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Temporal and spatial refugia modify predation risk for
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Populations of the invasive Asian shore crab, Hemigrapsus sanguineus, now dominate the
rocky intertidal of southern New England. High abundances suggest the recent invader
may have experienced enhanced success as a result of enemy release. While larvae and
juveniles may serve as a food source for ecologically important species, little is known
about predation of mature H. sanguineus, or the inûuence of habitat on predation
pressure. To assess natural predation rates of adult H. sanguineus, crabs were tethered in
the intertidal at Clarks Cove in New Bedford, MA. Crabs were left in situ for half of a
daytime or nighttime tidal cycle then observed for signs of predation. Results of separate
high and low tide trials show adult crabs were preyed upon at both high and low tide,
though at a signiûcantly higher rate during high tide during both daytime and nighttime,
suggesting predation by aquatic species is greater than that by terrestrial species. To
investigate the role of habitat as refuge from predation, a laboratory experiment
manipulated the complexity of habitat provided to crabs in the presence of native ûsh
predators. Results indicate better refuge is provided by more complex shelter. Together,
ûndings suggest ûsh, crabs, and/or diving birds are important predators for H. sanguineus
in the invaded range and that habitat refuge acts to reduce predation pressure.
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13 Abstract

14 Populations of the invasive Asian shore crab, Hemigrapsus sanguineus, now dominate 

15 the rocky intertidal of southern New England. High abundances suggest the recent invader may 

16 have experienced enhanced success as a result of enemy release. While larvae and juveniles may 

17 serve as a food source for ecologically important species, little is known about predation of 

18 mature H. sanguineus, or the influence of habitat on predation pressure. To assess natural 

19 predation rates of adult H. sanguineus, crabs were tethered in the intertidal at Clarks Cove in 

20 New Bedford, MA. Crabs were left in situ for half of a daytime or nighttime tidal cycle then 

21 observed for signs of predation. Results of separate high and low tide trials show adult crabs 

22 were preyed upon at both high and low tide, though at a significantly higher rate during high tide 

23 during both daytime and nighttime, suggesting predation by aquatic species is greater than that 

24 by terrestrial species. To investigate the role of habitat as refuge from predation, a laboratory 

25 experiment manipulated the complexity of habitat provided to crabs in the presence of native fish 

26 predators. Results indicate better refuge is provided by more complex shelter. Together, findings 

27 suggest fish, crabs, and/or diving birds are important predators for H. sanguineus in the invaded 

28 range and that habitat refuge acts to reduce predation pressure.

29 Introduction

30 A prominent factor thought to facilitate the proliferation of invasive populations is enemy 

31 release (Heger & Jeschke, 2018), wherein non-native species benefit from a reduction in natural 

32 predators, competitors, and parasites in the naïve systems they invade (Colautti et al., 2004). 

33 While enemy release may confer an advantage to non-native species (Antonini et al., 2019; 

34 Roznik et al., 2020), invasion success is dependent on a myriad of ecological and environmental 

35 interactions within native communities (Weis, 2010; Prior et al., 2015). 

36 Across taxa and environments, the availability of temporal and spatial refuge can act to 

37 constrain predation risk (Prugh & Golden, 2014; Palmer et al., 2022; Suraci et al., 2022). Habitat 

38 structure, the arrangement of biotic and abiotic substrate that supports plant and animal 

39 communities (Carvalho & Barros, 2017), can mediate interactions between predators and 
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40 prey by providing spatial refuge in which prey can more easily avoid capture (Warfe & Bermuta 

41 2004; Lei, Lin & Zhang, 2014; Mendez, Schwindt & Bortolus 2015; Pozzebon, Loeb & Duso, 

42 2015). In addition to habitat-specific structural refuge, predation risk can change over time 

43 (Sperry et al., 2008). For example, risk and refuge for prey can exhibit diel variation (Clark, Ruiz 

44 & Hines, 2003). More to the point, the availability of refuge is a consequential determinant of 

45 predation risk (Smith et al., 2019), but rarely explored as a factor influencing enemy release 

46 (Soifer & Ackerman, 2019).

47 Evidence suggests a recent invader to the rocky shores of the North American Atlantic 

48 coast, the Asian shore crab, Hemigrapsus sanguineus, may have experienced enhanced success 

49 as a result of enemy release. The abundance of H. sanguineus in invaded habitats can far exceed 

50 densities found along the native Asian-Pacific region (Takahashi et al., 1985; Lohrer et al., 

51 2000). Today, Asian shore crabs are the most abundant intertidal crab species in southern New 

52 England and Long Island Sound (Kraemer et al., 2007; O�Connor, 2014), and can reach densities 

53 of >300 crabs m-2 at some locations (O�Connor, 2018). The species� success since its 

54 introduction to the northeast US in the 1980s is thought to be explained, in part, by reduced 

55 impact of natural enemies compared to the populations in native habitats (Pushchina & 

56 Panchenko, 2002; Brousseau et al., 2008). 

57 Invasive Asian shore crabs benefit from significantly lower prevalence of parasitic 

58 infection (Lohrer, 2001; Blakeslee et al., 2009), out-compete resident crab species, and may have 

59 fewer crab competitors along the eastern US (Sakai, 1976; Jensen, McDonald & Armstrong, 

60 2002; Kraemer et al., 2007; Hobbs, Cobb & Thornber, 2017). In other systems, native predators 

61 can act as biological resistance against the growth of invasive populations, with several examples 

62 including non-native crabs (Noé et al., 2017; Tiralongo, Messina & Lombardo, 2021). The 

63 relationship between the invasive Asian shore crab and native predators, however, remains 

64 ambiguous in the absence of direct field experimentation and laboratory tests with adult crabs. 

65 Additionally, factors that modify predator-prey relationships, like spatial and temporal refuge, 

66 should be more fully explored to clarify the factors influencing enemy release in invaded 

67 systems.

68 For benthic aquatic species, the availability of refuge can have a strong effect on survival 

69 (Coull & Wells, 1983; Scharf, Manderson & Fabrizio, 2006; Nunes, Sampaio & Barros, 2015) 

70 and community structure (Margiotta et al., 2016; Hesterberg et al., 2017). Habitat structure can 

71 provide spatial refuge from predation by limiting the ability of predators to access prey (Toscano 

72 & Griffen, 2013). Asian shore crabs inhabit highly complex rocky intertidal habitats (Gilman & 

73 Grace, 2009); if predator-prey dynamics can be modified by habitat refuge then invasive 

74 populations across different coastal habitats may experience different degrees of enemy release. 

75 Intertidal environments are particularly unique because they can be accessed by fish only 

76 during the high tide period of the tidal cycle, providing a substantial temporal refuge from 

77 marine predators at low tide. In contrast, predator-prey dynamics during periods of low tide are 

78 underexplored. Despite serving as an important link between marine and terrestrial ecosystems, 

79 coastal mammalian and avian predators have been largely overlooked by research on intertidal 
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80 systems (Quammen, 1984; Wootton, 1992; Carlton & Hodder, 2003). Terrestrial mammals 

81 including rats, minks, skunks (Amos, 1966), shrews (Churchfield ,1990), raccoons (Ricketts et 

82 al., 1985), mice (Drever et al., 2000), and even foxes (Fay & Stephenson, 1989) are all observed 

83 to feed on intertidal invertebrates. Similarly, coastal birds, like gulls, are apex predators that can 

84 affect the distribution of intertidal organisms and impact the density of species like crabs (Dumas 

85 & Witman, 1993; Ellis at al., 2007). Yet the impact of bird predation is rarely considered in 

86 studies of New England�s rocky intertidal zone, particularly in relation to highly mobile prey 

87 (Menge, 1976; Edwards, Conover & Sutter, 1982). In addition, most intertidal studies have been 

88 conducted during daytime. Thus, our knowledge of predator activity during low tide and 

89 nocturnal times is severely limited. The influence of habitat structure, and relative predation 

90 throughout the tidal and diel cycle, should be considered when assessing a species� risk or 

91 release from enemies. 

92 In its native range, H. sanguineus is known to be consumed by two species of sculpins, 

93 Myoxocephalus stelleri and M. brandti (Pushchina & Panchenko, 2002). Species thought to prey 

94 on invasive H. sanguineus include those that utilize the rocky intertidal zone to forage, and 

95 species that are adapted to eating hard-shelled benthic invertebrate prey, including fish and likely 

96 bird species (Epifanio, 2013). Of the potential predators of invasive Asian shore crabs present 

97 throughout its range in northeast North America, only predation by fish on juveniles has been 

98 examined. Native coastal fish including tautog (Tautoga onitis), cunner (Tautogolabrus 

99 adspersus), scup (Stenotomus chrysops), and grubby (Myoxocephalus aenaeus) are all 

100 documented to consume H. sanguineus megalopae in the laboratory (Rasch & O�Connor, 2012). 

101 Striped killifish (Fundulus majalis) also readily consumed planktonic larval stage (megalopae) 

102 H. sanguineus in the lab but did not feed on small (sexually immature) crabs (Kim & O�Connor, 

103 2007). However, little is known about predation on larger, sexually mature H. sanguineus.

104 Tautog, Tautoga onitis, is a temperate reef fish that plays an important role in the 

105 structure of nearshore marine communities as a specialized predator of hard-shelled benthic 

106 invertebrates including crabs (Liem & Sanderson, 1986; Clark et al., 2006). Tautog is a major 

107 component of recreational catch and a valuable commercial fishery resource from Massachusetts 

108 to Virginia (Steimle & Shaheen, 1999). The species occurs in coastal environments from Nova 

109 Scotia to South Carolina and is most abundant from Cape Cod to Chesapeake Bay (Dorf & 

110 Powell, 1997; Steimle & Shaheen, 1999), occurring throughout the North American invasive 

111 range of H. sanguineus.

112 Tautog is a member of the Labridae family, named for their terminal protractile mouths 

113 and jaw morphology associated with hard-prey diets (Liem & Sanders, 1986). The species 

114 reaches a maximum size of 90 cm (about 6 kg) (Collette & Klein-MacPhee, 2002), and feeds 

115 predominantly on mussels and other shellfish, including Atlantic rock crabs (Cancer irroratus), 

116 Jonah crabs (Cancer borealis) and small American lobsters (Homarus americanus) (Smith, 

117 1907; Steimle & Ogren, 1982; Richards, 1992). Cunner, Tautogolabrus adspersus, is another 

118 Labrid fish which is abundant along the inshore temperate waters of the Gulf of Maine (Bigelow 

119 & Schroeder, 1953) and consumes a wide variety of invertebrate prey, including crabs (Liem & 
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120 Sanderson, 1986; Bowmen et al., 2000). Both Labrid species have high affinity for benthic 

121 structure and aggregate around substrate like rocks and docks (Olla, Bejda & Martin, 1975; 

122 Auster, 1989). Tautog and cunner begin foraging soon after sunrise and feed until evening 

123 twilight (Olla, Bejda & Martin, 1975). They follow the flood tide up above low water levels to 

124 forage in the intertidal zone and find their prey visually using a scan-and-pick foraging strategy 

125 (Olla et al., 1974; Deacutis, 1982), then return to deeper water during the ebb tide (Bigelow & 

126 Schroeder, 1953). 

127 Limited studies on the gut contents of wild fishes, including tautog and Fundulus spp. 

128 killifish, F. majalis, and mummichog, F. heteroclitus, since the establishment of the invasive 

129 Asian shore crab provide evidence that H. sanguineus are consumed in nature, but at relatively 

130 low frequencies compared to other food items (Clark et al., 2006; Brousseau et al., 2008). In one 

131 laboratory choice experiment, tautog consumed juvenile H. sanguineus, but less often than native 

132 prey species of mud crabs (family Panopeidae) and blue mussels, Mytilus edulis (Savaria & 

133 O�Connor, 2013). Conversely, other laboratory experiments found cunner, tautog, and black sea 

134 bass (Centropristis striata) preferentially preyed upon H. sanguineus when given the choice with 

135 other local crab species (native mud crab Panopeus herbstii, and resident European green crab 

136 Carcinus maenas), and that substrate influenced predator preference (Heinonen & Auster, 2012). 

137 These native fish are well-equipped to influence the abundance of sexually mature H. 

138 sanguineus, however, that dynamic has not yet been investigated and questions remain about the 

139 role of spatial and temporal refuge as a potential mechanism to facilitate enemy release.

140 The purpose of this study was to measure predation of sexually mature Asian shore crabs 

141 in the field to examine temporal refuge from predation risk and use laboratory experiments to 

142 assess the influence of spatial refuge on predation. This investigation includes a series of field 

143 tethering experiments to test relative predation of adult H. sanguineus at high tide and low tide, 

144 during daytime and nighttime. Tethering is a useful method to compare relative predation 

145 intensity (Moody & Aronson, 2007; Glazner, Ballard & Armitage, 2021). In addition, a series of 

146 laboratory feeding trials were conducted to test the influence of high and low levels of habitat 

147 refuge on predation of sexually mature H. sanguineus by the fish predator T. onitis.

148 Materials & Methods

149 Field experiment

150 Crab collection and housing

151 Male (n = 28) and female (n = 6) sexually mature Hemigrapsus sanguineus (15 - 22 mm 

152 in carapace width, CW) used for tethering experiments were collected at the study site in Clark�s 

153 Cove, New Bedford, Massachusetts (41°35240.333N, 70°54237.453W) by hand at low tide and 

154 outfitted with tethers 12 � 24 h prior to experimentation. Crabs were held individually in 113 L 

155 aerated aquaria, with water sourced directly from Clark�s Cove, and kept at ambient conditions 

156 (temp 20.5 - 24.5 °C, salinity 33-34), housed adjacent to the field site at the University of 

157 Massachusetts School for Marine Science and Technology Seawater Lab. Outfitting crabs with 

158 tethers beforehand ensured that the tether was retained and did not impede mobility.

159 The tethering apparatus was constructed using 0.3 m of monofilament fishing line (6.8 kg 
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160 test strength) secured to the crab by looping around the transverse plane of the body between the 

161 2nd and 3rd walking legs. The line was tied at the dorsal midline and the knot was secured with a 

162 drop of cyanoacrylate glue. Crabs were reliably recovered using this tethering method and the 

163 tether was not shown to cause damage to the crabs when subjected to simulated wave energy in 

164 the lab.

165 Field tethering procedure

166 Field tethering experiments were conducted in the lower intertidal zone of Clark�s Cove, 

167 New Bedford, MA (41°35240.333N, 70°54237.453W) June 28 - August 26, 2020 (Table 1) at 

168 +0.29 m above mean low water. Previous investigations at the study site showed crabs were most 

169 abundant at that tidal elevation (Towne, Judge & O�Connor, 2023). 

170 To prepare the field site for tethering experiments, all rocks and cobble were removed 

171 from a 1 m diameter circle, so that only flat sandy substrate was available to the tethered crab. At 

172 the time of experimentation, the free end of the tether line was attached to the top of a 10 cm 

173 stake embedded in the sediment. Two experimental replicates (plot A and B) were established 

174 >10 m apart. The experiments took place during low tide and high tide, during daytime (daylight 

175 hours) and nighttime (after sunset). Tethered crabs were left in situ for half of a daytime or 

176 nighttime tidal cycle (beginning three hours before low/high tide and ending three hours after 

177 low/high tide). Crabs were considered to have been eaten by predators if missing at the end of 

178 the trial. Each crab was used for a single trial, and surviving crabs were returned to the wild, 

179 outside of the area where this work was performed.

180 Field tethering analysis

181 To test whether tide (high / low) and time (daytime / nighttime) influence predation of 

182 adult crabs, predation was examined using binomial regression. The dependent variable 

183 (predation) was coded as binary data (predation = 1; no predation = 0). The test determined the 

184 probability that a crab would be eaten based on the independent variables tide (high / low), and 

185 time (daytime / nighttime). The interaction between each of the independent variables (time and 

186 tide) were not significant and therefore excluded from the final model. Other independent 

187 variables including trial position (plot A or B), trial date, tide time, tidal height, crab sex, moon 

188 phase, and their interactions were tested with an expanded binomial regression, and were not 

189 found to significantly influence predation, so they were also excluded from the final analysis. 

190 Significance of factors was evaluated with analysis of deviance using the anova() function of the 

191 car v3.1-2 package in R (Fox and Weisberg 2019). All statistical analyses performed in this 

192 study were done using R v4.0.0 (R Core Team, 2020).

193 Laboratory experiment

194 Crab and fish collection

195 The twenty-seven Tautoga onitis (25.5 � 37 cm total length) used in the laboratory 

196 experiment were caught in New Bedford Harbor, MA using unbaited traps May 13 � June 4, 

197 2021. Fish were collected during annual trap surveys conducted by the Massachusetts Division 

198 of Marine Fisheries; traps were checked at least every three days. Fish were transported in a 50 L 

199 insulated cooler with fresh seawater and continuous aeration. Fish were held in groups of < 10 
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200 for a two-week acclimation period ahead of experimentation. During acclimation, fish were fed 

201 crabs and cracked clams to satiation. Fish and crabs were housed, and experiments were 

202 conducted, in 1.8 m diameter tanks (tank floor area = 2.6 m2) continuously supplied with ambient 

203 seawater from Clarks Cove, New Bedford (water temp 20.5 - 24.5 °C, salinity 33-34) and 

204 artificially lit to match natural light-dark cycles. Tanks were cleaned daily. Fish were provided 

205 pieces of large PVC pipe (10.2 cm diameter) for shelter during acclimation. Each fish was used 

206 for a single trial, then returned to the wild. 

207 The 720 Hemigrapsus sanguineus (14 � 20 mm) used in these tests were collected from 

208 the rocky intertidal in Clark�s Cove 12 - 24 h prior to experimentation. Crabs were held in one 

209 tank in mesh-sided 0.5 L Tupperware containers in groups of <6 crabs. Crabs were not fed 

210 during this time. Only non-gravid crabs with all ten limbs were used in this study. Each crab was 

211 used for a single experiment.

212 Lab experiment treatment construction

213 Habitat structure provided during the lab experiment was constructed from concrete 

214 pavers (L = 40 cm, W = 20 cm, H = 5 cm). The experiment included a No Refuge control 

215 treatment without structure, as well as a control treatment without a fish predator. Low Refuge 

216 Habitat consisted of two pavers laid flat on the bottom of the tank (Fig. 1). High Refuge Habitat 

217 consisted of two pavers, modified with the addition of twelve quartzite river stones (2-3 cm) 

218 glued to one long edge of the pavers using saltwater resistant Seachem cyanoacrylate Reef 

219 GlueTM which created 1984 cm3 of refuge space under each paver (Fig. 1).

220 All materials were rinsed with fresh water and allowed >24 h to air dry before use. The 

221 glue was given >24 h to cure. Stones remained glued in place throughout the duration of the 

222 experiment.

223 Each tank was outfitted with a shelter for the fish made of three large PVC tubes (10.2 

224 cm diameter), suspended 8 cm above the tank floor in the center of the tank (Fig. 1). Fish utilized 

225 the inside and the outside of the PVC tubes as shelter. These PVC tubes were not accessible to 

226 the crabs. Fish were maintained and housed under University of Massachusetts Dartmouth 

227 Institutional Animal Care and Use Committee protocol # 21-02 approved July 19, 2021.

228 Lab experimental procedure

229 Experimental tanks were randomly assigned habitat treatments. Nine trials were 

230 conducted for each habitat treatment (High Refuge, Low Refuge, No Refuge, and no fish 

231 control). One fish was used per trial and allowed 24 h to acclimate in the experimental tank prior 

232 to the experiment, during which time the fish was not fed. Tautog require 8 h to process and 

233 evacuate food (Olla et al., 1974). To begin the experiment, habitat treatments were lowered into 

234 the tanks (pavers placed >0.5 m away from each other and from tank walls) and 20 crabs were 

235 added to the tank. A dip net was used to quarantine the fish for 15 min to allow the crabs to 

236 acclimate to the experimental tank. Fish were then given 6 h to feed. Results of pilot work 

237 showed, when starved for 24 h, a Tautog (35 cm total length) could consume between 20 and 30 

238 Hemigrapsus sanguineus (10 mm - 18 mm CW) in 6 h. All trials were conducted during daylight 

239 hours, approximately 0700 � 1300. 
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240 At the end of each trial, the surviving crabs were counted. Fish were returned to storage 

241 tanks and observed for an hour after experimentation, then transported in a cooler with sea water 

242 to Clark�s Cove. No fish showed signs of illness or injury, and all 27 fish used in experiments 

243 were released. Tanks were drained and cleaned following each experiment.

244 Lab experimental analysis

245 The proportion of crabs eaten was calculated for all trials. To test if habitat refuge 

246 treatments influenced the proportion of crabs eaten, all habitat treatments were compared using a 

247 one-way ANOVA. A Tukey post hoc test was then performed to determine any differences 

248 among levels of habitat complexity. Other independent variables including fish size, water 

249 temperature, and experimental tank (A, B, C, D) were tested using an expanded ANOVA model, 

250 none of which had significant influence on the proportion of crabs eaten, so were excluded from 

251 the final analysis. Data met the assumptions of normality and homogeneity of variance. 

252 Significance of factors was evaluated with type-III sums of squares using the R package car (Fox 

253 and Weisberg 2019). 

254 Results

255 Field tethering 

256 One male and one female crab were found damaged (lost multiple limbs) after 

257 experiments, and although injuries were likely the result of predation attempts by a small 

258 predator, injured crabs were excluded from the analysis. Of the remaining 32 crabs, seventeen 

259 were missing and presumed eaten, and fifteen crabs were recovered unharmed. The proportion of 

260 crabs missing during daytime high tides was 0.83 (n = 6); nighttime high tides was 0.89 (n = 9), 

261 daytime low tides was 0.22 (n = 9), nighttime low tides was 0.25 (n = 8) (Fig. 2). There was a 

262 significantly higher probability of predation at high tide compared to low tide (df = 30, X2 = 

263 30.330, p < 0.001), while daytime or nighttime did not influence the probability of predation (df 

264 = 29, X2 = 30.245, p = 0.77) (Table 2).

265 Laboratory experiment

266 In the control (no fish) treatment, all crabs survived without injury. Predation in 

267 laboratory feeding trials varied significantly with habitat complexity (p < 0.001) (Fig. 3, Table 

268 3). The proportion of crabs eaten was significantly lower in the presence of High Refuge Habitat 

269 (mean = 0.18, SD = 0.13, median = 0.15) compared to both Low Refuge Habitat (mean = 0.64, 

270 SD = 0.13, median = 0.70) (p <0.001) and No Refuge (mean = 0.71, SD = 0.16, median = 0.65) 

271 (p <0.001). There was no difference in predation between the Low Refuge Habitat and No 

272 Refuge treatments (p = 0.63) (Fig. 3, Table 4). One fish consumed all 20 crabs available in the 

273 experiment (No Refuge, fish total length = 31 cm), and one fish consumed zero crabs (High 

274 Refuge Habitat, fish total length = 35.5 cm).

275 Discussion

276 Predation of Hemigrapsus sanguineus was influenced by tide (high tide / low tide) and not 

277 affected by time (daytime / nighttime) in field experiments. Crabs had a higher probability of 

278 being eaten during high tide than low tide. However, predation at high tide and predation at low 

279 tide occurred at similar rates irrespective of time of day. The tethering experiment in the field 
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280 likely overstated actual predation risk, because the tether apparatus restricted the crabs� ability to 

281 flee predators, and the experiment was conducted in the absence of refuge for the crab. 

282 Nevertheless, results show predation of adult Asian shore crabs can occur during high tide and 

283 low tide, and during daytime and nighttime, suggesting that diurnal as well as nocturnal marine 

284 and terrestrial species can prey on the invasive Asian shore crab.

285 Tautog and cunner were likely the primary fish species responsible for predation at high 

286 tide during this study. The native fishes are specialized for consuming hard-shelled invertebrates 

287 in the intertidal zone during high tide (Olla et al., 1974), and are known to feed on crabs, 

288 including H. sanguineus (Clark et al., 2006). At the study site, beach seines deployed during 

289 daytime high tides in August 2020 found 5 species of fish (Table 5), of which tautog and cunner 

290 were the only candidate species for preying on benthic adult crabs. Additionally, in >20 h of 

291 video footage recorded of tethered crabs for pilot work (July 18 � August 23, 2020) there were 

292 three predation attempts observed during daytime high tides and all appeared to involve tautog 

293 and/or cunner (pers. obs.). Other species, that are unlikely to prey on adult crabs, including the 

294 American puffer and Alewife were observed in footage, and found in beach seines, but were not 

295 seen interacting with crabs (Table 5; pers. obs.).

296 When predation occurred during high tide field experiments, the free end of tether line 

297 was found broken and masticated, which is consistent with feeding morphology of Labrid fishes 

298 that masticate prey with knob-like teeth lining their mouth and pharynx (Liem & Sanderson, 

299 1986, Collette & Klein-MacPhee, 2002). Most crabs in the field experiments were entirely 

300 consumed, most likely by Tautog which can swallow small crustaceans whole and use their 

301 pharyngeal teeth to crush larger prey (Collette & Klein-MacPhee, 2002). Two crabs in the 

302 tethering experiment were found alive but missing limbs after the trial. Those incidences better 

303 reflect the feeding strategy of a smaller fish predator like cunner which use their highly evolved 

304 jaw morphology to shear and crush food items (Collette & Klein-MacPhee, 2002).

305 Higher probability of predation during high tide may, in part, be explained by what is 

306 known about the behavior of the Asian shore crab. Both male and female H. sanguineus are 

307 highly mobile and can travel up to 16 m over a single day (Brousseau et al., 2002). Thought to be 

308 most active at high tide, laboratory experiments conducted during daytime found crabs were 

309 more likely to move under and out from under shelter when submerged in water (Towne, Judge 

310 & O�Connor, 2023). Activity at high tide may expose crabs to visual predators, like tautog and 

311 cunner, which use a scan-and-pick foraging strategy to feed in the intertidal zone (Dew, 1976; 

312 Deacutis, 1982) where the crabs occur (Brousseau et al., 2002; Epifanio, 2013; Towne, Judge & 

313 O�Connor, 2023).

314 Given greater relative predation at high tide, periods of low tide appear to offer, to some 

315 extent, temporal refuge from predation. While at lower levels, predation did occur during field 

316 tethering experiments at low tide, demonstrating that species that are not strictly aquatic also 

317 pose a predation risk to adult H. sanguineus. Other invertebrate species could have been 

318 responsible for the predation observed in this study at high tide or low tide. European green 

319 crabs, Carcinus maenas, Atlantic rock crabs, C. irroratus, and blue crabs, Callinectes sapidus, 
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320 co-occur with Asian shore crabs on the US east coast (DeRivera et al., 2005). Additionally, other 

321 resident crab species have been found in intertidal surveys conducted at the location of these 

322 field experiments (Z. Towne, 2020, pers. comm.). The European green crab avoids competitive 

323 interactions with Asian shore crabs (Hobbs, Cobb & Thornber, 2017). Blue crabs, however, are 

324 known to exert biotic resistance to limit the density and distribution of other invasive 

325 invertebrate species like European green crabs (DeRivera et al. 2005), as well as zebra mussels 

326 (Molloy, Powell & Ambrose, 1994), and whelks (Harding 2003). Blue crabs are expanding their 

327 range northward due to increasing water temperature in the Gulf of Maine (Johnson, 2015) and 

328 increasingly overlap with the invasive range of H. sanguineus in North America. The 

329 antagonistic interactions between Asian shore crabs and blue crabs (MacDonald et al., 2007) 

330 deserve further exploration to understand H. sanguineous as prey under current and future 

331 conditions. Large Asian shore crabs are also known to cannibalize sub-adult conspecifics (Crane 

332 & O�Connor, 2021), and while not the dynamic under focus in this study, predation threats for 

333 Asian shore crabs are known to change across ontogeny (Kim & O�Connor, 2007), which further 

334 complicates questions about enemy release.

335 Benthic species in rocky intertidal communities are commonly prey for birds (Edwards et 

336 al., 1982; Wootton, 1992). Previous experiments that have excluded avian predators from rocky 

337 intertidal habitat found the absence of bird predation caused a significant increase in the density 

338 of intertidal crabs like Cancer borealis (Ellis et al., 2007). Predation of invasive H. sanguineus 

339 specifically by avian predators has not been well documented but merits additional investigation. 

340 Several species of shorebirds were noted at the site where field tethering experiments were 

341 conducted; cormorants (family Phalacrocoracidae) and gulls (family Laridae) were observed 

342 feeding in the intertidal during daytime low tides but none were seen consuming crabs (A. 

343 Marcelino, 2020, pers. comm.). Similarly, the relationship between Asian shore crabs and coastal 

344 mammals has yet to be investigated. Animals like rats, skunks, and racoons are known to 

345 consume intertidal organisms (Carlton & Hodder, 2003) and have been observed at the 

346 experimental location (pers. obs.), and so may be responsible for the low tide predation observed 

347 here. Further research should include field studies that specifically measure the impact of non-

348 fish predators and the variation in predation risk and refuge throughout the tidal cycle, which 

349 could have an effect on the degree of enemy release experienced by invasive Asian shore crabs.

350 In the field experiments conducted here, the probability of predation was similar during 

351 daytime and nighttime. This is counter to the hypothesis that predation risk would be constrained 

352 to the daytime period of the diel cycle, because of the propensity of high tide predators to restrict 

353 their activity to daytime. For example, tautog cease feeding at night (Dew, 1976; Deacutis, 1982; 

354 Collette & Klein-MacPhee, 2002). 

355 Predation during nighttime high tides indicates consumption by nocturnal piscine or crab 

356 predators. The American eel, Anguilla rostrata, feeds at night (Collette & Klein-MacPhee, 2002) 

357 and is ubiquitous in coastal habitats throughout the Gulf of Maine (Sheppard & Block, 2013). 

358 While notorious for being an indiscriminate predator and scavenger of animal food items, large 

359 eels are known to feed on crustaceans (Ogden, 1970) which may explain the predation measured 
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360 during nighttime high tides. Potentially increased nighttime activity by H. sanguineus, which 

361 feed more actively during dark conditions (Spilmont, Gothland & Seuront, 2015), could 

362 contribute to predation occurring at night.

363 Predation at nighttime may have been enhanced because of the proximity of the field 

364 experiment to a lighted dock. The dock could have encouraged aggregation of tautog and cunner 

365 which are known to affiliate with structures like docks (Olla et al., 1975). Illumination from 

366 lights on the dock at night could improve the predators� ability to see prey and forage throughout 

367 nighttime, particularly on a dark night, like under cloudy skies or during a new or crescent moon 

368 (Table 1). Nevertheless, man-made structures like the dock described here are increasingly 

369 common in coastal habitats (Ruiz et al., 2000), and such human influence does affect predation 

370 efficiency and prey choice in nearshore ecosystems (Montalvo, 2020).

371 In the laboratory study detailed here, High Refuge Habitat significantly reduced the 

372 proportion of crabs eaten by Tautoga onitis. In addition, there was no difference in the 

373 proportion of crabs eaten when provided Low Refuge Habitat and when provided No Refuge. 

374 Asian shore crabs are most abundant in mid and lower intertidal zone where there is high 

375 structural complexity (Ledesma & O�Connor, 2001; Brousseau et al., 2002; Gilman & Grace, 

376 2009; Epifanio, 2013). A limitation of this study is an under-representation of the true 

377 complexity of the rocky intertidal zone, which is more often composed of multiple layers of 

378 rocks and cobble that could provide more spatial refuge to further minimize the risk from 

379 predators (Hesterberg et al., 2017). Nevertheless, evidence presented here demonstrates that T. 

380 onitis will readily consume adult (sexually mature) H. sanguineus, and that the availability of 

381 structural refuge modifies the risk of predation.

382 The availability of spatial refuge from predation greatly impacts predator-prey 

383 interactions across marine ecosystems. Other studies of benthic marine communities have 

384 demonstrated that prey survivorship increases significantly with habitat that provides refuge 

385 (Scharf, Manderson & Fabrizio, 2006). Local site-level differences in habitat quality best 

386 explained variation in predation risk along the range of another invasive crab, the green porcelain 

387 crab (Petrolisthes armatus) (Kinney, Pintor & Byers, 2019). Similarly, physical-biological 

388 interactions like the effect of refuge on predation tested here appear to enhance the degree of 

389 enemy release experienced by Asian shore crabs. 

390 Given the high density of invasive Asian shore crabs, relative to other intertidal crab 

391 species (O�Connor 2014, 2018), H. sanguineus appears particularly adept at avoiding predation. 

392 The high abundance of H. sanguineus in many coastal communities throughout the invaded 

393 range suggests that predators do not strongly impact the population size of this species, perhaps, 

394 in part, because of the temporal and spatial refuge within rocky intertidal habitats. Unlike other 

395 resident crabs, H. sanguineus has a high tolerance for sharing refuge with conspecifics (Hobbs, 

396 Cobb & Thornber, 2017) and is more active than other resident crab species (Saxton et al. 2020). 

397 These characteristics, combined with cryptic coloration and anti-predatory behaviors (Kim & 

398 O�Connor, 2007; Savaria & O�Connor, 2013), may confer an advantage against predation, even 

399 at high densities.
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400 Adult Hemigrapsus sanguineus can be eaten throughout the diurnal and tidal cycles in the 

401 rocky intertidal zone, although refuge strongly modifies predation threat by a common fish 

402 predator, Tautoga onitis. Not all the predation observed in field studies can be explained by 

403 diurnal fish predation; other predators like nocturnal fish or terrestrial mammals could also prey 

404 on the invasive crab. This study suggests invasive Asian shore crab predation risk can be 

405 modified by habitat refuge, and therefore populations across different coastal habitats may 

406 experience different degrees of enemy release by different suits of predator. Subsequent research 

407 could combine the factors examined here, predation and refuge, to directly test if predation 

408 pressure experienced by adult H. sanguineus populations is different among coastal habitats with 

409 varying structural complexity.
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Figure 1
Low Refuge Habitat and High Refuge Habitat treatments in the laboratory experiment
with concrete pavers.

Low Refuge Habitat and High Refuge Habitat treatments in the laboratory experiment with
concrete pavers. Paver underside: dark gray area shows the underside of the 20 x 40 cm
paver used to construct habitat; light gray circles represent individual quartzite river stones
(2-3 cm) glued to the underside of the paver on one side. Experiment proûle: dark gray
represents habitat pavers and light gray represents space available to crabs underneath
pavers.
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Figure 2
Results of tethering experiments in the ûeld

Results of tethering experiments in the ûeld. Proportion of crabs eaten during daytime high
tide (n = 6), daytime low tide (n = 9), nighttime high tide (n = 9), and nighttime low tide (n =
8).
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Figure 3
Results of habitat complexity experiments in the laboratory.

Results of habitat complexity experiments in the laboratory. Box and whisker plot showing
the proportion of crabs missing with No Refuge, Low Refuge Habitat and High Refuge Habitat.
Boxes indicate 25th percentile (Q1), median, and 75th percentile (Q3). Whisker lines extend
to maximum and minimum values. Habitat treatments that share a letter were not
signiûcantly diûerent (Tukey p < 0.001). Sample size was equal for all habitat treatments (n
= 9).
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Table 1(on next page)

Details of ûeld experiment conditions.

Details of ûeld experiment conditions. Dates experimental trials were conducted in 2020, the
time (Day or Night), tide (High or Low), predicted tidal height (diûerence from mean low
water level in meters, source: US Harbors Padanaram, South Dartmouth, MA), moon phase
(jpl.nasa.gov/edu), and cloud cover (personal observation).

PeerJ reviewing PDF | (2023:10:91492:0:0:CHECK 5 Oct 2023)

Manuscript to be reviewed



1

Trial # Date Time Tide Tidal Height Moon Phase Cloud Cover

1 28-Jul Day Low 0.1 N/A Clear

2 28-Jul Night Low 0.2 Waxing Gibbous Cloudy

3 29-Jul Night High 1.3 Waxing Gibbous Clear

4 30-Jul Day High 1.0 N/A Clear

5 3-Aug Day High 1.1 N/A Clear

6 4-Aug Day High 1.1 N/A Cloudy

7 12-Aug Night High 1.0 Waning Crescent Cloudy

8 13-Aug Day Low 0.2 N/A Cloudy

9 14-Aug Day Low 0.2 N/A Clear

10 18-Aug Night Low -0.1 Waning Crescent Cloudy

11 19-Aug Night Low -0.1 New Moon Cloudy

12 19-Aug Day Low -0.1 N/A Cloudy

13 20-Aug Night Low -0.2 Waxing Crescent Clear

14 21-Aug Day Low -0.2 N/A Clear

15 24-Aug Night High 1.3 Waxing Crescent Cloudy

16 25-Aug Night High 1.3 1st quarter Cloudy

17 26-Aug Night High 1.2 Waxing Gibbous Clear
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Table 2(on next page)

Results of ûeld experiment binomial regression.

Results of ûeld experiment binomial regression testing the probability that a crab would be
eaten based on the independent variables tide (high / low), time (daytime / nighttime).

PeerJ reviewing PDF | (2023:10:91492:0:0:CHECK 5 Oct 2023)

Manuscript to be reviewed



1

Parameter DF Deviance Resid. DF Resid. Dev Pr(>Chi)

Tide 1 13.91 30 30.33 < 0.01

Time 1 0.09 29 30.25 0.77
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Table 3(on next page)

Results of laboratory experiment one-way ANOVA.

Results of laboratory experiment one-way ANOVA testing the eûect of habitat complexity
treatment on predation.
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Df Sum Sq Mean Sq F value Pr(>F)

Treatment 2 1.43 0.72 35.99 < 0.001

Residuals 24 0.48 0.02
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Table 4(on next page)

Laboratory experiment post-hoc Tukey Test.

Laboratory experiment post-hoc Tukey Test to determine diûerences in crab predation
among habitat complexity treatment.
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Treatment di�� �wr �pr p adj

Low-High 0.�6 0.29 0.63 < 0.001

None-High 0.52 0.35 0.69 < 0.001

None-Low 0.06 -0.11 0.23 0.63
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Table 5(on next page)

List of species found during beach seines at the ûeld site in Clark9s Cove, New Bedford
August 2020.

List of species found during beach seines at the ûeld site in Clark9s Cove, New Bedford
August 2020. Two hauls with a 10 m net, conducted at high tide, 9:50 am, +3.6ft predicted
tidal height (diûerence from mean low water level in feet, source: US Harbors Padanaram,
South Dartmouth, MA), N is the total number of individuals collected.
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C�mm�n �ame ��ecies �

C�nner Tautogolabrus adspersus 1

Ta�t�	 Tautoga onitis 2

Alewife Alosa pseudoharengus 44

Atlantic silverside Menidia menidia 56

Northern puffer Sphoeroides maculatus 3
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