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ABSTRACT
Background: Microendemic species are species with very small geographic
distributions (ranges). Their presence delimitates areas with microendemic species
(AMs), denoting a spatial unit comprising at least one population of at least one
microendemic species. AMs are assumed to be distributed distinctively and
associated with specific ecological, historical, and anthropogenic attributes. However,
the level of influence of these factors remains unclear. Thus, we studied the
distribution patterns of microendemic species within the Brazilian Atlantic Forest to
(a) identify the region’s AMs; (b) evaluate whether ecological (latitude, altitude,
distance from the coastline), historical (climate stability), and anthropogenic
(ecological integrity) attributes distinguish AMs from non-AMs; and (c) assess the
conservation status of the Atlantic Forest’s AMs.
Methods: We mapped the ranges of 1,362 microendemic species of angiosperms,
freshwater fishes, and terrestrial vertebrates (snakes, passerine birds, and small
mammals) to identify the region’s AMs. Further, spatial autoregressive logit
regression models were used to evaluate whether latitude, altitude, distance from the
coastline, Climate Stability Index, and ecological integrity can be used to discern AMs
from non-AMs. Moreover, the AMs’ conservation status was assessed by evaluating
the region’s ecological integrity and conservation efforts (measured as the proportion
of AMs in protected areas).
Results: We identified 261 AMs for angiosperm, 205 AMs for freshwater fishes, and
102 AMs for terrestrial vertebrates in the Brazilian Atlantic Forest, totaling 474 AMs
covering 23.8% of the region. The Brazilian Atlantic Forest is a large and complex
biogeographic mosaic where AMs represent islands or archipelagoes surrounded by
transition areas with no microendemic species. All local attributes help to distinguish
AMs from non-AMs, but their impacts vary across taxonomic groups. Around 69%
of AMs have low ecological integrity and poor conservation efforts, indicating that
most microendemic species are under threat. This study provides insights into the
biogeography of one of the most important global biodiversity hotspots, creating a
foundation for comparative studies using other tropical forest regions.
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INTRODUCTION
Microendemic species occupy very small geographic distributions or ranges (Nogueira
et al., 2010; Hobohm, 2013; Silva et al., 2019). They belong to various organism groups,
including angiosperms, insects, and vertebrates (Kruckeberg & Rabinowitz, 1985;
Wamelink, Goedhart & Frissel, 2014). If ranges are geographic expressions of a species’
ecological niche (Peterson et al., 2011), then microendemic species occupy the narrowest of
ecological niches (Wamelink, Goedhart & Frissel, 2014), rendering them more sensitive to
disturbances (Lozada et al., 2008) and highly dependent on habitat integrity for survival
(Wulff et al., 2013; Caesar, Grandcolas & Pellens, 2017).

Microendemic species are not distributed randomly; rather, their ranges comprise
unique locations (Kruckeberg & Rabinowitz, 1985; Wulff et al., 2013; Pimm et al., 2014;
Caesar, Grandcolas & Pellens, 2017; Silva et al., 2019), termed areas with microendemic
species (AMs), that is, spatial units containing at least one population of at least one
microendemic species. Identifying AMs is important because they are considered unique
from a biodiversity perspective and a top priority for conservation efforts (Kruckeberg &
Rabinowitz, 1985; Pressey, Johnson & Wilson, 1994; Silva et al., 2019).

AMs can be part of a “cradle,” where young species have evolved, or a part of a
“museum,” where old species have survived long after disappearing from other parts of
their ranges, whether due to natural or anthropogenic environmental changes (Kier et al.,
2009; Albert, Petry & Reis, 2011; Rahbek et al., 2019). Because of these roles, AMs are
assumed to be characterized by unique attributes compared to non-AMs. However, the
relative contributions of these factors in explaining current AM distribution patterns still
need clarification (Hobohm, 2013).

Studies aiming to distinguish places with endemic species from those without have
focused on two particular sets of attributes: ecological and historical (Fjeldså, Lambin &
Mertens, 1999; Harrison & Noss, 2017), where the former represent contemporary
environmental conditions and the latter the signature of past ecological conditions. More
recently, biogeographers have also considered the impact of human activities (or
anthropogenic attributes) on places and their biotas, as most terrestrial and marine
ecosystems face at least some degree of human disturbance (Halpern et al., 2012;Williams
et al., 2020). It is possible that ecological, historical, and anthropogenic attributes
synergistically influence the probability of a place maintaining viable populations of one or
more microendemic species (hereafter AM probability); thus, they should be evaluated
simultaneously rather than individually. Furthermore, assessing how these attributes
influence AM probability requires a multi-taxa approach, as different taxonomic groups
are expected to respond diversely to these attributes due to their distinct traits and habitat
requirements (Pacifici et al., 2017; Beissinger & Riddell, 2021; Green et al., 2022).

Three ecological (latitude, distance from the coastline, and altitude), one historical
(long-term climatic stability) and one anthropogenic attribute (ecological integrity,
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measured by the percentage of a place covered by natural vegetation) are thought to be
leading candidates in distinguishing AMs from non-AMs. First, latitude is expected to have
a negative association with AM probability because low-latitude locations house more
species having small ranges than high-latitude places, primarily due to a combination of
narrow species’ ecological tolerance, high speciation rates, and long-term spatiotemporal
variation in precipitation regimes (Saupe et al., 2019). Similarly, AM probability is
predicted to decrease with the distance from the coastline because coastal places tend to be
more heterogeneous and productive, as well as less seasonal than inland places (Jenkins,
Pimm & Joppa, 2013; Hobohm, 2013; Pimm et al., 2014; Acevedo & Sandel, 2021).
Conversely, AM probability is predicted to increase with altitude because high-altitude
places are typically more isolated, smaller and comprised of more complex topographies
than low-altitude places, leading to sharp habitat changes in a relatively small area and
enabling the origin and survival of microendemic species (Steinbauer et al., 2016; Rahbek
et al., 2019). Long-term climatic stability is predicted to have a positive association with
AM probability because places that remained stable during the recent recurrent large-scale
climatic changes are more likely to have served as “ecological refugia” for narrow niche
species, including microendemic species (Haffer, 1985; Fjeldså, Lambin & Mertens, 1999;
Ravelo et al., 2004; Kier et al., 2009; Harrison & Noss, 2017; Rahbek et al., 2019). Finally,
AM probability is predicted to increase along with a location’s ecological integrity because
places dominated by native vegetation are more likely to maintain healthy microendemic
species populations than those with low ecological integrity (Pimm et al., 2014).

For seven reasons, the Atlantic Forest, one of the largest South American biodiversity
hotspots (Mittermeier et al., 2005), is a natural laboratory for studying AMs and the
attributes setting them apart from non-AMs. First, the region covers around 1.4 million
km2 and harbors an unparalleled density of local to regional endemic species crowded into
a large and environmentally heterogeneous region (Tabarelli et al., 2005). Second, the
Atlantic Forest occupies a large latitudinal extent (ca. 25 degrees) along the South
American Atlantic coastline from the Rio Grande do Norte in Northeastern Brazil to
Southern Brazil (Galindo-Leal & Camara, 2003; Instituto Brasileiro. de Geografia e
Estatística, 2019). Third, the Atlantic Forest has a large longitudinal extent, occupying vast
areas from the coast to Central Brazil, Northeastern Argentina (Misiones), and
Southwestern Paraguay (Galindo-Leal & Camara, 2003). Fourth, the Atlantic Forest has a
complex topography, with altitudes ranging from 0 to 2,892 m above sea level, forming
ecological gradients that influence species distribution (Goerck, 1999; Silva, Sousa &
Castelletti, 2004). Fifth, the Atlantic Forest has experienced large-scale palaeoecological
changes in the last 3–4 million years, with some places being more climatically stable than
others (Carnaval &Moritz, 2008; Peres et al., 2020). Sixth, the Atlantic Forest has lost more
than 80% of its original native vegetation, and what is left is unevenly distributed across its
sub-regions (Ribeiro et al., 2009; Silva et al., 2016).

This article has three primary goals. The first is to map the ranges of the microendemic
species of three taxonomic groups (angiosperms, freshwater fishes, and terrestrial
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vertebrates) to identify the Atlantic Forest’s AMs. The second goal is to apply spatial
autoregressive logit regression models to assess the influence of latitude, altitude, distance
from the coastline, climate stability, and ecological integrity on AM probability. Finally, the
third is to evaluate the conservation status of the Atlantic Forest’s AMs and propose
general recommendations to safeguard the region’s microendemic species. This study is on
the interface between biogeography and conservation science, as it not only generates new
knowledge on the biogeography of a major global biodiversity hotspot, but it also pinpoints
important places where conservation actions should be directed to avoid the extinction of
microendemic species, laying the groundwork for future comparative research on other
tropical forest hotspots.

MATERIALS AND METHODS
Study area
Our analysis is restricted to the Brazilian Atlantic Forest (Fig. 1), as defined by the Brazilian
Institute of Geography and Statistics (IBGE, from its Brazilian name: Instituto Brasileiro de
Geografia e Estatística) (Instituto Brasileiro. de Geografia e Estatística, 2019). The IBGE’s
limits differ from those of other studies (Silva & Casteleti, 2003; Silva, Sousa & Castelletti,
2004; Peres et al., 2020) because they exclude humid forests and tropical dry forests found
in the Caatinga and Cerrado regions (de Araujo et al., 2022). Atlantic Forests areas outside
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Figure 1 Boundaries of the Atlantic Forest in Brazil and South America.
Full-size DOI: 10.7717/peerj.16779/fig-1
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Brazil (e.g., Argentina and Paraguay) were not included in this analysis because
comparative and reliable taxonomic and biogeographical data were unavailable.

Species datasets
We mapped the ranges of microendemic species (i.e., species with ranges smaller than
10,000 km2) of angiosperms, freshwater fishes, and terrestrial vertebrates (snakes, small
mammals, and passerine birds) because comparable taxonomic and biogeographical
reliable data were available for them. For angiosperms and freshwater fishes, we used the
databases gathered by Silva et al. (2019) and Nogueira et al. (2010), respectively, whereas
for snakes and mammals, we selected microendemic species from the datasets generated by
Barbo, Nogueira & Sawaya (2021) and Dalapicolla et al. (2021), respectively. For passerine
birds, we first selected microendemic species from the list of Brazilian Atlantic Forest
endemic species produced by Silva, Sousa & Castelletti (2004), but we updated the species
ranges using recent publications (Bello et al., 2017; Rodrigues et al., 2019), as well as new
and validated (i.e., represented by specimens, voices, or pictures) records from Wikiaves
(www.wikiaves.com.br) and Global Biodiversity Information Facility (www.gbif.org).

Areas of microendemism
We used QGIS to create detailed maps of all microendemic species within each taxonomic
group in the Brazilian Atlantic Forest. Then, we superimposed these maps with a map
dividing the Atlantic Forest into 2,243 equal-sized hexagons (ca. 630 km2) and counted the
microendemic species recorded within them. Any hexagon containing at least one record
of a microendemic species was designated an AM.

Explanatory variables
We have gathered data on five local attributes for all 2,243 hexagons: latitude, altitude,
distance from the coastline, Climate Stability Index (CSI), and ecological integrity, all of
which were collected from publicly available digital databases. Latitude is represented by
the absolute latitude value (in decimal degrees) of the hexagon’s centroid. Elevation is the
average elevation (in m) within the hexagon. This information came from the WorldClim
2.1 platform (Fick & Hijmans, 2017), with a resolution of 2.5 arc minutes or ca. 5 km2

(https://www.worldclim.org/). The distance from the hexagon to the nearest coast was
calculated using a global database provided by NASA’s Ocean Biology Processing Group
(https://oceancolor.gsfc.nasa.gov/docs/distfromcoast/). The CSI represents a hexagon’s
climate stability index average since the Pliocene (Herrando-Moraira et al., 2022). The CSI
measures the variability of 14 bioclimatic variables using nine general circulation climate
change models over four periods, available from WorldClim at a resolution of ca. 5 km.
The final CSI maps were obtained by summing the standard deviations of the variables
selected and the normalized subsequent outputs (Herrando-Moraira et al., 2022), and it
ranged from 0 (low climatic fluctuations) to 1 (high climatic fluctuations). Finally, we
measured each hexagon’s ecological integrity by calculating the percentage of its area
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covered with natural vegetation using the 2021 Annual Land Use and Land Cover map for
Brazil produced by Mapbiomas (https://brasil.mapbiomas.org).

Statistical analyses
Before any analysis, we evaluated whether the explanatory variables present
multicollinearity by estimating their variance inflation indices (VIFs) using the command
estat vif in Stata (StataCorp, 2017). All explanatory variables had VIFs below five,
indicating no multicollinearity, so they were added to all models.

We used spatial autoregressive logit regression models to test the hypotheses of
associations between the five local attributes simultaneously and the AM probability of
each taxonomic group. Models were built using the non-linear two-stage least squares
(N2SLS) estimator in the spatbinary command in Stata (Spinelli, 2022). Spatial models
differ from aspatial models because they consider and model the spatial relationships and
dependencies among data points by considering their geographic distance from each other.
An inverse geographic distance matrix generated using the spmatrix command in Stata
(StataCorp, 2017) was used in the model, and the models’ rho coefficients were used to
assess spatial autocorrelation in the dataset. Further, Hansen’s test for overidentification
was used to evaluate whether the number of explanatory variables was greater than the
number of parameters to be estimated (Spinelli, 2022). The coefficients of a spatial logit
regression show the direction (positive or negative) of the relationship between each
attribute and AM but not the attribute’s impacts on AM probability. To assess such
impacts, we used the command spatbinary_impact in Stata (Spinelli, 2022) to generate the
elasticities (i.e., the percent variation in the response variable in relation to the 1% variation
in an explanatory variable if the rate remained constant) of each explanatory variable of
each model. Impacts can be direct, indirect, and total, where the former measures the
hexagon’s predicted contributions to its probability of a positive outcome (i.e., being an
AM), whereas the indirect impact measures the predicted impact of the other hexagons’
contributions to a hexagon’s probability of being an AM and the total impact is the sum of
direct and indirect impacts.

Conservation status of areas of microendemic species
To assess the conservation status of each AM, we combined the indicator of ecological
integrity with an indicator of conservation effort. To measure conservation efforts, we
overlaid the 2021 map of all protected areas in Brazil’s Protected Area National Register
(https://cnuc.mma.gov.br/) atop the hexagons using QGIS and estimated the percentage
within protected areas. We used 50% as the minimum ecological integrity and
conservation effort required to maintain healthy populations of microendemic species
within an AM (Wilson, 2017). By using this threshold, we classified the Atlantic Forest’s
AMs into four conservation statuses: (a) AMs with high ecological integrity and high
conservation effort; (b) AMs with high ecological integrity and low conservation effort; (c)
AMs with low ecological integrity and high conservation effort; and (d) AMs with low
ecological integrity and low conservation effort.

Araujo et al. (2024), PeerJ, DOI 10.7717/peerj.16779 6/20

https://brasil.mapbiomas.org
https://cnuc.mma.gov.br/
http://dx.doi.org/10.7717/peerj.16779
https://peerj.com/


RESULTS
Areas of microendemism
We mapped the ranges of 1,362 microendemic species, of which 994 were angiosperms,
321 were freshwater fishes, and 47 were terrestrial vertebrates. Among the latter, 11 were
snakes, 28 were small mammals, and eight were passerine birds. By analyzing these ranges,
we identified 261 AMs for angiosperm, 205 AMs for freshwater fishes, and 102 AMs for
terrestrial vertebrates (Fig. 2), representing 13.6%, 10.3%, and 4.8% of the Atlantic Forest’s
total area, respectively. Further, when combining all taxonomic groups, the number of
AMs is 474, corresponding to 23.8% of the Atlantic Forest’s total area (Fig. 2). AMs are
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Figure 2 Geographic distribution of areas with microendemism for angiosperms, freshwater fishes,
terrestrial vertebrates and all three groups combined in the Brazilian Atlantic Forest.

Full-size DOI: 10.7717/peerj.16779/fig-2
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found everywhere across the region (Fig. 2), with the total number of microendemic
species in each AM varying from 1 to 50 (Fig. 3), but 50.8% of AMs harbor only one
species. Regardless, AMs with high species richness are found throughout the region.

Association between areas of microendemism and local attributes
The association between AM probability and local attributes differed across taxonomic
groups (Table 1). For angiosperms, AM probability increased with climate stability and
ecological integrity but decreased with the distance from the coastline. Further, the AM
probability for freshwater fishes increased with latitude and ecological integrity but
decreased with the distance from the coastline. Finally, for terrestrial vertebrates, AM
probability increased with altitude and ecological integrity but decreased with latitude,
distance from the coastline, and climate stability. In addition, Hansen’s tests for all three
spatial regression models (Table 1) were not significant (seed plants: χ2 = 6.82, df = 9,
p = 0.65; freshwater fishes: χ2 = 1.64, df = 9, p = 0.99; terrestrial vertebrates: χ2 = 2.63,
df = 9, p = 0.97); thus, all explanatory variables used in the models are valid (Table 1).

The rho values show that AMs do not show spatial autocorrelation (Table 1), and
consistent with this result, no measure of indirect impact was significant across the three
regression models (Tables 2–4). For angiosperms, a 1% increase in distance from the
coastline and ecological integrity resulted in a 1.7% reduction and a 0.7% increase in AM
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Figure 3 Species richness of microendemic species in the Brazilian Atlantic Forest.
Full-size DOI: 10.7717/peerj.16779/fig-3
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probability, respectively (Fig. 2). Although the total impact of climate stability on AM
probability among angiosperms is insignificant, its direct impact is not. Thus, a 1%
increase in the CSI resulted in a 0.8% reduction in AM probability. For freshwater fishes, a
1% increase in distance from the coastline results in a 1.2% decrease in AM probability.
Conversely, latitude and ecological integrity increase resulted in a 1.5% and 0.3% increase
in AM probability, respectively (Table 3). Finally, for terrestrial vertebrates, a 1% increase
in latitude, distance from the coastline, and CSI resulted in 2.0%, 4.9%, and 1.6%
reductions in AM probability, respectively. Conversely, a 1% increase in altitude and
ecological integrity resulted in a 1.3% and 0.6% increase in AM probability, respectively
(Table 4).

Conservation status of areas with microendemic species
There is considerable variation in the conservation status of AMs across the region (Fig. 4).
By using the 50% threshold, we found that 329 AMs have low ecological integrity and

Table 1 Relationship between AM probability in the Brazilian Atlantic Forest and five local
attributes (latitude, altitude, distance from the coastline, climate stability, and ecological
integrity) across different taxonomic groups.

Group/Attributes Coefficient Robust S.E. z p

Angiosperms

Latitude 0.01 0.03 0.48 0.63

Altitude 0.00 0.00 1.77 0.08

Distance from the coastline −0.01 0.00 −5.05 0.00

Climate stability index 4.50 2.06 2.19 0.03

Ecological integrity 0.02 0.00 6.96 0.00

Constant −2.44 0.66 −3.70 0.00

Rho 0.32 0.19 1.65 0.10

Freshwater fishes

Latitude 0.09 0.03 2.79 0.01

Altitude 0.00 0.00 −1.04 0.30

Distance from the coastline −0.01 0.00 −4.14 0.00

Climate stability index 3.46 2.81 1.23 0.22

Ecological integrity 0.02 0.00 3.95 0.00

Constant −4.49 0.98 −4.60 0.00

Rho −0.11 0.25 −0.44 0.66

Terrestrial vertebrates

Latitude −0.093 0.04 −2.18 0.03

Altitude 0.002 0.00 4.96 0.00

Distance from the coastline −0.020 0.00 −4.30 0.00

Climate stability index −8.141 2.73 −2.99 0.00

Ecological integrity 0.023 0.01 3.83 0.00

Constant 0.493 0.81 0.61 0.54

Rho 0.06 0.16 0.35 0.73
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conservation effort, 76 have high ecological integrity but low conservation effort, 37 have
high ecological integrity and high conservation effort, and, finally, 32 have low ecological
integrity and high conservation effort. Moreover, AMs representing all four categories are
found across the region (Fig. 5).

DISCUSSION
Mapping AMs shows that the Atlantic Forest is a large and complex biogeographic mosaic,
where AMs represent islands or archipelagoes surrounded by transition areas having no
microendemic species. In addition, microendemism is ubiquitous across the entire region.
As such, our findings indicate a high regional biogeographic heterogeneity not reported
previously (Silva, Sousa & Castelletti, 2004; Nogueira et al., 2010; DaSilva, Pinto-da-Rocha
& DeSouza, 2015; Silva et al., 2019; Peres et al., 2020). Studies on microendemic species in
other biodiversity hotspots have also documented highly complex mosaics of AMs and
transition regions without microendemic species (Kruckeberg & Rabinowitz, 1985;Wilmé,
Goodman & Ganzhorn, 2006; Hobohm, 2013; Wulff et al., 2013; Caesar, Grandcolas &
Pellens, 2017), and such similarities may suggest that high internal biogeographical
heterogeneity is a common attribute of all biodiversity hotspots.

We found that latitude, altitude, distance from the coastline, CSI, and ecological
integrity can help distinguish AMs from non-AMs, but their impacts vary across

Table 2 Total, direct and indirect impacts of five local attributes on the probability of a hexagon
harboring at least one microendemic angiosperm species in the Brazilian Atlantic Forest.

Attributes Impact Standard error z p

Latitude

Total 0.336 0.763 0.441 0.659

Direct 0.232 0.482 0.480 0.631

Indirect 0.105 0.286 0.366 0.714

Altitude

Total 0.301 0.203 1.486 0.137

Direct 0.205 0.115 1.780 0.075

Indirect 0.096 0.109 0.882 0.378

Distance from the coastline

Total −1.738 0.481 −3.610 0.000

Direct −1.194 0.242 −4.934 0.000

Indirect −0.544 0.454 −1.198 0.231

Climate stability index

Total 1.135 0.645 1.761 0.078

Direct 0.791 0.362 2.187 0.029

Indirect 0.345 0.366 0.942 0.346

Ecological integrity

Total 0.684 0.205 3.345 0.001

Direct 0.473 0.065 7.247 0.000

Indirect 0.211 0.187 1.126 0.260
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taxonomic groups. For instance, distance from the coastline negatively correlates with AM
probability in all taxonomic groups, and this variable has the highest total impact among
angiosperms and terrestrial vertebrates. This is a relevant finding because distance
from the coastline is not a geographic variable commonly measured and used in
macroecological studies to predict both species richness and endemism, even though all
global maps produced thus far demonstrate that, at least in some regions, coastal areas
have a high density of species, and endemic species in particular (Kier et al., 2009; Jenkins,
Pimm & Joppa, 2013). Thus, in the context of the Atlantic Forest, distance from the
coastline possibly summarizes well the gradients of topographic complexity, rainfall, water
shortages, temperature, and soils that distinguish the region’s evergreen forests along the
coastline from all the semideciduous and deciduous forests located in the region’s inland
(Neves et al., 2017; Rezende et al., 2021).

The hypothesis that there is a negative association between latitude and AM probability
(Saupe et al., 2019) is accepted for terrestrial vertebrates but not freshwater fishes, as the
association is positive in this group, requiring an additional explanation. Species richness
and endemicity among neotropical freshwater fishes follow the core-periphery pattern,
characterized by high species richness at the continental core and high species endemism
at the continental periphery (Albert, Petry & Reis, 2011). Thus, while fish species diversity

Table 3 Total, direct and indirect impacts of five local attributes on the probability of a hexagon
harboring at least one microendemic species of freshwater fishes in the Brazilian Atlantic Forest.

Attributes Impact Standard error z p

Latitude

Total 1.51 0.73 2.09 0.04

Direct 1.68 0.60 2.80 0.01

Indirect −0.16 0.32 −0.51 0.61

Altitude

Total −0.14 0.13 −1.11 0.27

Direct −0.16 0.15 −1.04 0.30

Indirect 0.02 0.04 0.39 0.70

Distance from the coastline

Total −1.18 0.31 −3.76 0.00

Direct −1.30 0.32 −4.06 0.00

Indirect 0.13 0.27 0.47 0.64

Climate stability index

Total 0.57 0.50 1.14 0.26

Direct 0.63 0.51 1.23 0.22

Indirect −0.06 0.12 −0.49 0.63

Ecological integrity

Total 0.33 0.10 3.21 0.00

Direct 0.36 0.09 4.04 0.00

Indirect −0.04 0.07 −0.48 0.63
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Table 4 Total, direct and indirect impacts of five local attributes on the probability of a hexagon
harboring at least one microendemic species of terrestrial vertebrates in the Brazilian Atlantic
Forest.

Attributes Impact Standard
error

z p

Latitude

Total −2.01 0.76 −2.66 0.01

Direct −1.90 0.88 −2.17 0.03

Indirect −0.11 0.31 −0.36 0.72

Altitude

Total 1.29 0.37 3.50 0.00

Direct 1.22 0.24 5.00 0.00

Indirect 0.07 0.22 0.32 0.75

Distance from the coastline

Total −4.89 1.30 −3.76 0.00

Direct −4.62 1.08 −4.28 0.00

Indirect −0.27 0.82 −0.33 0.74

Climate stability index

Total −1.65 0.57 −2.89 0.00

Direct −1.56 0.52 −2.98 0.00

Indirect −0.09 0.26 −0.33 0.74

Ecological integrity

Total 0.59 0.18 3.32 0.00

Direct 0.56 0.15 3.87 0.00

Indirect 0.03 0.10 0.33 0.74
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Figure 4 The conservation status of areas with microendemic species in the Brazilian Atlantic Forest
by assessing their percentage of protected areas and ecological integrity.
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decreases with latitude, endemicity does not. For instance, the area with the highest
proportion of endemic fish species in the Atlantic Forest is in its south (Albert,
Tagliacollo & Dagosta, 2020), showcasing a pattern not found among other vertebrates
(Peres et al., 2020).

The hypothesis that altitude positively correlates with AMs is supported only for
terrestrial vertebrates, so this relationship cannot be generalized to other taxonomic
groups. This finding is unexpected because terrestrial vertebrates, given their dispersal
capacity, are the least likely group among those we studied to be affected by
topographic-driven isolation (Steinbauer et al., 2016). A potential explanation for this
pattern is that, at least for angiosperms and freshwater fishes, altitude, instead of
facilitating the maintenance of microendemic species, increases their extinction rates.

The hypothesis that long-term climate stability is positively associated with AMs is
supported for angiosperms, matching the results of other studies (Haffer, 1985; Fjeldså,
Lambin & Mertens, 1999; Harrison & Noss, 2017). However, against our predictions, this
relationship between long-term climate stability and AM probability is negative for
terrestrial vertebrates. This pattern, although unexpected, is not restricted to the Atlantic
Forest. For instance, Silva (1997) reported that endemic species with small ranges in the
Cerrado evolved in the region’s most climatically unstable areas.

All three taxonomic groups support the hypothesis that ecological integrity is positively
associated with AM probability, confirming that places with high levels of human
disturbance are less likely to harbor microendemic species, with two hypotheses potentially

Figure 5 The geographic distribution of the areas with microendemic species in the Brazilian
Atlantic Forest according to their conservation status categories.

Full-size DOI: 10.7717/peerj.16779/fig-5
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explaining this pattern: (a) such areas did house microendemic species, but they have since
faced extinction due to human activities or (b) human activities are more intense in areas
with attributes that do not facilitate the presence of microendemic species. Testing these
two hypotheses formally can be a useful research endeavor for future biogeographic studies
on the region. Our result reinforces the importance of considering human impact when
examining endemicity patterns because local extinctions caused by human activities can
distort general biogeographic patterns and lead to invalid conclusions. Considering
anthropogenic impacts when studying species ranges is especially important in
biodiversity hotspots, because these regions have lost 70% or more of their native primary
vegetation (Mittermeier et al., 2005); consequently, the biogeographic patterns we observed
herein may not represent precisely the biogeographic patterns that existed before the
expansion of human activities across these regions.

The Brazilian Atlantic Forest has a large conservation gap necessitating closure to
protect the AMs we identified in this article. Although they cover only 23% of the region,
69% have reduced ecological integrity and limited conservation efforts. As such, closing
this gap requires concerted efforts toward implementing local and national strategies with
policy instruments (Silva et al., 2016). Thus, we suggest three general actionable guidelines:
(1) zero deforestation policies should be adopted for all AMs with native vegetation,
(2) AMs with native vegetation and no conservation effort should be considered priorities
for establishment as new protected areas, and (3) AMs with no native vegetation should be
priorities for ecological restoration. Direct government action is limited and expensive,
particularly because the private sector owns most of the Atlantic Forest (Freitas et al.,
2018), so to ensure the region’s long-term preservation, the private sector must establish a
comprehensive network of private reserves that are carefully planned by using the most
reliable scientific data available (Silva, Pinto & Scarano, 2021).

CONCLUSIONS
Our results show that AMs in the Atlantic Forest are ubiquitous across the region, can be
distinguished from non-AMs based on local attributes, and require urgent conservation
actions. They also suggest that AMs are the product of complex interactions between the
taxonomic groups’ attributes and those of the locations in which they exist. As none of
these attributes is stable, AMs are rendered dynamic—thus, once-widespread species could
eventually become microendemic and microendemic species can eventually become
widespread. Conclusively, the diverse relationships between AMs and their ecological,
historical, and anthropogenic attributes across different taxonomic groups should be
considered the norm rather than the exception in biogeographic studies of the Atlantic
Forest and other large biogeographical regions.

We recognize that some of the AMs we identified could be sampling artifacts, because
knowledge of the Atlantic Forest’s biota is still lacking. Regardless, the Atlantic Forest
represents Brazil’s most well-sampled region, harboring the country’s highest density of
scientists and organizations focused on biodiversity (Silva et al., 2016). To mitigate the
influence of incomplete knowledge, we used a conservative approach by considering only
species records with documented and peer-reviewed evidence in our analyses. While
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additional data may reveal more extensive ranges for some of the species included in our
analysis, we believe the general patterns described here are robust enough to both offer
insights into the biogeography of one of the most important biodiversity hotspots globally
and create a foundation for comparative studies using other tropical forest regions.
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