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ABSTRACT
Dipus sagitta is a major rodent found in arid environments and desert areas. They
feed on plant seeds, young branches and some small insects, and have hibernating
habits. Peak Dipus sagitta numbers impact the construction of the plant community
in the environment, but also have a human impact as these rodents carry a variety of
parasitic fleas capable of spreading serious diseases to humans. Based on 216 present
distribution records of Dipus sagitta and seven environmental variables, this article
simulates the potential distribution of Dipus sagitta during the Last Glacial Maximum,
the mid-Holocene, the present and the future (2070s, RCP4.5, RCP8.5). This study
also analyzes the geographic changes of the population distribution and evaluates the
importance of climate factors by integrating contribution rate, replacement importance
value and the jackknife test using theMaxEntmodel. In this study, we opted to assess the
predictive capabilities of our model using the receiver operating characteristic (ROC)
and partial receiver operating characteristic (pROC) metrics. The findings indicate
that the AUC value exceeds 0.9 and the AUC ratio is greater than 1, indicating superior
predictive performance by the model. The results showed that the main climatic factors
affecting the distribution of the three-toed jerboa were precipitation in the coldest
quarter, temperature seasonality (standard deviation), and mean annual temperature.
Under the two warming scenarios of the mid-Holocene and the future, there were
differences in the changes in the distribution area of the three-toed jerboa. During the
mid-Holocene, the suitable distribution area of the three-toed jerboa expanded, with
a 93.91% increase in the rate of change compared to the Last Glacial Maximum. The
size of the three-toed jerboa’s habitat decreases under both future climate scenarios.
Compared to the current period, under the RCP4.5 emission scenario, the change rate
is −2.96%, and under the RCP8.5 emission scenario, the change rate is −7.41%. This
indicates a trend of contraction in the south and expansion in the north. It is important
to assess changes in the geographic population of Dipus sagitta due to climate change
to formulate population control strategies of these harmful rodents and to prevent and
control the long-distance transmission of zoonotic diseases.
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INTRODUCTION
Climate is considered to be themost important environmental factor in determining species
distribution. Climate change has a huge impact on species distribution and biodiversity,
and changes in species distribution patterns can also reflect historical climate change
trends (Descombes et al., 2015; Allen & Lendemer, 2016). The Fifth Assessment Report of
the Intergovernmental Panel on Climate Change (IPCC) pointed out that the average
temperature of the Earth’s surface continues to rise as greenhouse gas emissions increase
(Fahrig, 2003; Allen et al., 2014). As the global climate warms, suitable habitats for many
species are reduced and lost, leading to a dramatic decline in the Earth’s biodiversity
(O’Connor, Bojinski & Rsli, 2019; Barnosky, 2006). The reduction and extinction of
beneficial animals and protected animal species is a serious, ongoing problem (Huang
& Wang, 2019). Another serious problem triggered by climate change is the potential
increase in new animal-to-animal and animal-to-human disease transmission caused by
the diffuse movement of pest distribution areas, leading to new ecological and human
health risks (Carlson et al., 2022). Understanding the impact of climate change on species
distribution patterns will help elucidate reasons for habitat changes in the evolutionary
history of species. This knowledge will provide an important basis for analyzing and
predicting changing species distribution patterns under global warming conditions and
inform the development of control strategies for harmful species.

Species distribution models (SDMs), such as the MaxEnt model (maximum entropy
model), have been widely used to study the impact of climate change on the potential
geographic distribution of species (Romain, Vincent & Jean-Claude, 2012; Su et al., 2015).
The MaxEnt model can calculate the maximum entropy of species distribution probability
using incomplete species distribution data and environmental data, enabling the prediction
of the potential distribution range of the species (Phillips, Anderson & Schapire, 2006) .

Previous studies have shown that the MaxEnt model is suitable for species distribution
modeling (Peterson, Pape & Eaton, 2007; Li et al., 2009; Robert et al., 2005; Barbosa &
Schneck, 2015; Elith, Phillips & Hastie, 2015). Using MaxEnt predictions and ArcGIS
software, researchers can identify distribution points that have higher ecological species
stability under conditions of global warming and infer the suitable habitat range and change
trend of the species (Chan, Brown & Yoder, 2011).

There are many published studies on changes in the suitable distribution areas of
different species under different emission scenarios, which have been used to predict: the
response of species to climate change, the expansion trends of alien invasive species, species
interaction, and impacts on genetic diversity (Urbani, D’Alessandro & Biondi, 2017; Zhang
et al., 2021; Pauls et al., 2013). These studies provide the empirical basis for an in-depth
understanding of climate change and its impact on pest expansion. Studies have shown
that climate change can change the suitable distribution area of species. For example,
Wang et al. (2022) predicted the potential distribution area of Meriones meridianus under
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different future scenarios and found that an increase in temperature and precipitation
could change the distribution of food resources and the degree of competition among
different populations, leading to a significant reduction in the suitable distribution area of
Meriones meridianus. Another future species distribution prediction study found that the
overall distribution area of Allactaga firouzi will not change significantly, but the suitable
distribution area in China, Kumanstan, and other countries will become smaller and
the suitable distribution area in Mongolia, Kazakhstan, and other countries will expand
(Mohammadi et al., 2019). The suitable distribution area of Rhombomys opimus will both
gradually decrease in overall area and shift to higher latitudes (Wen et al., 2022). Climate
change is predicted to change species habitats and ecological processes, and promote species
migration (Hill, Griffiths & Thomas, 2011). Bai et al. (2022) found a correlation between
temperature factors and local disappearance and migration of Lasiopodomys brandtii.
With temperature increases of about 0.36 ◦C every 10 years, the southern boundary of
the Lasiopodomys brandtii distribution area moved at least 495 km to the northern high
latitude area. These studies all show that climate change impacts the suitable distribution
area of species as these species are forced to adjust their own distribution patterns based on
environmental and ecological changes (Schloss, Nuñez & Lawler, 2012;Walther et al., 2002;
Parmesan & Yohe, 2003; Lioubimtseva & Henebry, 2009; McLaughlin et al., 2002).

The three-toed jerboa (Dipus sagitta) is a burrowing rodent of the Dipodidae family of
the order Rodentia (Lioubimtseva & Henebry, 2009) that has physical characteristics similar
to the Australian kangaroo (Macropus agilis). It is active only at night and uses hindlimbs
to jump as it travels. The three-toed jerboa is widely distributed from the beaches of
the Don River to the Caspian Sea in Russia, Turkmenistan, Uzbekistan, and northern
Iran, and through Kazakhstan to the Irtysh River, Tuva, Mongolia, and northern China
(IUCN, 2016). It has a relatively wider geographical distribution than most other species
in the Dipodidae family (Yuan et al., 2018). The habitat of the three-toed jerboa is mostly
high-altitude deserts and semi-deserts, but they can also be found in pine-covered sand
dunes. In spring, the three-toed jerboa feeds on the vegetative parts of herbs and shrubs,
as well as grass roots and bulbs. When the seeds start to ripen in the fall, this animal
shifts its primary food source to seeds. Insects and larvae are also part of the daily diet
of the three-toed jerboa. The three-toed jerboa is highly adapted to arid conditions and
hardly drinks water in the wild (IUCN, 2016). The three-toed jerboa has an annual peak
population in China from July to September, and the capture rate can reach more than
15% (Yuan et al., 2018; Ji et al., 2009). It not only harms desert steppe plant seeds, reducing
the survival of wild plants and reducing vegetation coverage, but is also a potential cause
of sandstorms. Due to its large activity range and wide distribution area, the three-toed
jerboa is a risk factor for long-distance transmission of plague (Yersinia pestis), epidemic
hemorrhagic fever, and other zoonotic diseases (Duan et al., 2010). This study found that
the three-toed jerboa body surface parasites include a variety of fleas that can be naturally
infected with Yersinia pestis, including: Xenopsylla skrjabini, Coptopsylla lamellifer ardua,
Neopsylla identatiformis, Neopsylla pleskei orientalis, Leptopsylla pavlovskii, Mesopsylla
hebes hebes, Frontopsylla wagneri, Ophthalmlmopsylla kiritschenkoi, Ophthalmlmopsylla
praefecta praefecta and Citellophilus tesquorum sungaris (Yang et al., 2008). These fleas
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are also common parasitic fleas of other rodents, such as the squirrel (Sciuridae),
chipmunk (Tamias sibiricus), ground squirrel (Spermophilus dauricus), red-cheeked
ground squirrel (Spermophilus erythrogenys), striped-back hamster (Cricetulus barabensis),
striped hairy-footed hamster (Phodopus sungorus), Brandt’s vole (Lasiopodomys brandtii),
Eversmann’s hamster (Cricetulus eversmanni), desert hamster (Phodopus roborovskii), great
gerbil (Rhombomys opimus), Mongolian gerbil (Meriones unguiculatus), midday gerbil
(Meriones meridianus), Chinese white-bellied rat (Niviventer confucianus), Korean field
mouse (Apodemus peninsulae), yellow steppe lemming (Eolagurus luteus), five-toed jerboa
(Allactaga sibirica), Mongolian rabbit (Lepus tolai tolai), and domestic rodents like the
Norway rat (Rattus norvegicus), house mice (Mus musculus), and their natural enemies
such as yellow weasel (Mustela sibirica), musked polecat Mustela eversmanii), red fox
(Vulpes vulpe), sand fox (Vulpes corsac), and domestic cat (Felis catus; Yang et al., 2008). In
the wild, the habitats of rodents and their natural enemies overlap, and with infected fleas
parasitizing all of these animals, the risk of long-distance transmission of diseases such as
plague can be extremely high. In China, the three-toed jerboa is mainly distributed in desert
and semi-desert ecosystems, which are relatively simple in structure, fragile in ecological
function, and relatively sensitive to climate change (Yuan et al., 2018). In this study, the
MaxEnt model, combined with ArcGIS graphics, was used to further clarify the impact
of climate change on the distribution area of the three-toed jerboa. The past and present
distribution range of the three-toed jerboa was simulated, the future distribution range was
predicted under different climatic conditions (RCP4.5 and RCP8.5 scenarios), and then
the main environmental factors and thresholds affecting the distribution of the three-toed
jerboa were analyzed. This study provides insights into the risk of harmful rodents in an
arid environment subject to ‘‘climate migration,’’ and can provide a scientific basis for
controlling these rodents under future climate warming trends.

MATERIALS AND METHODS
Source of data on the distribution of the three-toed jerboa
The distribution data of the three-toed jerboa was obtained from the Global Biodiversity
Information Facility (http://www.gbif.org), the National Specimen Information
Infrastructure (http://www.nsii.org.cn), a review of existing literature, and field data
accumulated by our research group over the past 21 years. A total of 646 distribution
points of Dipus sagitta were obtained. The buffer module of the ArcGIS software was used
to eliminate the distributed data points, ensuring that there was only one distribution
point in each grid to avoid the over-fitting phenomenon caused by too many distribution
points. The spatial resolution of environmental data was 2.5 min (about 4.5 km), and the
buffer diameter was set to 10 km. When the distance between two distribution points was
less than 10 km, the buffer area overlapped, and only one distribution point was reserved
(Wang, Xu & Li, 2017). After this process, a total of 216 effective distribution points were
reserved (Fig. 1). The longitude and latitude coordinates of the sample were then converted
into .csv format, which was used to construct the MaxEnt Model.

Note: For the distribution data of Dipus sagitta, please refer to the supporting materials.
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Figure 1 Geographic distribution of the three-toed jerboa in the present period.Different colors repre-
sent different altitudes, and the black dots represent the actual distribution of three-toed jerboas.

Full-size DOI: 10.7717/peerj.16811/fig-1

Environmental data sources
The 19 bioclimatic variables collected in this study (Table 1) were all derived from the
World Climate Database (http://www.worldclim.org/). The coordinate system was WGS84,
the grid size was 25 km2, and the data spatial resolution was 2.5 min. The time range of
contemporary climate data was from1960 to 2020. The Last GlacialMaximum (LGM, about
21,000 years ago), mid-Holocene (about 6,000 years ago), and future climate scenarios
used the CCSM4 universal climate system model developed by the National Center for
Atmospheric Research (NCAR). For future climate data, two greenhouse gas emission
scenarios, RCP4.5 and RCP8.5 (RCP= Representative Concentration Pathways), from the
Fifth Assessment Report of the IPCC were selected to represent a low and high impact of
rising greenhouse gas concentrations on the future climate, respectively.

Filtering and processing of environment variables
The LGM, mid-Holocene, current, and future climate scenarios all included 19 bioclimatic
variables (Table 1). Since some of the bioclimatic variables are highly correlated, in order
to avoid overfitting of the model caused by the multicollinearity of environmental variables
(Lebedev et al., 2018; Michael, 2003), DIVA-GIS 7.5 software (http://www.diva-gis.org) was
used to extract information on the 19 climate variables at 216 distribution points. R software
was used to carry out a Pearson correlation analysis (Pearson et al., 2006). Environmental
variables with correlation coefficient r < 0.8 were retained, and environmental variables
with correlation coefficient r > 0.8 were selected to have a larger contribution rate in
the initial model test (Fig. 2). After final screening, seven environmental variables were
obtained: mean annual temperature (Bio01), mean diurnal range (Bio02), temperature
seasonality (Bio04), mean temperature of wettest quarter (Bio08), annual precipitation
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Table 1 Environment factor variables used in theMaxEent model.

Variable Description

Bio01 Mean annual temperature
Bio02 Mean diurnal range
Bio03 Isothermality
Bio04 Temperature seasonality (standard deviation)
Bio05 Max temperature of warmest month
Bio06 Min temperature of coldest month
Bio07 Temperature annual range (Bio05-Bio06)
Bio08 Mean temperature of wettest quarter
Bio09 Mean temperature of driest quarter
Bio10 Mean temperature of warmest quarter
Bio11 Mean temperature of coldest quarter
Bio12 Annual precipitation
Bio13 Precipitation of wettest month
Bio14 Precipitation of driest month
Bio15 Coefficient of variation of precipitation seasonality
Bio16 Precipitation of wettest quarter
Bio17 Precipitation of driest month
Bio18 Precipitation of warmest quarter
Bio19 Precipitation of coldest quarter

(Bio12), coefficient of variation of precipitation seasonality (Bio15), and precipitation of
coldest quarter (Bio19).

Model building
Data from the 216 Dipus sagitta distribution points and seven climate variables in different
periods were introduced into MaxEnt 3.3.3 to predict the potential distribution of Dipus
sagitta under climate change conditions. A total of 75% of the distribution points of Dipus
sagitta were randomly selected as training sets for model construction, and the remaining
25% were used as test sets for model verification. Cross-validation was adopted, meaning
the species data were randomly divided into 10 parts, with one part randomly selected
as the test set each time, and the remaining nine parts used as training sets, repeated ten
times. By default, the maximum number of iterations was 500 and the maximum number
of background points was 10,000.

A key parameter setting in MaxEnt is feature class, which has five feature types: linear
feature (L), quadratic feature (Q), fragmented feature (H), product feature (P), and
threshold feature (T). With more distribution points, MaxEnt uses more of these feature
types by default (Elith, Kearney & Phillips, 2010; Wang et al., 2017; Kong, Li & Zou, 2019),
with little impact on overall performance. Because the distribution points of the selected
species in this study were >80, the default feature selection of MaxEnt was selected.

This data was used to plot environmental variable response curves to evaluate the impact
of each climate variable on the model prediction results. Receiver operating characteristic
(ROC) curves were created and the jack-knife method was used to assess the importance,
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Figure 2 Pearson correlation analysis of 19 bioclimatic variables.Different colors represent different
correlation coefficients.

Full-size DOI: 10.7717/peerj.16811/fig-2

or contribution, of each environmental variable to distribution gain. The jack-knife
method calculates the training scores when simulating ‘‘with only one variable,’’ ‘‘without
variables,’’ and ‘‘with all variables,’’ respectively. When the ‘‘with only one variable’’ had
a higher score, it indicated that the environmental factor being used as the variable had a
higher predictive ability and thus a greater contribution to species distribution. When the
training scoring ability of the ‘‘with only one variable’’ model decreased, it indicated that
the variable had more unique information and was more important to species distribution
(Phillips & Miroslav, 2008). Using this method, the dominant factors affecting the species
distribution were determined, and the remaining parameters were kept at their default
settings. The model then output the results in the form of logistic output, from which the
ASC II (American Standard Code for Information Interchange) file of the average of 10
operations were selected. Raster values giving the distribution probabilities of the species
were used as logical values reflecting the extent to which each grid in the target area met
the actual ecological niche of the species. These results were then input into ArcGIS 10.2
software (Yang et al., 2013). The automatic classification method in the reclassification tool
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was used to divide the suitability of the distribution areas into four grades: non-suitable
area, somewhat suitable area, moderately suitable area, and highly suitable area.

Geospatial analysis
ArcGIS 10.2 was used to count the different grades of suitable areas in different periods,
and SDM toolbox 2.4 tool was used to calculate the potential distribution areas of Dipus
sagitta in different periods (Brown, 2014). Using the ‘‘Reclass’’ function in ArcGIS 10.2,
the grid values of suitable (including somewhat, moderate, and highly suitable areas)
and non-suitable areas of Dipus sagitta were modified to 1 and 0 respectively, then SDM
toolbox was added, and the subdirectory of ‘‘MaxEnt Tools’’ in the ‘‘SDM Tools’’ module
was selected. The ‘‘Distribution Changes Between Binary SDMs’’ tool was used to calculate
changes in potential distribution areas in each period (LGM maximum to mid-Holocene,
mid-Holocene to current, current to RCP 4.5-2070, and current to RCP 8.5-2070) and
obtain the distribution expansion area, stable area, and contraction area.

Model accuracy evaluation
Receiver operating characteristics (ROC) take every value of the prediction result as a
possible judgment threshold and calculates the corresponding sensitivity and specificity,
and then evaluates the accuracy of themodel. Because the area under the ROC curve (AUC)
is not affected by the judgment threshold, it is recognized as the best index to evaluate the
prediction accuracy of the model. The value range of AUC is [0, 1]. The larger the value,
the farther it is away from the random distribution, indicating a more accurate prediction
effect. The evaluation criteria are: 0.7–0.8 is more accurate, 0.8–0.9 is accurate, and 0.9–1.0
is very accurate (Phillips, Anderson & Schapire, 2006).

Because the subject working curve generated by MaxEnt was fuzzy, to improve the
clarity, the origin picture numerical drawing toolbox was used to extract the result of the
MaxEnt subject working curve. This extracted result was then imported into MATLAB
and the plot function was used to redraw the ROC curve. This study also chose a partial
receiver operating character (PROC) measurement method to evaluate the prediction
performance of the model (http://shiny.conabio.gob.mx:3838/nichetoolb2/). Finally, the
model was constructed based on the distribution data of all species. The PROC method
uses AUC ratio to evaluate the model. An AUC ratio >1 indicates that the model has better
relative random prediction results, while AUC ratio≤ 1 indicates that the model has worse
relative randomprediction results (Fan et al., 2019). PAUCwas calculated byNicheToolbox
(http://shiny.conabio.gob.mx:3838/nichetoolb2/) with 1,000 iterations, E = 0.05.

Laboratory animal ethics
The animal study was reviewed and approved by the Research Ethics Review Committee
of Inner Mongolian Agricultural University (NND2023081).
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Figure 3 AUC results of the MaxEnt model under current conditions. The red line in the plot repre-
sents the average AUC value, and the blue area represents the standard deviation.

Full-size DOI: 10.7717/peerj.16811/fig-3

RESULTS AND ANALYSIS
MaxEnt model accuracy verification
The MaxEnt model was used to simulate the potential habitat of Dipus sagitta, and the
ROC was used as a measure of the prediction accuracy of the model. The evaluation results
of ROC show that the average AUC (referring to the area surrounded by ROC and abscissa
axis) of the prediction model of suitable living area of Dipus sagitta was greater than 0.9
(Fig. 3), the average AUC value of the evaluation results of the model PROC performance
test was 0.906 (P < 0.001) (Fig. 4), and the AUC ratio was 1.813, which is much greater
than 1, indicating that the evaluation results of the prediction model and random model
were significantly different, and the performance of the prediction model was significantly
stronger than the random model. This suggests that the mean value of the MaxEnt model
can be used to reflect the distribution of species with high accuracy.

The importance of environmental variables affecting the distribution
of the three-toed jerboa
The influence of seven environmental variables on the potential future distribution area
of the three-toed jerboa was assessed using the jack-knife method (Table 2). The top three
variables by percentage contribution were: precipitation of the coldest quarter (Bio19,

Bu et al. (2024), PeerJ, DOI 10.7717/peerj.16811 9/22

https://peerj.com
https://doi.org/10.7717/peerj.16811/fig-3
http://dx.doi.org/10.7717/peerj.16811


Figure 4 pROC test of MaxEnt model for three-toed Jerboa. The shaded bars with bell-shaped curve in-
dicate the frequen- cy distribution of the ratios between AUC from model prediction and AUC random,
while the bell-shaped curve on the left represents the AUC ratios for random models.

Full-size DOI: 10.7717/peerj.16811/fig-4

Table 2 The importance of seven environmental variables to the distribution of three-toed jerboa.

Environment variable PC/% PI/% TRGO TRGW TGO TGW AUCGO AUCGW

Bio19 Precipitation of coldest quarter 38.77 19.69 1.089 2.478 0.7840 2.232 0.8201 0.9604
Bio04 Temperature seasonality 26.15 32.01 0.8908 2.451 0.9542 2.080 0.8437 0.9530
Bio01 Mean annual temperature 23.76 30.21 1.157 2.457 1.075 2.173 0.8708 0.9533
Bio02 Mean diurnal range 7.470 3.520 0.6770 2.531 0.4513 2.206 0.7610 0.9592
Bio12 Annual precipitation 2.920 12.73 0.8306 2.511 0.7996 2.147 0.8336 0.9580
Bio15 Coefficient of variation of

Precipitation seasonality
0.5201 0.2401 0.5851 2.541 0.3317 2.223 0.7072 0.9601

Bio08 Mean temperature of wettest quarter 0.4401 1.570 0.7405 2.533 0.6743 2.201 0.8095 0.9591

Notes.
PC, Percentage contribution; PI, Permutation importance; TRGO, Training gain with only; TRGW, Training gain without; TGO, Test gain with only; TGW, Test gain without;
AUCGO, with only; AUCGW, without.

38.77%), for which the most suitable range was 0–22.79 mm; temperature seasonality
(standard deviation; Bio04, 26.15%), for which the most suitable range was 86.72–250;
and mean annual temperature (Bio01, 23.76%), for which the most suitable range was
1.37–19.73 ◦C. The cumulative contribution rate of these three factors was 88.68%. The
top three permutation importance values were: the standard deviation of temperature
(Bio04, 32.01%), mean annual temperature (Bio01, 30.21%), and precipitation of the
coldest quarter (Bio19, 19.69%). The cumulative importance value of these three factors
was 81.92%.

The simulation results of the MaxEnt model showed that, among the seven
environmental variables in this study, both precipitation and temperature had a certain
degree of influence on the distribution area of the three-toed jerboa. The ranking
of contribution rates showed that the precipitation factor was more important, but
replacement importance value results showed that the temperature factor was more
important. These results suggest that the two main factors affecting the contemporary
geographic distribution of the three-toed jerboa are precipitation and temperature.
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Precipitation of the coldest quarter was the environmental factor with the highest
contribution rate. The simulation results showed that the most favorable range of
precipitation of the coldest quarter for the survival of the three-towed jerboa was 0–22.79
mm, which is in line with this animal being highly adapted to arid conditions (IUCN,
2016).

Potential suitable habitats of the three-toed jerboa in different climatic
backgrounds
The potential distribution area of the three-toed jerboa under the current climate
background was simulated by the MaxEnt model (Fig. 5). This area covered almost all the
sample points, indicating that the simulated distribution area of the three-toed jerboa was
in close agreement with its actual distribution. The distribution of highly suitable areas
was relatively concentrated (brown area), with a total area of 3.25 ×106 km2. This region
mainly included China’s Xinjiang region, central and western Inner Mongolia, Shaanxi,
Shanxi, and Ningxia. In Mongolia, the highly suitable areas were mainly distributed in the
western region. There were also sporadic distributions in Kyrgyzstan. The moderately
suitable areas (dark green area) were mainly concentrated in southern Kazakhstan,
western Uzbekistan, eastern Turkmenistan, and along the edge of the highly suitable
areas, with a total moderately suitable area of 3.51×106 km2. The somewhat suitable areas
(yellow area) were scattered throughout northern Kazakhstan, southern Turkmenistan,
southern Uzbekistan, and the borders between Russia, China, andMongolia. The simulated
distribution area also showed areas suitable for the survival of the three-toed jerboa in the
Midwest region of North America, but there is no actual distribution of the three-toed
jerboa in that region. The main species of rat in the Midwest region of North America is
the kangaroo rat (Dipodomys spectabilis), which is very similar to the three-toed jerboa in
both morphological and physiological characteristics (Li et al., 2007).

The suitable distribution area of the three-toed jerboa varied greatly across the Last
Glacial Maximum, the mid-Holocene, current climate conditions, and future climate
scenarios up to the 2070s (Table 3). The highly suitable area for the three-toed jerboa in the
Last Glacial Maximum was the smallest, at 1.72×106 km2, and then it continued to spread
and increase, reaching 3.25×106 km2 in the current climate period, an increase of 88.95%.
By the 2070s, under the RCP8.5 scenario, highly suitable areas could be reduced to 2.6
×106 km2. During the Last GlacialMaximum, themoderately suitable area of the three-toed
jerboa was small, 2.03 ×106 km2, after which it began to increase. The moderately suitable
area in the mid-Holocene expanded to 4.17 ×106 km2, an increase of 105.49%. From the
mid-Holocene to the 2070s under RCP8.5, the area of suitable habitat for the three-toed
jerboa shrank slightly, reducing by 0.42×106 km2 to 3.75×106 km2, which was still higher
than in the Last Glacial Maximum. The somewhat suitable area for the three-toed jerboa
in the mid-Holocene was the largest at 9.3 ×106 km2, an increase of 99.14%, or 4.63
×106 km2 compared with the Last Glacial Maximum. After this, the somewhat suitable
area for three-toed jerboa shrank gradually, and could reduce to 7.26 ×106 km2 in the
2070s under RCP8.5.
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Figure 5 Potential distribution of the three-toed jerboa in the current climate. This figure represents
the suitable distribution area of the three-toed jerboa in the current climate background, where white
represents the non-suitable area, yellow represents the somewhat suitable area, dack green represents the
moderately suitable area, and brown represents the highly suitable area.

Full-size DOI: 10.7717/peerj.16811/fig-5

Table 3 Suitable distribution area of different grades of the three-toed jerboa under different climatic
background (×106km2).

Period Climate
scenario

Suitable distribution area of different grades

Unsuitable
area

Low
suitable
area

Moderate
suitable
area

High
suitable
area

LGM – 140.45 4.67 2.03 1.72
Middle Holocene – 132.51 9.3 4.17 2.9
current – 134.18 7.95 3.51 3.25
2070s RCP4.5 134.61 8.24 3.38 2.65
2070s RCP8.5 135.27 7.26 3.75 2.60

Spatial changes in the total suitable habitat of the three-toed jerboa
under different climate scenarios
To better analyze changes in the suitable area for the three-toed jerboa, the three gradients
of suitable area (somewhat, moderately, and highly) were considered together as the total
suitable area. The current three-toed jerboa distribution layer was superimposed on the
Last Glacial Maximum and the mid-Holocene prediction layer, and the differences in
distribution were analyzed (Table 4, Figs. 6, 7). The results showed that from the Last
Glacial Maximum to the mid-Holocene, the spatial pattern change rate of the three-toed
jerboa was 93.91%, and the expansion rate reached 111.67%. The total suitable habitat
has increased on a large scale. Kazakhstan, China, Turkmenistan, Afghanistan, Iran, and
Mongolia all experienced varying degrees of expansion. The change rate of the spatial
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Table 4 Changes of suitable distribution areas of Three-toed jerboa in different climatic contexts.

period Climate
scenario

area/(×106 km2) (%)

expansion Stable construction change expansion
rate

Stable
rate

construction
rate

change
rate

LGM –

mid- Holocene – 9.43 6.94 −1.5 7.93 111.67 82.19 −17.76 93.91
current – 0.9 13.25 −3.13 −1.67 5.49 80.87 −19.11 −10.19
current –

2070s RCP4.5 0.85 13.8 −1.61 −0.43 5.77 93.81 −10.94 −2.92
2070s RCP8.5 0.99 12.85 −1.86 −1.09 6.73 87.35 −12.64 −7.41

Figure 6 Changes in the distribution pattern of suitable three-toed jerboa areas under climate change
scenarios from the Last Glacial Maximum to the mid-Holocene. This figure shows changes in the suit-
able distribution area of the three-toed jerboa from the Last Glacial Period to the middle of the Holocene
period. Light blue represents the unchanged area, dark blue represents the expansion area, and red repre-
sents the contraction area.

Full-size DOI: 10.7717/peerj.16811/fig-6

distribution pattern of the three-toed jerboa from the mid-Holocene to the present was
10.19%, with a shrinkage rate of 19.11%. The shrinking areas were mainly concentrated in
Afghanistan and Iran, and there were also sporadic shrinkages in central and western China.
The expansion rate was 5.49%, concentrated primarily at the junction of Afghanistan, Iran,
and Turkmenistan, with some expansion in the southern area of Afghanistan, indicating
that the three-toed jerboa began to migrate southward.

The current three-toed jerboa distribution layer was superimposed on the forecast layer
under the two carbon emission scenarios for the 2070s, RCP4.5 and RCP8.5, and the change
trend was analyzed (Table 4, Figs. 8, 9). Under these future climate change scenarios, the
suitable habitat of the three-toed jerboa generally shrinks in the east, west, and south
and expands to the north. The areas of expansion are mainly located at the junction of
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Figure 7 Changes in the distribution pattern of suitable three-toed jerboa areas under climate change
scenarios from the mid-Holocene to the current period. This figure shows changes in the suitable distri-
bution area of the three-toed jerboa from the mid-Holocene to the current period. Light blue represents
the unchanged area, dark blue represents the expansion area, and red represents the contraction area.

Full-size DOI: 10.7717/peerj.16811/fig-7

Mongolia and Russia, the junction of eastern Inner Mongolia and Russia, and the northern
border of Kazakhstan, while the shrinking distribution areas are mainly concentrated in
the southern border of Inner Mongolia, China, eastern Jilin Province, western Kazakhstan,
Uzbekistan, Kyrgyzstan, and southern Turkmenistan. Under the RCP4.5 emission scenario,
the shrinkage rate is 1.61%, and under the RCP8.5 emission scenario, the shrinkage rate is
1.86%. These results indicate that in order to adapt to high-concentration CO2 emissions,
in future climate warming scenarios, the distribution area of the three-toed jerboa will
migrate and expand to higher latitudes.

DISCUSSION
In this study, the MaxEnt model was used to predict changes in the suitable habitat of
the three-toed jerboa in different climatic periods. There may have been ice sheets on the
Qinghai-Tibet Plateau during the period investigated, which would have greatly affected
the survival of three-toed jerboa (Jiang, Wang & Lang, 2002). In addition, the Last Glacial
Maximum was a period of colder temperature and lower humidity, with an average
temperature 5.3 ◦C lower than the present, and land precipitation totaling 71% of the
current level (Yang, 1990). Therefore, the suitable habitats for most species were greatly
reduced during this period. As a drought-tolerant species, the southward migration of
the three-toed jerboa during this period was also a manifestation of its response to these
climate changes. In the mid-Holocene, the suitable area for the three-toed jerboa expanded
greatly, and the distribution pattern began to be similar to the contemporary distribution
area. This expansion may be related to two factors. First, a large amount of geological data
show that the climate in the mid-Holocene was similar to the contemporary climate. The
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Figure 8 Changes in the distribution pattern of suitable three-toed jerboa areas under climate change
scenarios of the current period to the 2070s under RCP4.5. This figure shows changes in the suitable dis-
tribution area of the three-toed jerboa from the current period to the RCP4.5 climate scenario in 2070.
Light blue represents the unchanged area, dark blue represents the expansion area, and red represents the
contraction area.

Full-size DOI: 10.7717/peerj.16811/fig-8

Figure 9 Changes in the distribution pattern of suitable three-toed jerboa areas under climate change
scenarios of the current period to the 2070s under RCP8.5. This figure shows changes in the suitable dis-
tribution area ofthe three-toed jerboa from the current period to the RCP8.5 climate scenario in 2070.
Light blue represents the unchanged area, dark blue represents the expansion area, and red represents the
contraction area.

Full-size DOI: 10.7717/peerj.16811/fig-9
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ice sheet in the north melted, the soil thawed, and the temperature increased. Therefore,
the distribution area of the three-toed jerboa expanded to the south and north. Second, the
mid-Holocene is a geological historical period most closely related to modern humans, and
the utilization of land, forests, grasslands, and water resources by humans gradually became
an important factor affecting environmental changes (Li et al., 2007). Human activity has
exacerbated the occurrence of desertification (Yang et al., 2009), leading to an increase in
the suitable habitat for the three-toed jerboa.

Future global warming caused by an increase in atmospheric CO2 should be similar to
the warming effect seen in the mid-Holocene (Zheng et al., 2004). The map of the change
in suitable areas in each time period shows that the expansion area from the mid-Holocene
to the modern period is basically the same as the contraction area from the current to the
future period. The area of contraction from the mid-Holocene to the modern period is
also very close to the expansion area from the current period to the future period. This
map also shows that the climatic environment in the future is likely to be very similar
to the mid-Holocene, and the impact on the three-toed jerboa will likely be similar. The
distribution area of the three-toed jerboa, especially highly suitable areas, show significant
reductions in the current period, with greater reductions seen in future climate scenarios.
This suggests that climate warming will have a significant impact on the distribution of the
three-toed jerboa.

Species are distributed in areas with the most suitable climatic conditions, so as the
climate changes, the distribution area of animals will respond accordingly (Kausrud et
al., 2010). The results of this study indicate the suitable distribution area for the three-
toed jerboa will spread to the north under future climatic conditions and that the main
environmental factor affecting the distribution of the three-toed jerboa is precipitation
in the coldest season, or the total amount of snowfall. Snow is also known to impact the
dynamics of plague transmission (Zhang et al., 2003). Winter snowfall directly affects soil
moisture in the spring, which affects vegetation growth and the survival and reproduction
of media organisms. This cascading effect of precipitation on plague epidemics can be
explained by the trophic cascade hypothesis. The trophic cascade hypothesis is the basic
theory demonstrating the relationship between plague epidemics and climatic factors. It
postulates that increased precipitation enables lush plant growth, provides sufficient food
for rodents, increases rodent population density and abundance, and thus promotes plague
epidemics (Davis et al., 2007).

In recent years, plague research has mainly focused on the main plague host and
neglected the role of secondary hosts in plague epidemics. The three-toed jerboa is a
relatively common infected animal in plague foci, and many infected individuals have
been identified in China (Huang et al., 2010; He et al., 2011). Under future climate change
scenarios, the potential suitable three-toed jerboa habitat will expand to the north. The
future increase in ambient temperature will also be conducive to the reproduction of fleas,
which will likely increase the flea index and increase the probability of plague transmission.
There is a potential risk of long-distance transmission of plague in the northern expansion
of the three-toed jerboa habitat. Climate warming will lead to the migration of wild
animals, which could promote cross-species transmission of pathogens such as Yersinia
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pestis and increase the risk of pathogen transmission and disease outbreaks. Monitoring
pathogen transmission among animals in the newly-added suitable distribution area of the
three-toed jerboa should be further strengthened to prevent the outbreak and spread of
epidemic diseases.
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