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Not all genes contribute equally to reproductive isolation. In the Allonemobius socius
complex of crickets, reproductive isolation is primarily accomplished via postmating
prezygotic barriers. We show that two ejaculate protein-coding genes exhibit patterns of
evolution consistent with a putative role as speciation genes. Both genes express male
ejaculate proteins transferred to females during copulation and were previously identified
through comparative proteomics. We found gene genealogies indicating advanced degrees
of lineage sorting, and fixed nonsynonymous substitutions and elevated ω values on the
mutational steps separating species, between both pairs of species, on the haplotype
networks of these genes compared to other candidate and control genes. At a contact
zone between two members of the species complex, these genes maintained species-
specificity of alleles despite ongoing gene flow. The putative speciation genes arginine
kinase (AK) and apolipoprotein A-1 binding protein (APBP) are two of the first examples of
sperm maturation, capacitation, and motility related proteins that show evidence of fixed
nonsynonymous substitutions between species-specific alleles that may lead to
reproductive isolation. Our results show that when speciation is ongoing and insufficient
time has passed for nucleotide variation to accumulate, hypothesis testing based on
haplotype networks and gene trees are more powerful than sequence-based population
genetic metrics at detecting signatures of positive selection that may have led to
speciation.
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23 Abstract

24 Not all genes contribute equally to reproductive isolation. In the Allonemobius socius complex of 

25 crickets, reproductive isolation is primarily accomplished via postmating prezygotic barriers. We 

26 show that two ejaculate protein-coding genes exhibit patterns of evolution consistent with a 

27 putative role as speciation genes. Both genes express male ejaculate proteins transferred to 

28 females during copulation and were previously identified through comparative proteomics. We 

29 found gene genealogies indicating advanced degrees of lineage sorting, and fixed 

30 nonsynonymous substitutions and elevated ω values on the mutational steps separating species, 

31 between both pairs of species, on the haplotype networks of these genes compared to other 

32 candidate and control genes. At a contact zone between two members of the species complex, 

33 these genes maintained species-specificity of alleles despite ongoing gene flow. The putative 

34 speciation genes arginine kinase (AK) and apolipoprotein A-1 binding protein (APBP) are two 

35 of the first examples of sperm maturation, capacitation, and motility related proteins that show 

36 evidence of fixed nonsynonymous substitutions between species-specific alleles that may lead to 

37 reproductive isolation. Our results show that when speciation is ongoing and insufficient time 

38 has passed for nucleotide variation to accumulate, hypothesis testing based on haplotype 

39 networks and gene trees are more powerful than sequence-based population genetic metrics at 

40 detecting signatures of positive selection that may have led to speciation. 

41

42
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43 Introduction

44 Not all genes contribute equally to reproductive isolation during speciation. ‘Speciation’ (Wu, 

45 2001; Wu & Ting, 2004; Nosil & Schluter, 2011), ‘isolation’ (Rieseberg, Church & Morjan, 

46 2004), or ‘barrier’ (Noor & Feder, 2006) genes are expected to show very different patterns of 

47 evolution compared to genes that are not directly involved in reproductive isolation when species 

48 are still undergoing lineage sorting (Wu 2001). Therefore we expect to find putative speciation 

49 genes among those genes that become fixed for alternative alleles within each incipient species 

50 early in the process of divergence, with said alleles rarely crossing the species boundary in 

51 sympatry (Ting, Tsaur & Wu, 2000; Dopman et al., 2005). 

52 Rapidly evolving reproductive proteins that can affect fertilization success have an 

53 important role in the evolution of postmating prezygotic reproductive isolation. Many 

54 reproductive genes are known to evolve rapidly in a variety of organisms (Civetta & Singh, 1998; 

55 Swanson & Vacquier, 2002; Clark, Aagaard & Swanson, 2006; Panhuis & Swanson, 2006; 

56 Snook et al., 2009). In Drosophila where some of the most extensive work has been done, genes 

57 that show male-biased expression evolve faster compared to female-biased and somatically 

58 expressed genes (Zhang, Hambuch & Parsch, 2004; Zhang & Parsch, 2005; Metta et al., 2006; 

59 Pröschel, Zhang & Parsch, 2006; Haerty et al., 2007), and seminal fluid proteins in particular 

60 tend to show an excess of nonsynonymous substitutions (Begun et al., 2000; Swanson et al., 

61 2001; Wagstaff & Begun, 2005; Almeida & DeSalle, 2008). Similar patterns have also been 

62 observed in mice and primates (Clark & Swanson, 2005; Karn et al., 2008; Ramm et al., 2008; 

63 Turner, Chuong & Hoekstra, 2008; Dean et al., 2009). Using a proteomics approach on insect 

64 spermatophores to isolate male reproductive protein coding-genes that can directly interact with 
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65 female counterparts has proved to be an efficient way of narrowing prospects in the search for 

66 putative speciation genes (Andrés, Maroja & Harrison, 2008; Marshall et al., 2011).

67 The male ejaculate proteome comprises sperm-expressed proteins and seminal fluid 

68 proteins. Sperm not only contribute half of the diploid genome, but are also involved in sperm-

69 egg interactions including egg activation and deliver paternal factors during fertilization (Dorus 

70 et al., 2006). Seminal fluid proteins, the majority of which are produced by male accessory 

71 glands, contain conserved functional classes of peptides and pro-hormones that are involved in 

72 sperm binding, proteolysis, lipid metabolism, and immune function (Mueller et al., 2004; 

73 Chapman & Davies, 2004; Poiani, 2006; Avila et al., 2011). Once transferred into the female 

74 reproductive tract, these proteins can initiate a wide-range of physiological functions including 

75 increased egg production and oviposition, decreased receptivity, decreased lifespan, and 

76 increased feeding in females (reviewed in (Avila et al., 2011). The interacting female 

77 counterparts to these ejaculate proteins (EPs) are not well known (Ram, Ji & Wolfner, 2005; 

78 Ram & Wolfner, 2007; Snook et al., 2009) though genomic data is proving to be invaluable for 

79 identifying candidates (Findlay et al., 2014). The evolution of EPs has been hypothesized to be 

80 driven by one or more processes including female sperm preference, sperm competition, and 

81 sexual conflict (Mueller et al., 2004; Snook et al., 2009). Here, we show through multiple lines 

82 of evidence that two EP-coding genes in the Allonemobius socius complex of crickets show 

83 patterns of molecular evolution and gene genealogies consistent with a putative role as speciation 

84 genes.

85 The A. socius complex of ground crickets, A. socius, A. fasciatus, and A. sp. nov. Tex, 

86 represents a powerful system to explore the hypothesized link between EP divergence and 

87 reproductive isolation. Members of this complex are primarily isolated from one another by two 
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88 postmating, prezygotic phenotypes – conspecific sperm precedence (Gregory & Howard, 1994; 

89 Howard et al., 1998a,b; Marshall, 2004) and the superior ability of conspecific males to induce 

90 females to lay eggs (Gregory & Howard, 1993; Howard et al., 1998b). Two other compelling 

91 features of this organismal system are species boundaries that remain intact in sympatry despite 

92 some gene flow (Howard, 1986; Howard & Waring, 1991; Traylor et al., 2008) and the very 

93 recent nature of divergence between these species (i.e., within the last 30,000 years; (Marshall, 

94 2004, 2007). Indeed, divergence is so recent that few species-specific alleles have been identified; 

95 for example, only 2 of 17 allozyme markers (Howard, 1983), 2 of 5,400 AFLP markers (Howard 

96 et al., 2002), ~21 of 1,660 thorax proteins and ~33 of 922 ejaculate proteins (Marshall et al., 

97 2011) and 1 of 16 randomly chosen reproductive genes spanning >7,500 bp of coding sequence 

98 (Marshall et al., unpublished data), yield evidence of species specificity. Taken together, the 

99 above data suggest that while there is sufficient genetic divergence to produce reproductive 

100 isolation and maintain species boundaries in sympatry, the vast majority of genes show no 

101 evidence of divergence and thus, no lineage sorting. In all, the A. socius complex represents a 

102 system whereby speciation is ongoing with relatively few genes contributing to the postmating, 

103 prezygotic reproductive isolation between species. Therefore, if we can identify those ejaculate 

104 and female reproductive tract genes that exhibit signatures of positive selection, and maintain 

105 species-specificity in sympatry, we will gain insight into the genes that contribute to reproductive 

106 isolation and ultimately are involved in driving speciation.

107 In this study, we expanded analyses from a previous study comparing EPs between the 

108 species A. socius and A. fasciatus (Marshall et al., 2011) by including more genes and an 

109 additional species, A. sp. nov. Tex (Traylor et al., 2008). Specifically, longer fragments of the 

110 five original proteins (ACG69, AK, APBP, EJAC-SP, SPI) plus two additional EPs (GOT, 
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111 SPAG6) were compared for patterns of nucleotide variation, evidence of lineage-specific 

112 positive selection and different degrees of lineage sorting, and species-specificity of alleles in the 

113 contact zone between A. socius and A. fasciatus. These combined analyses point toward an 

114 important role for some but not all examined EPs during the evolution of reproductive isolation 

115 within this complex of crickets. 

116

117 Methods

118 Background

119 Striped ground crickets of the A. socius complex inhabit moist grasslands across North 

120 America and do not show significant habitat isolation (Howard 1986). The three species A. 

121 socius, A. fasciatus, and A. sp. nov. Tex form two contact zones, one between A. fasciatus (north) 

122 and A. socius (south) from Illinois to New Jersey (Howard & Waring, 1991), and one between A. 

123 sp. nov. Tex (west) and A. socius (east) near the Louisiana – Texas state line (Traylor et al., 

124 2008). A. fasciatus and A. socius seem to have diverged from a common ancestor approximately 

125 30,000 years ago, and A. sp. nov. Tex seems to have subsequently diverged from A. socius 

126 approximately 24,000 years ago (Marshall, 2004, 2007). They have previously been shown to be 

127 isolated primarily via postmating prezygotic reproductive isolation (Howard et al., 2002; 

128 Marshall, 2004; Marshall & DiRienzo, 2012).

129

130 Population and gene sampling 

131 Crickets were collected from each population and genotyped in the lab via allozymes 

132 (Isocytrate dehydrogenase and Hexokinase) to determine species identity (Howard, 1983, 1986). 

133 Sampling localities spanned the range of each species. A. socius populations were sampled near 
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134 Texarkana, AR (AR), Bottom, NC (Bot), Mt. Vernon, IL (IL), Pleasantville, NJ (Mi), Ruston, 

135 LA (LA), Gastonia, NC (NC), and Ardmore, OK (OK). A. fasciatus populations were sampled 

136 near Akron, OH (Akn), Frankfort, IL (FF), and New Paltz, NY (NP). A. sp. nov. Tex populations 

137 were sampled near Terrell, TX (Tx20), Royse City, TX (Tx30), and Gainesville, TX (Tx35). 

138 Contact zone populations of A. fasciatus and A. socius were sampled from two habitats at a 

139 single location in Kenna, WV. A. fasciatus was collected from a hillside habitat, which we call 

140 Kenna Hill (KH), and A. socius was collected along the base of hill near a creek which we call 

141 Kenna Creek (KC). We did not have samples from the contact zone between A. socius and A. sp. 

142 nov. Tex. General maintenance protocols followed Marshall et al (2009). 

143 We dissected male accessory glands and testes from three individuals per allopatric 

144 population and 9 individuals per contact zone population. cDNA was synthesized from each 

145 tissue using RNA isolated via an Ambion RNAqueous-4PCR (#AM1914) kit and standard 

146 protocols for 1st strand cDNA synthesis. General PCR and sequencing procedures followed 

147 Marshall et al (2011). Standard PCR chemistry was followed with annealing temperatures 

148 between 50-60 °C depending on individual primer melting temperatures (primers used are shown 

149 in Supplementary Table 1). We compared nucleotide sequences of five candidate EP genes with 

150 two control EP genes. Among the five candidate genes, two were chosen based on species-

151 specific proteome profiles (Marshall et al., 2011): 1) arginine kinase (AK), a phosphotransferase 

152 enzyme expressed in the sperm that may be involved in sperm motility, capacitation or the 

153 acrosome reaction (Strong & Ellington, 1993; Niksirat et al., 2015); 2) apolipoprotein A-1 

154 binding protein (APBP), a phosphoprotein expressed in sperm and hypothesized to be involved 

155 in sperm capacitation (Jha et al., 2008). Two were chosen based on previous sequencing data 

156 showing species-specific molecular variation: 3) ejaculate serine protease (EJAC-SP), an 
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157 abundant accessory gland-expressed serine protease previously shown to be involved in the 

158 induction of egg laying in successfully mated females (Marshall et al., 2009); 4) aspartate 

159 aminotransferase (GOT), a pyridoxal-phospate-dependent aminotransferase expressed in the 

160 testis and an allozyme historically used to diagnose species identity among A. socius complex 

161 crickets (Howard, 1983, 1986). The last candidate gene was chosen based on a review of sperm 

162 biology literature: 5) sperm-associated antigen 6 (SPAG6), important for sperm flagellar motility 

163 and the structural integrity of the central apparatus (Neilson et al., 1999; Sapiro et al., 2002). 

164 The control genes had non species-specific proteome profiles (Marshall et al., 2011) and 

165 were: 6) serpine inhibitor (SPI), a testis-expressed serine-type endopeptidase inhibitor; 7) acg69 

166 (ACG69), a protein of unknown function expressed in the accessory glands. Sequences formatted 

167 as haplotypes are available from NCBI GenBank PopSets 372477483 (AK), 372477513 (APBP), 

168 372477527 (EJAC-SP), 372477535 (GOT), 372477555 (SPAG6), 372477561 (SPI), 372477571 

169 (ACG69). 

170

171 Sequence evolution-based analyses

172 Male biased genes have been shown to exhibit patterns of molecular evolution associated 

173 with relaxed selective constraints or strong positive selection, such as higher rates of 

174 nonsynonymous substitutions (Zhang, Hambuch & Parsch, 2004). We investigated multiple 

175 metrics of molecular sequence evolution to test for evidence of selection and a departure from 

176 neutral sequence evolution. We applied Tajima’s D and Fu and Li’s D tests to each gene to look 

177 for evidence of departure from neutral allelic distributions within species (Tajima, 1989; Fu & Li, 

178 1993). We compared polymorphism within species to divergence between species using HKA 
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179 tests (Hudson, Kreitman & Aguadé, 1987), and tested for differences in these ratios at each 

180 branching node of the species tree. 

181 Next, we compared polymorphism and divergence between synonymous and 

182 nonsynonymous sites within each gene at each branching node of the species tree. We compared 

183 ω, the rate ratios of synonymous substitutions per synonymous site κa (dN) and nonsynonymous 

184 substitutions per nonsynonymous site κs (dS). We used McDonald-Kreitman tests to compare the 

185 ratio of nonsynonymous to synonymous intraspecific polymorphisms to the ratio of 

186 nonsynymous to synonymous fixed differences between species (McDonald, Kreitman & others, 

187 1991). All tests were based on sequences aligned in BioEdit v.7.0.5.3 (Hall, 1999) and metrics 

188 calculated using DnaSP v.5.10.01 (Librado & Rozas, 2009). For HKA tests, we used the program 

189 hka provided by Jody Hey (Wang & Hey, 1996). 

190

191 Gene genealogy-based analyses

192 Evolutionary relationships between species are tested with phylogenetic trees while 

193 hypotheses of intraspecific relationships benefit from haplotype network-based approaches 

194 (Posada & Crandall, 2001). Because our species are recently diverged, we used both tree-based 

195 and haplotype network-based analyses to detect interesting patterns of gene evolution. 

196 We used statistical parsimony haplotype networks (Templeton, Crandall & Sing, 1992) of 

197 alleles from all three species to test for species-specificity of alleles. We used TCS (Clement, 

198 Posada & Crandall, 2000) to generate the haplotype networks using only allopatric individuals. 

199 Species-specific alleles were defined as those found only within each respective species. 

200 Common or shared alleles were those observed in more than one species. Once alleles were 

201 designated common or specific to a species, we turned to the fasciatus - socius contact zone. We 
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202 looked at nine individuals each of contact zone A. fasciatus and A. socius and determined what 

203 types of allele these contact zone individuals possessed. As noted above, these individuals had 

204 previously been designated as fully (homozygous) A. fasciatus or A. socius based on allozymes. 

205 We used Fisher’s exact tests with Freeman-Halton extensions for 2x3 contingency tables to 

206 determine the probability of observing the distribution of fas vs. soc vs. shared alleles for each 

207 gene. 

208 We tested for lineage-specific positive selection on individual gene tree topologies using 

209 the Genetic Algorithm (GA) Branch method (Pond & Frost, 2005) via the Datamonkey 

210 webserver of the HyPhy package (Delport et al., 2010). GA Branch uses a genetic algorithm that 

211 allows estimates of the nonsynonymous to synonymous substitution rate ratio (dN/dS = κa/κs = ω) 

212 to vary freely across branches within a phylogeny and compares models with different ω classes. 

213 Only allopatric individuals were included in the analysis and neighbor-joining trees used by GA 

214 Branch were generated natively within Datamonkey.

215 The genealogical sorting index (gsi) reflects the degree of lineage sorting of individual 

216 gene genealogies that occurs during speciation, with values ranging from zero (complete 

217 polyphyly) to 1 (complete monophyly) (Cummings, Neel & Shaw, 2008). We calculated gsi for 

218 each gene using the online server (www.genealogicalsorting.org) with gene trees including both 

219 allopatric and contact zone individuals. Sequences were phased in DnaSP prior to tree building 

220 for all genes except APBP, which had no heterozygous individuals. Sorting is more difficult to 

221 observe in phased data. We generated maximum likelihood gene trees with PhyML 3.0 (Guindon 

222 et al., 2010) via the Mobyle server (Neron et al., 2009). We used nearest neighbor interchange 

223 (NNI) tree search and HKY85 as our nucleotide substitution model. MEGA6 (Tamura et al., 

224 2013) was used to visualize these trees. 

PeerJ reviewing PDF | (2015:09:6569:0:0:NEW 10 Sep 2015)

Reviewing Manuscript

http://www.genealogicalsorting.org/
Manier
Highlight

Manier
Sticky Note
why not PAML?



225

226 Results 

227 Sequence evolution-based analyses

228  We found a general lack of both synonymous and nonsynonymous nucleotide variation 

229 among all EP genes we investigated (Table 1). The Watterson estimator θ=4Neμ ranged from 

230 0.001 to 0.011. Levels of θ in the EP candidate genes were approximately an order of magnitude 

231 lower than the control genes, although this difference was not statistically significant (fas - 

232 Mann-Whitney U = 0, P = 0.051; soc - Mann-Whitney U = 4, P = 0.688; Tex - Mann-Whitney U 

233 = 4.5, P = 0.845). In no cases were Tajima’s D or Fu and Li’s D tests significantly different from 

234 neutral expectations (Table 1) (all P > 0.1). 

235 To compare polymorphism within species to divergence between species, we used a 

236 standard multilocus HKA test and HKA outlier tests for each branching event. We included all 

237 loci and performed 9999 rounds of coalescent simulations. The multilocus HKA test did not find 

238 a significant departure from neutral expectations for the first branching event between A. 

239 fasciatus and the two other species (Χ2 P = 0.916). The outlier cell, which was A. fasciatus for 

240 polymorphism in ACG69, was not significantly different in its pattern of polymorphism to 

241 divergence (P = 0.68). The multilocus HKA test did find a significant departure from neutral 

242 expectations for the second branching event between A. socius and A. sp. nov. Tex. (Χ2 P = 

243 0.012). However, the outlier cell, which was polymorphism at GOT in A. sp. nov. Tex., was not 

244 significantly different in its pattern of polymorphism to divergence (P = 0.06). 

245 We compared the rate ratios of nonsynonymous to synonymous substitutions ω = κa/κs at 

246 each branching event of the species tree. When ω is larger than 1 and the nonsynonymous 

247 substitution rate exceeds the synonymous substitution rate, positive or diversifying selection is 
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248 inferred. When ω is smaller than 1, negative or purifying selection is inferred. However, ω = 1 is 

249 recognized as a conservative threshold because the average κa is expected to be much smaller 

250 than κs given the expectation of widespread purifying selection acting on functional genes 

251 (Nielsen, 2001). Therefore the value ω = 0.5 has been suggested as an alternate cutoff for the 

252 detection of positive selection as subsequent analyses generally indicate that such genes are 

253 indeed under positive selection (Swanson et al., 2004). In none of our genes did ω exceed 1, but 

254 in the older split between A. fasciatus and the other two species, ω exceeded 0.5 for the genes 

255 AK and APBP (Table 2). 

256 We used McDonald-Kreitman tests to compare the ratio of nonsynonymous to 

257 synonymous intraspecific polymorphisms (PN/PS) to the ratio of nonsynymous to synonymous 

258 fixed differences between species (DN/DS). Not all genes had fixed nonsynonymous substitutions 

259 between species and in these cases we were unable to apply the McDonald-Kreitman test. For 

260 those genes that were testable, we did not find significant differences in DN/DS compared to 

261 PN/PS at either branching event (Fisher’s exact test P = 0.07 ~ 1) (Table 2). 

262

263 Gene genealogy-based analyses

264 The statistical parsimony haplotype networks generated using allopatric individuals of all 

265 three species showed the presence of only species-specific alleles in AK, APBP, and GOT, while 

266 the other genes had alleles shared between two species each (Figure 1). Within the contact zone 

267 between A. fasciatus and A. socius, AK, APBP, EJAC-SP and SPAG6 had upwards of 16 

268 species-specific alleles out of 18 possible alleles (approximately 88%) (Figure 2). In comparison, 

269 many GOT and SPI alleles were shared between the contact zone populations. Fisher’s exact 

270 tests indicated the allelic distributions were nonrandom for all genes except ACG69. 
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271 The GA Branch method detected elevated ω classes in all genes except EJAC-SP and 

272 SPAG6 (Table 3). We mapped the substitution rate changes detected by GA Branch onto the 

273 haplotype networks (Figure 1). In AK and APBP, elevated ω were detected on mutational steps 

274 between both species pairs, between A. fasciatus and A. socius and between A. socius and A. sp. 

275 nov. Tex, and were associated with one or more fixed nonsynonymous substitutions. In GOT and 

276 SPI, elevated ω were detected on mutational steps between A. fasciatus and A. sp. nov. Tex, and 

277 also within A. sp. nov. Tex. Elevated ω were detected on several branches in ACG69 (Figure 1).  

278 Comparisons of genealogical sorting index values based on maximum likelihood gene 

279 trees including all sampled individuals, both allopatric and contact zone, indicated that only AK 

280 and APBP showed advanced lineage sorting for all three species (Table 4, Supplementary 

281 Figures 1 & 2). Excluding A. sp. nov. Tex, which had high gsi-values overall most likely due to 

282 its limited range and lack of data from its contact zone with A. socius, the two control genes were 

283 unsorted across the species ranges. The remaining three candidate genes showed asymmetrical 

284 lineage sorting. 

285

286 Discussion 

287 Many reproductive genes, and in particular those that are male biased, are known to 

288 evolve rapidly, often exhibiting higher rates of nonsynonymous substitutions (Zhang, Hambuch 

289 & Parsch, 2004), reduced codon usage bias (Hambuch & Parsch, 2005), and evidence suggesting 

290 they are more likely to evolve by duplication (Ellegren & Parsch, 2007). However recent 

291 divergence can hinder the application of many metrics of molecular evolution that rely on 

292 sequence variation since not enough evolutionary time has passed to allow for differences to 

293 accumulate between incipient species. Thus data from relatively recently (~30,000 years) 
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294 diverged species such as ours show a general lack of both synonymous and nonsynonymous 

295 nucleotide variation among all investigated genes (Table 1 & 2). In addition, our estimates of 

296 sequence variation were also at least an order of magnitude smaller compared to other known 

297 estimates from accessory gland protein coding genes in various other species groups (Mueller et 

298 al., 2005; Wagstaff & Begun, 2005; Almeida & DeSalle, 2008), including some Gryllus crickets 

299 whose species are of roughly similar age (Andrés et al., 2006). Therefore, while relatively young 

300 species offer an opportunity to observe the ongoing process of the genetics of species divergence, 

301 attempting to identify putative speciation genes based on DNA sequences requires an approach 

302 that takes into account gene trees and haplotype networks, along with species trees. 

303 The ratio of nonsynonymous to synonymous substitution rates ω is commonly used to 

304 detect signatures of selection acting upon protein coding genes (Yang & Bielawski, 2000; 

305 Nielsen, 2001, 2005; Jensen, Wong & Aquadro, 2007). The original intended application of ω 

306 was for the analysis of sequence evolution among distantly related species, though in practice, it 

307 is not uncommonly applied to sequences between closely related populations of a species 

308 (Kryazhimskiy & Plotkin, 2008). This turns out to be problematic because when sequence 

309 evolution under selection was simulated over short evolutionary timescales, representative of 

310 genetic variation segregating within a species, vs. long evolutionary timescales, intraspecific ω 

311 behaved very differently from interspecific ω (Kryazhimskiy & Plotkin, 2008). In fact, 

312 Kryazhimskiy and Plotkin show that under positive selection, ω = 1 when selection was 

313 moderate but showed asymptotic behavior and eventually decreased below 1 as the selection 

314 coefficient increased. Over short timescales, its variance also increased as θ (= 2Nμ in the paper) 

315 became smaller, making it more difficult to accurately detect positive selection.  
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316 Another complication with using ω for short evolutionary timescales is that during initial 

317 sequence divergence ω could be higher than expected because slightly deleterious 

318 nonsynonymous mutations can persist in a population for generations due to genetic hitchhiking, 

319 and a time lag before they are removed by purifying selection (Rocha et al., 2006). Based on 

320 simulations, Rocha and colleagues showed this is why unexpectedly high ω values are frequently 

321 observed among closely related (1 – 2% sequence divergence) bacteria species. As evolutionary 

322 time progresses further, they show that synonymous mutations continued to accumulate and 

323 exceeded the initial overrepresentation of nonsynonymous mutations. Therefore if ω is estimated 

324 too soon after sequence divergence, one would expect to find high rates of false positive 

325 detection. 

326 Finally, even at longer evolutionary timescales the assumption that κs is effectively 

327 neutral may need reconsideration, as a survey of 16 vertebrate genomes indicates that genes with 

328 high ω are more strongly influenced by small κs rather than large κa (Wolf et al., 2009). Similar 

329 patterns are observed in Drosophila species, where fast evolving genes show a negative 

330 correlation between κa and synonymous site polymorphism πs (Andolfatto, 2007; Macpherson et 

331 al., 2007; Jensen & Bachtrog, 2010).Thus, the interaction between linkage and selection makes it 

332 challenging to distinguish between recurrent positive selection, background selection, and Hill-

333 Robertson effects (Hill & Robertson, 1966; Charlesworth, 1994; Andolfatto, 2007; Charlesworth 

334 et al., 2009). Therefore in order to detect adaptive evolution due to positive selection, applying 

335 combinations of metrics including ω, Tajima’s or Fu and Li’s D and site frequency spectra, as 

336 well as estimates of population size and recombination rates seems necessary (Nielsen, 2005). 

337 We failed to detect positive selection based on ω, and estimates of D for all genes 

338 compared here were not significantly different from neutral expectations (Tables 1 and 2). While 
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339 population bottlenecks are thus likely to have contributed to sequence variation patterns since 

340 speciation in the A. socius complex is thought to coincide with glaciation history (Marshall, 2004, 

341 2007), for our data sequence evolution-based tests are generally inconclusive as to demographic 

342 reasons for why our genes might lack nucleotide variation. 

343 Instead, tests based on individual gene genealogies and haplotype networks indicated AK 

344 and APBP as putative speciation genes. Within the contact zone of A. fasciatus and A. socius, 

345 AK, APBP, and EJAC-SP show significantly nonrandom patterns of allelic distributions and had 

346 no shared alleles (Figure 2). When all allopatric and contact zone individuals were examined, 

347 only the genealogies of AK and APBP indicated that these genes were more advanced in their 

348 degree of lineage sorting compared to other candidate and control genes (Table 4, Supplementary 

349 Figures 1 & 2). These patterns fit models of ongoing speciation in the face of gene flow, where 

350 speciation genes are more likely to be fixed early on during lineage divergence (Wu, 2001). 

351 Incomplete lineage sorting and introgression have been suggested to be confounding factors in 

352 understanding speciation with ongoing gene flow (Machado & Hey, 2003; Broughton & 

353 Harrison, 2003; Payseur, 2010). However, speciation genes are more likely to become fixed for 

354 species-specific alleles early in the process of speciation and therefore are expected to be 

355 relatively exempt from incomplete sorting and subject to reduced introgression. Similar patterns 

356 have been observed in Drosophila, field crickets, and moths (Ting, Tsaur & Wu, 2000; Dopman 

357 et al., 2005; Maroja, Andrés & Harrison, 2009; Andrés et al., 2013; Larson et al., 2013). It is 

358 possible that these genes are not the direct targets but rather linked to targets of divergent 

359 selection. Because both genes were identified through comparative proteomics (Marshall et al 

360 2011) this seems relatively unlikely, but the genomic regions around these genes should be 

361 investigated for evidence of selective sweeps to rule out this possibility. 
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362 Many studies of reproductive proteins report evidence of positive selection acting on a 

363 subset of the genes examined, in both males (Begun et al., 2000; Swanson et al., 2001; Clark & 

364 Swanson, 2005; Wagstaff & Begun, 2005; Andrés et al., 2006; Karn et al., 2008; Ramm et al., 

365 2008; Almeida & DeSalle, 2008; Walters & Harrison, 2010) and females (Swanson et al., 2004; 

366 Panhuis & Swanson, 2006; Lawniczak & Begun, 2007; Prokupek et al., 2008; Kelleher & 

367 Markow, 2009; Kelleher, Clark & Markow, 2011). However, there are few examples of adaptive 

368 reproductive protein evolution leading to reproductive isolation outside of gamete recognition 

369 proteins (e.g. (Geyer & Palumbi, 2003; McCartney & Lessios, 2004; Springer & Crespi, 2007). 

370 Our putative speciation genes AK and APBP two of the first examples of sperm maturation and 

371 capacitation related proteins that show evidence of fixed nonsynonymous substitutions between 

372 species-specific alleles leading to reproductive isolation. In contrast to the other genes examined, 

373 fixed nonsynonymous substitutions and elevated ω values only on the mutational steps 

374 separating species on the haplotype network of APBP, and to a less exclusive extent in AK and 

375 GOT, indicate that these EPs may have evolved under positive selection and contribute to the 

376 reproductive isolation between these species (Table 3, Figure 1). We had previously observed 

377 this pattern between A. fasciatus and A. socius for both AK and APBP (Marshall et al 2011), but 

378 finding the same pattern in the mutational steps between A. socius and A. sp. nov. Tex with 

379 different species-specific nonsynonymous substitutions emphasizes the potential importance of 

380 these candidates.  

381 Whether there are functional consequences to the species-specific nonsynonymous 

382 substitutions in AK and APBP needs to be investigated further. Since both candidates were 

383 identified by proteomic screens, we hypothesize that an interaction between each male EP and 

384 the female reproductive tract during capacitation is responsible for the postmating prezygotic 
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385 isolation observed between the A. socius complex species. AK is a phosphagen kinase that 

386 catalyzes ATP-regeneration and energy transport in invertebrates and some protozoa (Ellington, 

387 2001; Noguchi, Sawada & Akazawa, 2001; Uda et al., 2006). Insects and other ecdysozoans 

388 possess AK as their sole phosphagen system for cellular energy metabolism, and accordingly, 

389 arginine phosphate and its phosphagen kinase AK are found primarily in muscles, but also in 

390 sperm and compound eyes (Strong & Ellington, 1993; Kucharski & Maleszka, 1998; Ellington, 

391 2001). The possible roles of AK as an EP can be related to sperm motility (Strong and Ellington 

392 1993), capacitation, or the acrosome reaction (Niksirat et al., 2015). Two structural loops and 

393 several active sites near them are the proposed interaction interface of AK with the guanidinium 

394 groups of its substrates (Zhou et al., 1998; Pruett et al., 2003; Azzi et al., 2004; Clark, Davulcu & 

395 Chapman, 2012). As expected for an integral enzyme, the nonsynonymous substitutions we 

396 observed do not occur at these specific sites, though they may still influence its activity. APBP 

397 becomes phosphorylated during murine sperm capacitation and co-localizes with cholesterol 

398 during this process, but its specific function is unknown (Jha et al 2008). It does possess a 

399 Rossmann-like fold, indicating an enzymatic role. The nonsynonymous substitutions we 

400 observed in APBP occur in the Rossmann-like fold and are hypothesized to influence the activity 

401 of its binding site (Marshall et al., 2011). 

402

403 Conclusions

404 A. socius complex crickets provide an excellent opportunity to identify patterns of 

405 evolution in speciation genes for two major reasons: speciation is incomplete as evidenced by 

406 ongoing gene flow in the field, and isolation is through a single type of reproductive isolation 

407 barrier (i.e., postmating prezygotic phenotypes). Therefore we looked for genes that contribute to 
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408 postmating prezygotic isolation and exhibit fixed, or nearly fixed, nonsynonymous substitutions 

409 between species as putative speciation genes. We find that when speciation is ongoing, standard 

410 population genetics analyses based on θ and ω values are unable to detect signatures of positive 

411 selection contributing to fixed differences between species because insufficient time has passed 

412 for nucleotide variation to accumulate. Instead, hypothesis testing based on haplotype networks 

413 and gene trees proved to be more powerful at identifying putative postmating prezygotic 

414 isolation genes with fixed nonsynonymous substitutions between both pairs of species that may 

415 have led to speciation. 

416
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Table 1(on next page)

Nucleotide variation within each A. socius complex species

Table 1. Nucleotide variation within each A. socius complex species with Tajima’s D-values.

Fu and Li’s D-values were similar (not shown)
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1 Table 1. Nucleotide variation within each A. socius complex species with Tajima’s D-values. Fu and Li’s D-values were similar (not 

2 shown) 

within A. fasciatus within A. socius within A. sp. nov. Tex

Gene Length n πs πa θfas D n πs πa θsoc D n πs πa θTex D

AK 1173 9 0.002 <0.001 0.001 0.975 15 0.004 0.001 0.002 -1.316 6 0.003 0.001 0.002 0.355

APBP 705 9 0.001 0 0.001 -1.088 15 0.005 0 0.001 -0.334 8 0 0 0 n/a

EJAC-SP 726 9 0 0 0 n/a 16 0.001 <0.001 0.001 -1.311 9 0.003 0 0.001 1.401

GOT 1122 9 0.002 0 <0.001 0.986 17 0 0 0 n/a 9 0.005 0.001 0.002 0.578

SPAG6 426 9 0 0 0 n/a 17 0 0 0 n/a 8 0.005 0 0.001 1.167

SPI 315 9 0.007 0 0.002 -1.362 16 0 0 0 n/a 9 0.008 0.001 0.002 0.196

ACG69 414 9 0.005 0.004 0.007 -1.286 14 0.021 0.009 0.011 0.264 7 0 0 0 n/a

3

4
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Table 2(on next page)

Nucelotide variation at each branching node of the A. socius complex species tree.

Table 2. Nucelotide variation at each branching node of the A. socius complex species tree.

(PN: nonsynonymous polymorphisms; PS: synonymous polymorphisms; DN: nonsynonymous

fixations; DS: synonymous fixations; κs: rate of nonsynonymous substitutions per

nonsynonymous site; κa: rate of synonymous substitutions per synonymous site; ω = κa / κs)
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1 Table 2. Nucelotide variation at each branching node of the A. socius complex species tree. (PN: nonsynonymous polymorphisms; PS: 

2 synonymous polymorphisms; DN: nonsynonymous fixations; DS: synonymous fixations; κs: rate of nonsynonymous substitutions per 

3 nonsynonymous site; κa: rate of synonymous substitutions per synonymous site; ω = κa / κs)

between fas & (soc+Tex) between soc & Tex

Gene Length PN PS DN DS κs κa ω PN PS DN DS κs κa ω

AK 1173 3 12 2 0 0.006 0.003 0.557 2 9 1 2 0.011 0.002 0.206

APBP 705 1 4 1 0 0.005 0.003 0.523 0 3 1 0 0.007 0.002 0.278

EJAC-SP 726 1 3 0 0 0.008 0.001 0.131 1 2 0 1 0.014 0.002 0.123

GOT 1122 3 7 1 1 0.011 0.002 0.142 3 4 0 2 0.011 0.001 0.116

SPAG6 426 0 1 0 2 0.029 0 0 0 1 0 0 0.004 0 0

SPI 315 3 4 0 0 0.02 0.003 0.15 1 1 2 3 0.054 0.009 0.158

ACG69 414 7 6 0 0 0.024 0.009 0.374 7 6 0 0 0.021 0.007 0.317

4

5
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Table 3(on next page)

Tests of lineage-specific positive selection

Table 3. Tests of lineage-specific positive selection that detects different ω classes along

branches of a gene tree. The model with best c-AIC score is shown.
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1 Table 3. Tests of lineage-specific positive selection that detects different ω classes along 

2 branches of a gene tree. The model with best c-AIC score is shown. 

Best model found by GA Branch

Gene c-AIC Classes ω classes

AK 3539.54 3 1: 0, 2: 0.148, 3: >>1

APBP 2018.52 2 1: 0, 2: >>1

EJAC-SP 2068.19 1 1: 0.079

GOT 3218.71 2 1: 0, 2: 0.545

SPAG6 1208.88 1 1: <0.001

SPI 955.82 2 1: 0, 2: 0.822

ACG69 1377 2 1: 0.081, 2: >>1

3

4

PeerJ reviewing PDF | (2015:09:6569:0:0:NEW 10 Sep 2015)

Reviewing Manuscript



Table 4(on next page)

Genealogical sorting index values based on individual gene trees

Table 4. Genealogical sorting index values based on individual gene trees (see

Supplementary Figure 1). Values range from zero (complete polyphyly) to one (complete

monophyly).
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1 Table 4. Genealogical sorting index values based on individual gene trees (see Supplementary 

2 Figure 1). Values range from zero (complete polyphyly) to one (complete monophyly).   

Gene gsi-fas Pperm gsi-soc Pperm gsi-Tex Pperm

AK 0.956 <0.001 0.919 <0.001 0.906 <0.001

APBP 1 <0.001 0.849 <0.001 1 <0.001

EJACSP 0.663 <0.001 0.732 <0.001 0.728 <0.001

GOT 0.919 <0.001 0.630 <0.001 0.934 <0.001

SPAG6 0.956 <0.001 0.670 <0.001 0.753 <0.001

SPI 0.140 0.001 0.339 <0.001 0.934 <0.001

ACG69 0.596 <0.001 0.05 0.644 0.917 <0.001

3

4
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1
Statistical parsimony haplotype networks for all 7 genes from allopatric individual only

Figure 1. Statistical parsimony haplotype networks for all 7 genes (a-e: test; f-g: control) from

allopatric individuals only, with nonsynonymous substitutions and mutational steps with

elevated ω indicated. When more than two rate classes were detected (AK, see Table 1), only

the largest rate class is indicated as a mutational step under positive selection. Population

abbreviations are as in the main text.
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2
Distribution of species-specific vs. common (shared) alleles within the A. fasciatus and
A. socius contact zone in Kenna, WV

Figure 2. Distribution of species-specific vs. common (shared) alleles within the A. fasciatus

and A. socius contact zone in Kenna, WV. Nine individuals each with allozyme identities of

pure (homozygous) A. fasciatus and A. socius had varying patterns of allelic identities for the

seven genes. Numbers (2-9) indicate the sampled individual and letters (a & b) indicate the

alleles within each individual.
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