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ABSTRACT
Identification of genes whose expression increases or decreases with age is central to
understanding the mechanisms behind aging. Recent scRNA-seq studies have shown
that changes in single-cell expression profiles with aging are complex and diverse. In
this study, we introduce a novel workflow to detect changes in the distribution of
arbitrary monotonic age-related changes in single-cell expression profiles. Since single-
cell gene expression profiles can be analyzed as probability distributions, our approach
uses information theory to quantify the differences between distributions and employs
distance matrices for association analysis. We tested this technique on simulated data
and confirmed that potential parameter changes could be detected in a set of probability
distributions. Application of the technique to a public scRNA-seq dataset demonstrated
its potential utility as a straightforward screening method for identifying aging-related
cellular features.

Subjects Bioinformatics, Computational Biology, Genomics, Data Science
Keywords Aging, Computational biology, Single cell genomics, Data analysis method

INTRODUCTION
Aging is typically associated with a progressive decline in functional integrity and
homeostasis, which can give rise to numerous diseases such as heart disease and cancer.
Understanding the genetic mechanisms that underlie aging is critical for countering aging-
and age-related disease (Barzilai, Cuervo & Austad, 2018; Partridge, Deelen & Slagboom,
2018; Singh et al., 2019). In the field of genetics, considerable effort has been directed toward
searching for aging-related genes (Melzer, Pilling & Ferrucci, 2020), and recent omics studies
have been conducted to comprehensively identify genes associated with aging in different
tissues (White et al., 2015; Kamei et al., 2018; Drummond et al., 2011; Thalacker-Mercer et
al., 2010; Su et al., 2015; Patel et al., 2014). In particular, the identification of genes whose
expression either increases or decreases with age is central to understanding themechanisms
underlying aging.

Recent scRNA-seq studies have shown that changes in single-cell expression profiles
with aging are both complex and multifaceted. Aging is known to be associated with
changes in both the number of cells in the population and the gene expression levels in
each cell (The Tabula Muris Consortium, 2020). In a study using single-cell technology,
age-related increases in the cell-to-cell variability were observed (Yamamoto et al., 2022).
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Further, cell type-specific aging processes have also been reported for various cell types (The-
Tabula-Muris-Consortium, 2020;Wang et al., 2020). While aging-related changes in single-
cell expression profiles cannot be detected by bulk-level analysis, single-cell genomics
approaches are well suited to detecting age-related changes in single-cell expression
profiles.

There have been analyses using transcriptome data from donors of various ages. Studies
using bulk data can comprehensively investigate gene expression correlated with age in the
target tissue (Tumasian III et al., 2021; Peters et al., 2015). Studies using single-cell RNA-seq
will identify cell types whose abundance changes with age and analyze the relationship
between donor age and cellular gene expression levels (The-Tabula-Muris-Consortium,
2020). While several methods have been proposed for modeling bulk RNA-seq data that
permit sophisticated modeling through linear models (Robinson, McCarthy & Smyth, 2010;
Law et al., 2014; Finak et al., 2015), these methods have not yet been adapted to single-cell
data. Novel methodological considerations are needed to extend data-driven detection of
aging changes in transcriptome data to the entire single-cell expression profile.

In recent years, with the widespread use of single-cell RNA-seq technology, large
scRNA-seq datasets have become available. In this study, we developed a novel workflow to
detect changes in the distribution of arbitrary monotonic age-related changes in single-cell
expression profiles. Since single-cell expression profiles can be analyzed as probability
distributions of gene expression, we propose a method that combines the quantification of
differences between distributions using information theory, and association analysis based
on distance matrices. This technique is potentially useful as a simple screening method for
identifying aging-related cellular features.

METHODS
Proposed workflow
We developed a novel data analysis workflow to perform an association analysis of
the distribution of single-cell gene expression profiles and age (Fig. 1). Our workflow
introduces a method that can detect arbitrary monotonic changes in single-cell expression
profiles. This is achieved by combining the quantification of distance within probability
distributions using information theory, along with an association analysis based on distance
matrices. The input data are single-cell RNA-seq data and donor age information from
different donors. The single-cell expression data of a gene can be expressed as a probability
distribution. By using the distance measure between probability distributions, which
has been studied extensively in statistics and information theory, the dissimilarity of the
single-cell expression profile between samples can be calculated (Okada et al., 2022).

In this workflow, The following procedure was used to quantify the distance between
two probability distributions. First, the maximum and minimum values of the pooled
data for each of the two samples were calculated. Between them, 1,000 equally spaced
grids were set up, and the probability density of each grid was estimated with the density
function of R. The probability density values of all grids were then normalized so that the
sum was 1, and the single-cell expression profile was represented by a discrete probability
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Figure 1 Graphical illustration of our workflow. The input data are single-cell RNA-seq datasets from
different donors and their donor ages. The single-cell expression data of a gene can be expressed as a prob-
ability distribution. By applying distance measures between these probability distributions, which have
been studied extensively in statistics and information theory, the dissimilarity of the single-cell expression
profile between samples can be calculated. In this workflow, Hellinger Distance, a method widely used to
estimate the distance between probability distributions, is used to create a sample× sample distance ma-
trix. A distance matrix based on the absolute value between the donor age of the sample is created. Spear-
man’s correlation coefficient between the elements of the upper triangular matrix of the distance matrix
serves as an indicator of the association between two items based on their distance relationships. This fig-
ure was created using Biorender (https://www.biorender.com/).

Full-size DOI: 10.7717/peerj.16851/fig-1

mass function. Hellinger distances were calculated for these probability mass functions.
Helligner Distance, a distance metric between two distributions P and Q could be expressed
as:

H (P,Q)=
1
√
2
×

√√√√ k∑
m=1

(
√
Pm−

√
Qm)2 (1)

The Hellinger distance is one of the typical distance metrics between two probability
distributions and is also used in computational biology methods for cytometry or NGS data
(Gingold et al., 2015; Cheng et al., 2023). The advantage of this method is that it can handle
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arbitrarily shaped probability distributions because it estimates probability distributions
and calculates distances in a non-parametric manner.

In addition, an age distance matrix based on the absolute value of the age difference
between the two samples was calculated. We used the association analysis between the
two distance matrices proposed in a method previously proposed in the field of ecological
data science (Somerfield, Clarke & Gorley, 2021). The Spearman coefficient is calculated
between the elements of the upper triangular matrix of the distance matrix, which serves
as an indicator of this association. Spearman’s correlation coefficient is calculated for
each gene to comprehensively examine genes for which changes in the distribution of
single-cell expression profiles are associated with aging. The statistical significance of
the association was assessed by the Mantel test (Mantel, 1967) between the two distance
matrices. In this study, the Mantel test was performed with the default settings for R
packages ‘‘vegan’’(v2.6.4), and the number of permutations is set to 1,000.

Simulation data generation
A simulation data analysis was performed to verify the accuracy of the proposed
computational workflow. We established four ordered age categories (Age = 1, 2, 3,
4) and corresponding normal distribution, where the dispersion parameter σ follows three
types of the age-related changing pattern (monotonically increasing with age, stabilizing
with age, non-monotonic change with age). We considered a total of 20,000 genes, 5% of
genes follow themonotonic increasingmode, 5%of genes follow the non-monotonicmode,
whereas 90% of genes follow the stable mode. Under the true distribution defined for each
age, ten distributions with slightly different means and standard deviations were generated
for each age category. Under these true distributions, we generated ten distributions with
slightly different mean and standard deviation for each age category.

For each gene, the normal distribution for the i-th sample (Normal(mean=µi,sd = σi))
was generated as follows. The mean (µi) and standard deviation (σi) of the normal
distribution for the i-th sample are generated according to the following distribution.

µi∼Normal(mean=µtrue,sd = 0.1)

where µtrue is the true mean value and set 10 in this simulation for all ages.

σi∼Normal(mean= σ [Age= agei],sd = 0.1)

where σ [Age = agei] is the true sd assigned to the donor age of the ith sample and agei is
the i-th donor’s age. The σ [Age = agei] is assigned different values depending on age. In
the gene with monotonic increase pattern, σ [Age= 1], σ [Age= 2], σ [Age= 3], σ [Age= 4]
are 0.5, 1, 1.5, 2, respectively. In the gene with a non-monotonic pattern, σ [Age = 1],
σ [Age = 2], σ [Age = 3], σ [Age = 4] are 0.5, 1, 1, 0.5, respectively. In the genes with a
stable pattern, σ [Age = 1], σ [Age = 2], σ [Age = 3], σ [Age = 4] are all 0.5. This procedure
created a set of normal distributions with slightly different parameter values under each
age-related parameter changing pattern. From the distribution of each gene of each sample,
1,000 cells were sampled to create statistical samples. We applied the proposed workflow
to the simulated dataset to evaluate the performance of the methodology.
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Real scRNA-seq data analysis
We then applied our method to the large-scale single-cell RNA-seq dataset for the aging
study. We used a public dataset of aging mouse single-cell RNA-seq data (The-Tabula-
Muris-Consortium, 2020). We downloaded the preprocessed data file (tabula-muris-senis-
droplet-processed-official-annotations.h5ad) from the Tabula Muris Senis website and
used it for downstream analysis. This dataset contains single-cell gene expression data for
20,138 genes in 245,389 cells derived from various organs of multiple mouse donors of
different ages. The donormice are 23 individuals with ages of 1month, 3months, 6months,
18 months, 24 months, or 30 months. Of all cells, 164,027 are from male mice and 81,362
are from female mice. Since sex differences are known to occur in age-related changes in
gene expression (Boheler et al., 2003; Hägg & Jylhävä, 2021), we only used a male dataset
for the downstream analysis. The top 3,000 genes with the highest average expression in
the cells for each age category were included in the analysis. We focused our analysis on
four organs (kidney, limb muscle, lung, and marrow) that were measured in more than 10
mice in this dataset. We applied the proposed workflow to this preprocessed dataset and
calculated the score of the age-related change of the single-cell expression profile for each
gene.

RESULTS
Simulation data analysis
A simulation data analysis was performed to verify the accuracy of the proposed
computational workflow. We established four ordered age categories (Age = 1, 2, 3,
4) and corresponding normal distribution, where the dispersion parameter σ follows three
types of age-related changing pattern (monotonically increasing with age, stable to age,
non-monotonic change with age). We considered a total of 20,000 genes, 5% of genes
follow the monotonic increasing pattern, 5% of genes follow the non-monotonic pattern,
whereas 90% of genes follow the stable pattern. The true distribution plots of each pattern
are shown in Fig. 2. Under the true distribution defined for each age, 10 distributions
with slightly different means and standard deviations were generated for each age category
(example is see Fig. 3). From each distribution, 1,000 cells were sampled to create statistical
samples.

In genes with monotonic parameter changes, consistently the highest correlation
coefficients were observed (Fig. 4A). In the genes with non-monotonic changes, differences
between groups were detected as moderate correlation coefficients (Fig. 4A). In the
stable situation, the correlation coefficients were distributed around zero (Fig. 4A). While
small Mantel test P-values are observed in the genes with monotonic increasing or non-
monotonic parameter change, it is not in the gene with stable pattern (Fig. 4B). This result
is consistent with the interpretation of the correlation coefficient results. Pseudo-bulk
data analysis using the same dataset has shown that correlation coefficients near zero are
observed in all cases (File S1). Pseudo-bulk expression values were defined as the average
of the single-cell expression values in each sample. Conventional bulk gene expression
analysis cannot directly capture such changes in variance because it is based on obtaining

Cheng and Okada (2024), PeerJ, DOI 10.7717/peerj.16851 5/17

https://peerj.com
http://dx.doi.org/10.7717/peerj.16851#supp-1
http://dx.doi.org/10.7717/peerj.16851


Figure 2 Three patterns of change in the standard deviation of the normal distribution with aging are
set up in the simulation analysis. (A) Monotonic increase. (B) Non-monotonic. (C) Stable.

Full-size DOI: 10.7717/peerj.16851/fig-2

the average of the expression values of the cells in the sample. These results suggest that
this method can detect the association between changes in the distribution of single-cell
expression profiles and aging in a data-driven manner.

We performed the following computer experiments to verify the validity of this
workflow. First, we performed an analysis using the Jensen–Shannon (JS) distance and the
Kolmogorov–Smirnov (KS) distance instead of the Hellinger distance as a measure of the
distance between probability distributions. JS distance is a symmetric distance measure
based on KL divergence (Lin, 1991). In the calculation of KS distance, we applied the
KS.diss functions in an R package ‘‘provenance’’ (Vermeesch, Resentini & Garzanti, 2016)
to the two statistical samples. For both distance indices, we observed the same results
as when using the Hellinger distance (File S2). The results have shown that the distance
between probability distributions is interchangeable with other indices proposed in the
field of information theory.

Real scRNA-seq data analysis
We applied the proposed workflow to the large-scale single-cell RNA-seq dataset for the
aging study and presented the histograms of the correlation coefficients obtained for the
four organs in Fig. 5. The shapes of the histograms were similar among the four organs, and
genes with a correlation coefficient > 0.85 cutoff value were considered as those showing
changes in single-cell expression during aging (Table 1). In all tissues, the presence of genes
with large positive correlation coefficients is observed. In limb muscle, 13 genes passed this
threshold while no genes passed this criterion in other tissues.

For genes detected by correlation coefficients, visualization of the shape of the
distribution in a histogram or QQ plot would be useful for the biological interpretation
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Figure 3 Example of the mean and standard deviation of the simulated sample distributions for each
aging pattern of the gene. Ten samples are simulated for each age category. For each gene, an association
analysis between age and distribution was performed on a total of 40 samples.

Full-size DOI: 10.7717/peerj.16851/fig-3

of the results. Histograms and QQ plot visualization for all the genes listed in Table 1 are
shown in Files S3 and S4, respectively. Even among those genes that are strongly associated
with age and single-cell expression profile, we observe that the specific patterns of change
are diverse.

The gene with the largest correlation coefficient was Jhdm1d. Jhdm1d, also known as
KDM7A gene, is primarily known for its involvement in epigenetic regulation through
histone demethylation, impacting gene expression and cellular processes which indirectly
related to the aging process (Yang et al., 2019). Figures 6 and 7 are histograms and QQ
plots of the single-cell expression profile of the Jhdm1d gene as an example of other
distributional aging changes. The distributions are also observed as a mixed distribution of
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Figure 4 The result of simulation data analysis. (A) The boxplot of Spearman’s correlation coefficient
values for the simulated genes with each type of age-related pattern. (B) The boxplot of Mantel test P val-
ues for the simulated genes with each type of age-related pattern.

Full-size DOI: 10.7717/peerj.16851/fig-4

cells negative and positive for this gene. At 30 months of age, the peak of the distribution
of Jhdm1d-positive cells are observed to shift to the right.

As another example, the histograms andQQplot of the single cell expression distribution
of Aldh2 gene were present in Figs. 8 and 9, respectively. It is known that Aldh2 deficiency
promotes age-related muscle loss, especially in oxidative fibers, which may be associated
with an increased accumulation of oxidative stress via mitochondrial dysfunction (Kasai
et al., 2022). The distributions are also observed as a mixed distribution of cells negative
and positive for this gene. The number of cells in the bin with range between 0.5 to 1
decreases with age, suggesting that there may be a decrease in the number of intermediate
cells between positive and negative cells. Screening using correlation coefficients, combined
with visualization using histograms and QQ plots, allows us to examine changes in diverse
single-cell expression profiles with aging.

Normally, changes in single-cell expression profiles are affected by both shifts in cell-level
expression and changes in fractions of cellular subsets, but this method can detect them
without distinguishing between them. If you want to focus only on shifts in cell-level
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(A) (B)

(C) (D)

(E) (F)

(G) (H)

Figure 5 Histograms of Spearman correlation coefficient and P value of Mantel test of association
analysis between single cell expression profile and aging in kidney, limbmuscle, lung, andmarrow. P
values were under multiple adjustment by the BH method.

Full-size DOI: 10.7717/peerj.16851/fig-5

Table 1 Genes whose single cell expression profile changes with age in each tissue (Spearman’s corre-
lation coefficien t > 0.85).

Tissue Gene Coefficient

limb muscle Jhdm1d 0.937
limb muscle Grb10 0.905
limb muscle Jmjd6 0.903
limb muscle Acot9 0.895
limb muscle Aldh2 0.889
limb muscle AI607873 0.886
limb muscle Plac9 0.886
limb muscle Gt(ROSA)26Sor 0.884
limb muscle Six1 0.864
limb muscle Wisp1 0.862
limb muscle Nr1d2 0.862
limb muscle Tnfsf9 0.858
limb muscle plscr1 0.855
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Figure 6 Histogram visualization of age-related changes in the single-cell expression profile of the
Jhdm1d gene. The x-axis represents RNA expression, whereas the y-axis represents the frequency. Cells
from all samples in each age category are pooled.

Full-size DOI: 10.7717/peerj.16851/fig-6

expression, you can apply this method to a single cell type after cell type annotation with
existing methods. We applied our workflow to each tissue and the major cell type. In this
analysis, we used the following combinations of tissue and cell types as examples (Kidney:
‘‘B cell’’, limb muscle: ‘‘mesenchymal stem cell’’, Lung: ‘‘classical monocyte’’, Marrow:
‘‘granulocyte’’) as an example. Histograms of the correlation coefficients for each cell
subset analysis are shown in File S5 . This analysis also suggested the presence of many
genes associated with age. As with the whole tissue analysis, the age-related genes passing
the threshold (0.85) have been observed only in limb muscle (21 genes, File S6). These
genes were not consistent with the age-related genes in the analysis of whole tissue analysis.
There are only two genes (Grb10, plac9) overlapped between two results.These results
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Figure 7 QQ plot visualization of age-related changes in the single-cell expression profile of the
Jhdm1d gene. The x-axis represents the distribution at the youngest age and the y-axis represents the
distribution at other ages. Cells from all samples in each age category are pooled.

Full-size DOI: 10.7717/peerj.16851/fig-7

suggest that the detected genes will be different depending on the focus and range of cell
populations.

DISCUSSION
In this study, we proposed a novel workflow to detect changes in the distribution of any
single-cell expression profile with aging and identified several genes whose single-cell
expression profiles changed during aging. Although various patterns of differences in cell
population profiles may occur with aging, this workflow can be used to screen for genes
that are strongly associated with age, irrespective of the specific pattern. Indeed, visualizing
a histogram of genes with high scores could offer what specific distributional changes
are occurring to provide biological insights. This method serves as a natural extension of
traditional bulk data analysis, which assesses the association between gene expression levels
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Figure 8 Histogram visualization of age-related changes in the single-cell expression profile of the
Aldh2 gene. The x-axis represents RNA expression, whereas the y-axis represents the frequency. Cells
from all samples in each age category are pooled.

Full-size DOI: 10.7717/peerj.16851/fig-8

and age. In recent years, as more single-cell expression data are obtained from multiple
samples, we anticipate that this method will be useful increasingly in future studies.

This study has the following limitations. First, this workflow can only be used to
analyze genes that are expressed at levels that are sufficient for distance quantification of
distribution. Consequently, the analysis of the real scRNA-seq dataset in this study was
limited to the top 3,000 genes with the highest average expression levels. Second, this
workflow yields only correlation coefficients to age; additional experiments, analysis, and
literature reviews are required to gain further biological insights. Despite these limitations,
the developed workflow is still expected to be useful as a straightforward method for
screening genes in aging scRNA-seq datasets.
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Figure 9 Histogram visualization of age-related changes in the single-cell expression profile of the
Aldh2 gene. The x-axis represents the distribution at the youngest age and the y-axis represents the distri-
bution at other ages. Cells from all samples in each age category are pooled.

Full-size DOI: 10.7717/peerj.16851/fig-9

As a future perspective, this analytical framework is not limited to single-cell expression
data and can be extended to the distribution of various cellular phenotypes as they evolve
with age. For example, single-cell epigenomics analyses have shown significant age-related
changes in aspects such as open chromatin profiles, histone modifications, and DNA
methylation profiles (He et al., 2020; Zhang et al., 2022; Hernando-Herraez et al., 2019). It
has also been suggested that cellular phenotypes such as cell morphology can be used as
aging biomarkers (Phillip et al., 2017). Further, the framework used in this method can
detect monotonic changes in distribution without any special assumptions. As such, it may
serve as an initial screening approach for identifying novel factors related to aging.

CONCLUSION
In this study, we proposed a novel workflow to detect changes in the distribution of
arbitrary monotonic age-related changes of single-cell expression profiles. It is suggested
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that this technique is potentially useful as a straightforward screening method to identify
cellular features related to aging.

ACKNOWLEDGEMENTS
We would like to thank FORTE Inc. for proofreading this manuscript.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work was funded by a KAKENHI Grant-in-Aid from the Japan Society for the
Promotion of Science (JSPS; Grant No. 21K21316). The funders had no role in study
design, data collection and analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
KAKENHI Grant-in-Aid from the Japan Society for the Promotion of Science: JSPS; Grant
No. 21K21316.

Competing Interests
The authors declare there are no competing interests.

Author Contributions
• Jian Hao Cheng conceived and designed the experiments, performed the experiments,
analyzed the data, prepared figures and/or tables, authored or reviewed drafts of the
article, and approved the final draft.
• Daigo Okada conceived and designed the experiments, authored or reviewed drafts of
the article, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The code used in this study are available at GitHub and Zenodo:
- https://github.com/chengjianhao123/scRNA/
- JIANHAO, C., & OKADA, D. (2023). chengjianhao123/scRNA: Data-driven detection

of age-related arbitrary monotonic changes in single-cell gene expression distributions.
(single_cell_RNA). Zenodo. https://doi.org/10.5281/zenodo.10396488.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj.16851#supplemental-information.

REFERENCES
Barzilai N, Cuervo AM, Austad S. 2018. Aging as a biological target for prevention and

therapy. JAMA 320(13):1321–1322 DOI 10.1001/jama.2018.9562.

Cheng and Okada (2024), PeerJ, DOI 10.7717/peerj.16851 14/17

https://peerj.com
https://github.com/chengjianhao123/scRNA/
https://doi.org/10.5281/zenodo.10396488
http://dx.doi.org/10.7717/peerj.16851#supplemental-information
http://dx.doi.org/10.7717/peerj.16851#supplemental-information
http://dx.doi.org/10.1001/jama.2018.9562
http://dx.doi.org/10.7717/peerj.16851


Boheler KR, VolkovaM,Morrell C, Garg R, Zhu Y, Margulies K, Seymour A-M, Lakatta
EG. 2003. Sex-and age-dependent human transcriptome variability: implications for
chronic heart failure. Proceedings of the National Academy of Sciences of the United
States of America 100(5):2754–2759.

Cheng JH, Zheng C, Yamada R, Okada D. 2023. Visualization of the landscape of the
read alignment shape of ATAC-seq data using Hellinger distance metric. Genes to
Cells 29(1):5–16.

DrummondMJ, McCarthy JJ, SinhaM, Spratt HM, Volpi E, Esser KA, Rasmussen
BB. 2011. Aging and microRNA expression in human skeletal muscle: a mi-
croarray and bioinformatics analysis. Physiological Genomics 43(10):595–603
DOI 10.1152/physiolgenomics.00148.2010.

Finak G, McDavid A, YajimaM, Deng J, Gersuk V, Shalek AK, Slichter CK, Miller
HW,McElrathMJ, Prlic M. 2015.MAST: a flexible statistical framework for
assessing transcriptional changes and characterizing heterogeneity in single-cell RNA
sequencing data. Genome Biology 16:1 DOI 10.1186/s13059-014-0572-2.

Gingold JA, Coakley ES, Su J, Lee D-F, Lau Z, Zhou H, Felsenfeld DP, Schaniel
C, Lemischka IR. 2015. Distribution Analyzer, a methodology for identify-
ing and clustering outlier conditions from single-cell distributions, and its
application to a Nanog reporter RNAi screen. BMC Bioinformatics 16:225
DOI 10.1186/s12859-015-0636-7.

Hägg S, Jylhävä J. 2021. Sex differences in biological aging with a focus on human
studies. Elife 10:e63425 DOI 10.7554/eLife.63425.

He X, Memczak S, Qu J, Belmonte JCI, Liu G-H. 2020. Single-cell omics in ageing: a
young and growing field. Nature Metabolism 2(4):293–302
DOI 10.1038/s42255-020-0196-7.

Hernando-Herraez I, Evano B, Stubbs T, Commere P-H, Jan Bonder M, Clark S,
Andrews S, Tajbakhsh S, ReikW. 2019. Ageing affects DNA methylation drift
and transcriptional cell-to-cell variability in mouse muscle stem cells. Nature
Communications 10(1):4361 DOI 10.1038/s41467-019-12293-4.

Kamei J, Ito H, Aizawa N, Hotta H, Kojima T, Fujita Y, Ito M, Homma Y, Igawa Y.
2018. Age-related changes in function and gene expression of the male and female
mouse bladder. Scientific Reports 8(1):2089 DOI 10.1038/s41598-018-20406-0.

Kasai A, Jee E, Tamura Y, Kouzaki K, Kotani T, Nakazato K. 2022. Aldehyde dehydro-
genase 2 deficiency promotes skeletal muscle atrophy in aged mice. American Journal
of Physiology-Regulatory, Integrative and Comparative Physiology 322(6):R511–R525
DOI 10.1152/ajpregu.00304.2021.

Law CW, Chen Y, ShiW, Smyth GK. 2014. voom: precision weights unlock linear
model analysis tools for RNA-seq read counts. Genome Biology 15(2):1–17
DOI 10.1186/gb-2014-15-1-r1.

Lin J. 1991. Divergence measures based on the Shannon entropy. IEEE Transactions on
Information Theory 37(1):145–151 DOI 10.1109/18.61115.

Mantel N. 1967. The detection of disease clustering and a generalized regression
approach. Cancer Research 27(2_Part_1):209–220.

Cheng and Okada (2024), PeerJ, DOI 10.7717/peerj.16851 15/17

https://peerj.com
http://dx.doi.org/10.1152/physiolgenomics.00148.2010
http://dx.doi.org/10.1186/s13059-014-0572-2
http://dx.doi.org/10.1186/s12859-015-0636-7
http://dx.doi.org/10.7554/eLife.63425
http://dx.doi.org/10.1038/s42255-020-0196-7
http://dx.doi.org/10.1038/s41467-019-12293-4
http://dx.doi.org/10.1038/s41598-018-20406-0
http://dx.doi.org/10.1152/ajpregu.00304.2021
http://dx.doi.org/10.1186/gb-2014-15-1-r1
http://dx.doi.org/10.1109/18.61115
http://dx.doi.org/10.7717/peerj.16851


Melzer D, Pilling LC, Ferrucci L. 2020. The genetics of human ageing. Nature Reviews
Genetics 21(2):88–101 DOI 10.1038/s41576-019-0183-6.

Okada D, Cheng JH, Zheng C, Yamada R. 2022. Data-driven comparison of multiple
high-dimensional single-cell expression profiles. Journal of Human Genetics
67(4):215–221 DOI 10.1038/s10038-021-00989-9.

Partridge L, Deelen J, Slagboom PE. 2018. Facing up to the global challenges of ageing.
Nature 561(7721):45–56 DOI 10.1038/s41586-018-0457-8.

Patel HP, Al-Shanti N, Davies LC, Barton SJ, GroundsMD, Tellam RL, Stewart CE,
Cooper C, Sayer AA. 2014. Lean mass, muscle strength and gene expression in
community dwelling older men: findings from the Hertfordshire Sarcopenia Study
(HSS). Calcified Tissue International 95:308–316 DOI 10.1007/s00223-014-9894-z.

Peters MJ, Joehanes R, Pilling LC, Schurmann C, Conneely KN, Powell J, Rein-
maa E, Sutphin GL, Zhernakova A, SchrammK. 2015. The transcriptional
landscape of age in human peripheral blood. Nature Communications 6:8570
DOI 10.1038/ncomms9570.

Phillip JM,Wu P-H, Gilkes DM,WilliamsW,McGovern S, Daya J, Chen J, Aifuwa I,
Lee JS, Fan R. 2017. Biophysical and biomolecular determination of cellular age in
humans. Nature Biomedical Engineering 1(7):0093 DOI 10.1038/s41551-017-0093.

RobinsonMD,McCarthy DJ, Smyth GK. 2010. edgeR: a Bioconductor package for
differential expression analysis of digital gene expression data. Bioinformatics
26(1):139–140 DOI 10.1093/bioinformatics/btp616.

Singh PP, Demmitt BA, Nath RD, Brunet A. 2019. The genetics of aging: a vertebrate
perspective. Cell 177(1):200–220 DOI 10.1016/j.cell.2019.02.038.

Somerfield PJ, Clarke KR, Gorley RN. 2021. A generalised analysis of similarities
(ANOSIM) statistic for designs with ordered factors. Austral Ecology 46(6):901–910
DOI 10.1111/aec.13043.

Su J, Ekman C, Oskolkov N, Lahti L, Ström K, Brazma A, Groop L, Rung J, Hansson O.
2015. A novel atlas of gene expression in human skeletal muscle reveals molecular
changes associated with aging. Skeletal Muscle 5:1 DOI 10.1186/s13395-014-0025-3.

Thalacker-Mercer AE, Dell’Italia LJ, Cui X, Cross JM, BammanMM. 2010. Differential
genomic responses in old vs. young humans despite similar levels of modest
muscle damage after resistance loading. Physiological Genomics 40(3):141–149
DOI 10.1152/physiolgenomics.00151.2009.

The Tabula Muris Consortium. 2020. A single-cell transcriptomic atlas characterizes
ageing tissues in the mouse. Nature 583(7817):590–595
DOI 10.1038/s41586-020-2496-1.

Tumasian III RA, Harish A, Kundu G, Yang J-H, Ubaida-Mohien C, Gonzalez-
Freire M, KailehM, Zukley LM, Chia CW, Lyashkov A. 2021. Skeletal muscle
transcriptome in healthy aging. Nature Communications 12(1):2014
DOI 10.1038/s41467-021-22168-2.

Vermeesch P, Resentini A, Garzanti E. 2016. An R package for statistical provenance
analysis. Sedimentary Geology 336:14–25 DOI 10.1016/j.sedgeo.2016.01.009.

Cheng and Okada (2024), PeerJ, DOI 10.7717/peerj.16851 16/17

https://peerj.com
http://dx.doi.org/10.1038/s41576-019-0183-6
http://dx.doi.org/10.1038/s10038-021-00989-9
http://dx.doi.org/10.1038/s41586-018-0457-8
http://dx.doi.org/10.1007/s00223-014-9894-z
http://dx.doi.org/10.1038/ncomms9570
http://dx.doi.org/10.1038/s41551-017-0093
http://dx.doi.org/10.1093/bioinformatics/btp616
http://dx.doi.org/10.1016/j.cell.2019.02.038
http://dx.doi.org/10.1111/aec.13043
http://dx.doi.org/10.1186/s13395-014-0025-3
http://dx.doi.org/10.1152/physiolgenomics.00151.2009
http://dx.doi.org/10.1038/s41586-020-2496-1
http://dx.doi.org/10.1038/s41467-021-22168-2
http://dx.doi.org/10.1016/j.sedgeo.2016.01.009
http://dx.doi.org/10.7717/peerj.16851


Wang S, Zheng Y, Li J, Yu Y, ZhangW, SongM, Liu Z, Min Z, HuH, Jing Y. 2020.
Single-cell transcriptomic atlas of primate ovarian aging. Cell 180(3):585–600
DOI 10.1016/j.cell.2020.01.009.

White RR, Milholland B, MacRae SL, LinM, Zheng D, Vijg J. 2015. Compre-
hensive transcriptional landscape of aging mouse liver. BMC Genomics 16:1
DOI 10.1186/1471-2164-16-1.

Yamamoto R, Chung R, Vazquez JM, Sheng H, Steinberg PL, Ioannidis NM, Sudmant
PH. 2022. Tissue-specific impacts of aging and genetics on gene expression patterns
in humans. Nature Communications 13(1):5803 DOI 10.1038/s41467-022-33509-0.

Yang X,Wang G,Wang Y, Zhou J, Yuan H, Li X, Liu Y,Wang B. 2019.Histone
demethylase KDM7A reciprocally regulates adipogenic and osteogenic differentia-
tion via regulation of C/EBP α and canonical Wnt signalling. Journal of Cellular and
Molecular Medicine 23(3):2149–2162 DOI 10.1111/jcmm.14126.

Zhang Y, Amaral ML, Zhu C, Grieco SF, Hou X, Lin L, Buchanan J, Tong L, Preissl
S, Xu X. 2022. Single-cell epigenome analysis reveals age-associated decay of
heterochromatin domains in excitatory neurons in the mouse brain. Cell Research
32(11):1008–1021 DOI 10.1038/s41422-022-00719-6.

Cheng and Okada (2024), PeerJ, DOI 10.7717/peerj.16851 17/17

https://peerj.com
http://dx.doi.org/10.1016/j.cell.2020.01.009
http://dx.doi.org/10.1186/1471-2164-16-1
http://dx.doi.org/10.1038/s41467-022-33509-0
http://dx.doi.org/10.1111/jcmm.14126
http://dx.doi.org/10.1038/s41422-022-00719-6
http://dx.doi.org/10.7717/peerj.16851

