriptomes on the basis of next-generation sequencing (Almeida et al., 2009; Wang et al., 2010; 

Yao et al., 2021). With the purpose of confirming the results of traditional classification of 

Eurythroneurini we also use molecular markers. Based on morphological and molecular data, 

Erythroneurini has been divided into 204 genera (Dmitriev, 2003). However, in most instances, short 

time intervals between speciation events generated incongruous divergence in morphological 

features and molecular markers (Chen et al., 2021b).  

The relationships among the multiple species of Cicadellidae were established by means of 

morphological characters, and a few nuclear genes and mitochondrial sequences (Longo et al., 2017; 

Jiang et al., 2021). However, despite the tendency to expand genome coverage, the number of 

specimens that can be collected is relatively limited, and existing species were chosen to conduct 

genetic sequencing, as it is impossible to establish a relatively complete molecular identification of 

the family. Therefore, in our work, the mitochondrial genomes of two new species and two known 

species (Mitjaevia bifurcata, Mitjaevia diana) were picked via Sequencing Technology to provide 

a comprehensive comparative analysis of mitochondrial gene structure (Luo et al., 2021; Distant & 
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Rhynchota, 1918). Phylogenetic trees based on the mitochondrial genomes of A. (A.) 

rongchangensis sp. nov. and T. (T.) jiulongensis sp. nov., M. bifurcata and M. diana and another 24 

species were built adopting the Bayesian inference and maximum likelihood methods. This research 

will enrich the mitochondrial gene bases of the erythroneurine leafhoppers and improve the accuracy 

of the traditional classification. 

Materials and methods  

Leafhopper Collections and Species Identification Based on the Morphology 

The species of leafhopper are collected according to Table 1. The specimens were preserved in 

absolute ethanol. Images of the appearance and genitalia of species were taken by a KEYENCE 

VHX-5000 digital microscope. Male/female specimens were identified under a stereoscope, and the 

whole abdomen of the specimens was separated and moistened in a hot 10% NaOH solution. 

Afterward, the abdomen was washed with ordinary water, blotted up with qualitative filter paper, 

and transferred to a clean glass slide with a drop of glycerin. Genital dissections were dissected in 

glycerin to inhibit parts from drying out. Then, they were viewed and plotted by way of Olympus 

SZX16 and BX53 microscopes. The remaining specimen was stored in 95% ethanol and put in a 

refrigerator at −20°C. The analyzed specimens were examined using Olympus SZX16 dissecting 

microscope and Olympus BX53 stereoscopic microscopes respectively and identified by Prof. 

Yuehua Song. All specimens inspected are reserved in the School of Karst Science, Guizhou Normal 

University, China (GZNU). 

DNA Extraction, Mitogenome Sequencing and Assembly 

Extraction of DNA originated from the whole body removing the abdomen and wings. The 

bodies were incubated at 56 °C for 6 h for complete lysis and total genomic DNA was eluted in 50 
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µL double-distilled water (ddH2O), and the remaining other steps were performed according to the 

manufacturer's protocol. Genomic DNA was stored at −20 °C. The whole mitochondrial genomes 

of A. (A.) rongchangensis sp. nov. and T. (T.) jiulongensis sp. nov. were sequenced at Berry 

Genomics (Beijing, China) by an Illumina Novaseq 6000 platform (Illumina, Alameda, CA, USA) 

using 150 bp paired-end reads. Firstly, the obtained sequence reads were filtered following Zhou et 

al. (Zhou et al., 2013), the remaining high-quality reads were assembled by an iterative De Bruijin 

graph de novo assembler, the IDBA-UD toolkit, with a similarity threshold of 98%, and k values of 

40 and 160 bp (Peng et al., 2012). The mitogenome was initially assembled by Geneious Prime v 

2021.1.1, and then manually proofread based on sequencing peak figures.  

The complete mitochondrial genomes of M. Bifurcata and M. diana were sequenced at Bio-

Transduction Lab Co.Ltd. (Wuhan, China) by Sanger sequencing. PCR primers were designed 

according to conserved region sequences and used to amplify the mitochondrial DNA sequence in 

PCR reactions (Table 3, 4). The PCR reaction was performed using the LA Taq polymerase. The 

thermal cycling conditions comprised an initial denaturation step at 94°C for 2 min, then 35 cycles 

of denaturation at 94 °C for 30 s, 30 s for annealing at 55°C, and elongation at 72 °C for 1 min/kb, 

followed by the final extension at 72 °C for 10 min. The PCR products were purified and sequenced 

using an ABI 3730 automatic sequencer. After quality-proofing of the obtained DNA fragments, 

and BLASTed were used to confirm that the amplification is the actual target sequence (Meng et al., 

2013; Yu et al., 2017). The complete mitogenome sequence was assembled manually through 

DNAStar v7.1 (Burland, 2000). 

Genome Annotation and Analyses 

    First of all, raw mitogenomic sequences were entered into MITOS web servers 



(http://mitos.bioinf.uni-leipzig.de/index.py, accessed on 15 Jun 2021) in an effort to fix the rough 

boundaries of genes. Accurate locations of protein-coding genes (PCGs) were determined by 

seeking ORFs (employing genetic code 5, the invertebrate mitochondrion). All tRNAs were 

characteried by using tRNAscan SE v. 1.21 and ARWEN (Lowe et al., 1997; Laslett et al., 2008). 

The precise boundaries of rrnL and rrnS were defined by homologous comparison. Genomes 

manually annotated were parsed and extracted by means of PhyloSuite, and GenBank (NCBI) 

submission files and organization tables for mitogenomes were also created through the same 

software (Zhang et al., 2020).   

The mitogenomic circular map was generated by OrganellarGenomeDRAW (OGDRAW) 

version 1.3.1 (https://chlorobox.mpimp-golm.mpg.de/OGDraw.html, accessed on 3 March 2023 

(Greiner et al., 2019). Intergenic spacers and overlapping regions between genes were performed 

manually. The nucleotide base composition, codon usage, as well as values of A + T content were 

calculated with MEGA 11.0 (Tamura et al., 2021). The bias of nucleotide composition was 

computed according to AT skew = [A – T] / [A + T] and GC skew = [G – C] / [G + C] (Perna & 

Kocher, 1995). Additionally, the nucleotide diversity (Pi) and nonsynonymous (Ka)/synonymous 

(Ks) mutation rate ratios were operated by DNAsp 6.0 (Julio et al., 2017). 

Phylogenetic analysis 

A molecular phylogenetic analysis was constructed on the basis of mitogenomes of 28 species 

and two species regarded as outgroups (Table 2). All complete mitochondrial sequences were 

selected to accomplish phylogenetic analyses. The Gblocks version 0.91b was adopted to clean out 

the gaps and fuzzy-alignment sites, and all alignments were verified and revised in MEGA 11.0 

prior to phylogenetic analysis (Tamura et al., 2021). The phylogenetic trees were constructed by 



introducing two methods both the maximum likelihood (ML) method and the Bayesian Inference 

(BI) method (Nguyen et al., 2015; Zhou et al., 2011). The ML analysis was performed with IQ-

TREE under a ML+rapid bootstrap (BS) algorithm with 10,000 replicates used to calculate bootstrap 

scores for each node (BP). The BI analysis was carried out using MrBayes 3.2.7 elected GTR+G+I 

as the optimal model, running 10 million generations, sampling every 1000 trees, 25% of samples 

were abandoned as burn-in. 

Results and discussion 

Taxonomy based on morphology 

Arboridia (Arboridia) rongchangensis Zhang & Song, sp. nov. (Figures 1-2) 

Description. Dorsum dark brownish (Figs. 1a, 1c). Color pattern brown. Head narrower than 

pronotum (Fig. 1a, 1c). Crown fore margin weakly produced medially. Vertex with a pair of dark 

preapical spots. Face yellowish white, with anteclypeus narrow and pale, and frontoclypeus dark 

(Fig. 1b, 1d). Pronotum wide, scutellum with dark lateral triangles (Figs. 1a, 1c). Forewings without 

spots or markings. 

Male genitalia. Pygofer dorsal appendage simple, without branch, hook-like apically (Figs. 2e, 

2f). Subgenital plate with 2 macrosetae on lateral surface, and row of peg-like setae from subbase 

to apex, and several microsetae scattered on apical portion (Figs. 2d). Style long and slender, with 

2 points apically; preapical lobe obtuse and distinct (Fig. 2a). Aedeagus with a large lamellate 

process arising from base of aedeagal shaft ventrally; aedeagal shaft broad and flat, slightly 

bifurcated at apex; gonopore subapical on ventral surface; preatrium little longer than shaft (Figs. 

2b, 2c). Connective V-shaped, with arms long (Fig. 2g).  

Male abdominal apodemes small, not exceeding 3rd sternite (Fig. 2h).  
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Measurement. Male length 3.0~3.1 mm, female length 3.1~3.2 (including wings).  

Specimens examined. Holotype: ♂, CHINA, Chongqing, Rongchang, 14 Ⅷ  2021, coll. 

Guimei Luo. Paratypes: 11♂♂, 32♀♀, same data as holotype.  

Remarks. This species is similar to Arboridia reniformis Song & Li (2013), but differs in 

having the aedeagal shaft distinctly bifurcate apically.  

Etymology. The new species is named after its type locality: “Rongchang” county, Chongqing, 

China. 

Thaia (Thaia) jiulongensis Zhang & Song, sp. nov. (Figures 3-4) 

Description. Vertex yellow, light brownish in middle apically (Figs. 3a, 3c). Face yellowish 

brown (Figs. 3b, 3d). Pronotum orange brown, with pair of large triangular impressions, posterior 

and anterior part lighter, yellowish (Figs. 3a, 3c). Scutellum with anterior margin yellow and 

posterior part milky yellow; lateral triangles brownish black (Figs. 3a, 3c).  

Male abdominal apodeme small, not surpassing 3rd sternite (Fig. 4i). 

Male genitalia. Pygofer lobe with scattered fine microsetae on dorsal surface, with dorso-

caudal margin angulated (Fig. 4f). Anal tube with well-developed basal appendages, extending 

ventro-caudally (Fig. 4g). Subgenital plate broadened at subbase, provided with 3 macrosetae on 

lateral surface at midlength, numerous peg-like small setae along dorsal margin from near midlength 

part to apex; several small setae scattered apically (Figs. 4e, 4f). Style slender apically, preapical 

lobe well developed (Fig. 4a). Aedeagus expanded at base in ventral view, with pair of long basal 

process arising from preatrium ventrally, which slim and curved, tapering towards apex; gonopore 

apical on ventral surface (Figs. 4b, 4c, 4d). Connective V-shaped, without central lobe, lateral arms 

long and slim (Fig. 4h).  
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Specimen examined. Holotype: ♂, CHINA, Chongqing, Jiulongpo District, Zhongliang 

Yunling Forest Park, 14 Ⅷ, 2021. coll. Weiwen Tan. Paratypes: 5♂♂, 15♀♀, same data as 

holotype. 

Measurement. Body length ♂ 3.0~3.2 mm; ♀ 3.0~3.2 mm (including wings). 

Remarks. This species is similar to Thaia (Thaia) barbata Dworakowska (1979), but can be 

distinguished from the latter species by from the shape of the adedeagus with a small subapical 

protrusion and the anal tube appendages which are particularly wide. 

Etymology. The new species is named after its type locality, Jiulong, Chongqing. 

Taxonomy based on molecular data 

Organization and composition of the genome 

Just as other previously reported species in Typhlocybinae, the genomic structure and 

nucleotide composition of a couple of mitogenomes sequenced in the present study are quite similar 

(Chen et al., 2021a; Chen et al., 2021b). The complete mitogenomes of A. (A.) rongchangensis sp. 

nov., T. (T.) jiulongensis sp. nov., M. bifurcata and M. diana are 15,596, 15676, 16,183 and 16,589 

bp, separately. Both species comprise 13 PCGs, 22 tRNA genes, two rRNA genes, and a control 

region (CR) (Fig. 5). Two strands, the majority strand (H-strand) and the minority strand (L-strand), 

exist in the mitochondrial genome. The H-strand consists of 23 genes (9 PCGs, 14 tRNAs) and CR, 

and meanwhile, the L-strand encompasses 14 genes (4 PCGs, 8 tRNAs, and 2 rRNAs). 

 There are 50 bp, 66 bp, and 70 bp intergenic spaces presented in total length of all the 

intergenic space ranging from 1 to 10 bp, 1 to 13 bp, 1 to 9 bp in A. (A.) rongchangensis sp. nov., 

M. bifurcata, M. diana. However, 52 bp intergenic space existed in 11 regions from 1 to 15 bp in T. 

(T.) jiulongensis sp. nov. It can be observed that ten genes overlapped by 28 bp in A. (A.) 

rongchangensis sp. nov., eleven genes overlapped by 31 bp in T. (T.) jiulongensis sp. nov., ten genes 

overlapped by a grand total of 32 bp in M. bifurcata, nine genes overlapped by 40 bp M. diana 

(Table 5). Such similar gene structure is common among leafhoppers (Chen et al., 2021a; Yuan et 

al., 2021; Wang et al., 2021). 
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The heavy AT nucleotide bias appears in the mitochondrial genomes in A. (A.) rongchangensis 

sp. nov., T. (T.) jiulongensis sp. nov., M. bifurcata and M. diana, the A+T contents are 80.7%, 78.0%, 

78.4% and 78.5%, respectively (Table 5). These four species showed similar compositions involving 

positive AT skews and negative GC skews. These results manifested that the content of base A 

exceeds base T. Despite the AT skews being positive, a few genes have a slight difference in absolute 

values. In addition, negative GC skew manifested that the content of base G is below that of base 

C, positive values are just the opposite. On balance, the essential organization of four species tends 

to be base A and C. 

Protein-coding genes and codon usage 

As with most other Typhlocybinae, the overall length of 13 PCGs of A. (A.) rongchangensis 

sp. nov., T. (T.) jiulongensis sp. nov., M. bifurcata and M. diana are 10,946, 10,968, 10,966 bp and 

10,966 bp, 70.3%, 69.8%, 65.20% and 66.1% of the total genome of each species, respectively. In 

addition, nad2 and cox3 in four species have the same start codons and stop codons. The longest 

PCG is nad5 (1,675 bp) in A. (A.) rongchangensis sp. nov., the shortest is atp8 (144 bp) in M. 

bifurcata and M. diana. Only four genes (nad5, nad4, nad4L and nad1) are presented on the J-strand, 

and the remaining nine genes are presented on the H-strand. 

The relative synonymous codon usage (RSCU) values of the 13 PCGs are generalized in Fig. 

6. The codon usage analyses of A. (A.) rongchangensis sp. nov., T. (T.) jiulongensis sp. nov., M. 

bifurcata and M. diana revealed that codon UUA-Leu2 (214, 194, 180, 241), AUU-Ile (297, 249, 

274, 210), AUA-Met (245, 202, 223, 180) AAU-Asn (273, 239, 236, 256), and AAA-Lys (290, 280, 

227, 238) are the most frequently used (Fig. 9). The highest RSCU value of each species occur in 

UUA-Leu2. The results showed that UUA is the most preferred codon. In addition, it can be seen 

from the RSCU values of the PCGs that AT is used more frequently than GC. 

Transfer RNA and ribosomal RNA genes 

The 22 tRNAs were deconcentrated between two regions, the rRNAs and the protein-coding 

region. The total tRNA lengths of A. (A.) rongchangensis sp. nov., T. (T.) jiulongensis sp. nov., M. 

bifurcata and M. diana are 1,434, 1,436, 1,441 and 1,455 bp, respectively, which range from 61 to 

70 bp in A. (A.) rongchangensis sp. nov., 61 to 71 in T. (T.) jiulongensis sp. nov., 61 to 71 bp in M. 

bifurcata and 62 to 71 bp in M. diana (Table 5). The sequences of most tRNA genes demonstrated 

the exemplary clover-leaf secondary structure, including four structural domains and a short flexible 



loop: the acceptor stem, the dihydrouridine stem and loop (DHU), the anticodon stem (DHU) and 

loop, the thymidine stem and loop (TψC), and the variable (V) loop (Fig. S1), as observed in many 

other leafhoppers mitogenomes. However, the dihydrouridine (DHU) arm of trnS1 shapes an 

uncomplicated loop. Additionally, non-Waston-Crick base pairs were harbored the stems of the 

secondary structures, 21, 27, 21 and 18 weak G-U (or U-G) base pairs are revealed in the tRNAs of 

A. (A.) rongchangensis sp. nov., T. (T.) jiulongensis sp. nov., M. bifurcata and M. diana (Fig. S1). 

The location of mismatched base pairs in the acceptor arm, DHU arm, TψC arm and anticodon arm 

of tRNA from four species were shown in Table 6. These mismatches could be rectified by way of 

editing process, and the transport function is not influenced (Yuan et al., 2021). 

Like other insects (Wang et al., 2018), the two rRNAs (rrnL and rrnS) are placed in trnL and 

control regions, separated by trnV (Fig. 5). The lengths of rrnL genes of A. (A.) rongchangensis sp. 

nov., T. (T.) jiulongensis sp. nov., M. bifurcata and M. diana mitogenomes are 1,916 bp, 1,927 bp, 

1,186 bp and 1,186 bp, the A+T content is 83.0%, 81.6%, 83.0%, 82.8% with values in different 

directions, including positive AT skew (0.198, 0.221, 0.186, 0.198) and negative GC skew (-0.302, 

-0.276, -0.294, -0.256), respectively.  

Control region 

The control region, also known as the A+T region, acts a crucial part in the size variation of 

mitogenomes. The largest non-coding regions of the two species, putative control regions, were 

placed between rrnS and trnI. The control region in length of A. (A.) rongchangensis sp. nov., T. (T.) 

jiulongensis sp. nov., M. bifurcata and M. diana are 1,276 bp, 1,345 bp, 2,472 bp and 2,233 bp, the 

AT contents are 99.0%, 97.9%, 89.9% and 92.0%, respectively.  

Nucleotide diversity and evolutionary rate analysis 

Highly variable nucleotide diversity (Pi values) from 13 PCG sequences of the 28 mitogenomes 

is shown in Fig. 8, with values ranging from 0.195 (cox1) to 0.418 (atp8). The genes nad4 (Pi = 

0.418), nad2 (Pi = 0.358), atp8 (Pi = 0.349), nad1 (Pi = 0.320), nad6 (Pi = 0.274) and nad3 (Pi = 

0.251) have comparatively high nucleotide diversity. However, the genes nad5 (Pi = 0.272), cox2 

(Pi = 0.243), cox3 (Pi = 0.235), nad4L (Pi = 0.239), cytb (Pi = 0.225) and cox1 (Pi = 0.195) share 

comparatively low values of nucleotide diversity. 

The evolutionary rate was measured through average non-synonymous (Ka)/synonymous (Ks) 

substitution rates by the instrumentality of DNAsp 6.0. The pairwise Ka/Ks analysis shows that the 



Ka/Ks ratios of nad3 (2.011), nad4L (1.843), cox1 (1.182) are greater than 1, indicating that these 

genes are under positive selection. Whereas the ratios of remaining genes ranged from cytb (0.390) 

to atp8 (0.824) (Fig 7), demonstrating that these genes are confined in purifying selection. 

Nucleotide diversity and evolutionary rate analysis are usually used for identifying the regions with 

large nucleotide divergence, and play an important role in designing species-specific markers (Yu et 

al., 2015). These evolving more quickly genes, cox1, nad3 and nad4L, may be speculated as 

potential DNA markers to delimit the Typhlocybinae species.  

Phylogenetic analysis 

In this study, complete mitochondrial genomes from 28 Typhlocybine species were collected 

as a dataset to establish phylogenetic trees by BI and ML methods, Bothrogonia ferruginea and 

Iassus dorsalis were regarded as outgroups. The GenBank accession numbers of all selected species 

used in this study were listed in Table 2. The phylogenetic topologies constructed by the two 

methods were completely consistent (Fig. 8). The monophyly of each tribe was generally well 

supported in the subfamily Typhlocybinae, which is consistent with the findings of some previous 

molecular phylogenetic studies (Chen et al., 2021a; Chen et al., 2021b). Twelve species of 

Typhlocybini, twelve species of Erythroneurini, and four species of Empoascini are clustered 

together, respectively, and all phylogenetic relationships demonstrated higher nodal support in both 

ML and BI analyses. All species from Typhlocybinae (Inner group) are clustered together, all 

Mitjaevia species are gathered together. Our results further confirmed that the genus Arboridia has 

a closer relationship with Mitjaevia. Among them, M. bifurcata, M. protuberanta and M. diana are 

gathered into one clade, while M. bifurcata and M. protuberanta are sister groups of each other in 

ML tree and BI tree. The previous primary diagnosis of Typhlocybinae was made by morphological 

features, meanwhile, our phylogenetic tree based on molecular data is in agreement with 

morphological taxonomy. Because the external appearance of Mitjaevia species is very similar, the 

only difference lies in male genitalia including the pygofer, subgenital plate and aedeagus, so, 

molecular technologies have become particularly important as a supplement to identification of 

Mitjaevia species. This study indicated that mitochondrial genome sequences are the most popularly 

adopted genomic markers in leafhoppers and becoming increasingly important toward studies in the 

insect molecular field, involving molecular evolution, phylogeny and phylogeography.  

Discussion  



The traditional classification of leafhoppers mainly relies on the anatomy of their appearance 

and male genitalia (Song & Li, 2013; Ramaiah et al., 2023; Xu & Zhang, 2023). However, due to 

the large number of leafhoppers and the small size of the Erythroneurini leafhoppers, generally 

about 2~4 mm (Dietrich & Dmitriev, 2006), they are difficult to identify. In recent years, the 

development of molecular technology has been applied to the classification of insects (Singh et al., 

2017; Lu et al., 2018; Matsuia et al., 2022) and to support the results and correct the attribution of 

traditional classification. Our findings here on the complete mitochondrial genome supports the 

classification of two new species.  

In addition, we also sequenced and analyzed the mitochondria genomes of two Mitjaevia genera, 

this result enriches the mitochondrial database information of Cicadellidae family and is consistent 

with the results of previous articles published by our research group (Chen et al., 2021b). In the 

Typhlocybinae, each genus is divided into a separate branch, this result is consistent with previous 

results (Lin et al., 2021), and all Mitjaevia are clustered in one branch. The phylogenetic relationship 

between the two new species is closer to that of Mitjaevia. This may be due to the limited 

mitochondrial data currently sequenced in Erythroneurini, which requires more and more extensive 

mitochondrial data to support and elucidate the phylogenetic relationship of the new species. The 

mitochondrial data can not only confirm the correctness of traditional classification, but also 

establish a large database, and provide simpler, faster, and more efficient results for subsequent 

species classification. 

Conclusions 

Two new leafhopper species discovered in Chongqing, A. (A.) rongchangensis sp. nov. and T. 

(T.) jiulongensis sp. nov. are described and illustrated. The mitochondrial genomes of these species 

together with M. bifurcata and M. diana are assembled and annotated in this work. The study shows 

that their mitogenomes are conserved in structure, with length of 15,596 bp, 15,676 bp, 16,813 bp 

and 16,589 bp, including 13 protein-coding genes, 22 tRNA genes, and 2 rRNA genes. The PCGs 

begin with ATA/ATG/ATT/TTG, and cease with TAA/TAG/T. All tRNAs are folded into a typical 

clover-leaf secondary structure, except a few tRNAs with a reduced arm, offering a simple loop or 

constituted unpaired bases. Based on the morphology of leafhoppers, the phylogenetic tree also 

further confirms the relationship between the four species at the molecular level, the result also 

indicates consistency in molecular and traditional classification.  
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