Factors influencing space-use and kill distribution of sympatric lion prides in a semi-arid savanna landscape (#89660)

First revision

Guidance from your Editor

Please submit by 26 Nov 2023 for the benefit of the authors .

Structure and Criteria

Please read the 'Structure and Criteria' page for general guidance.

Custom checks

Make sure you include the custom checks shown below, in your review.

Author notes

Have you read the author notes on the guidance page?

Raw data check

Review the raw data.

Image check

Check that figures and images have not been inappropriately manipulated.

If this article is published your review will be made public. You can choose whether to sign your review. If uploading a PDF please remove any identifiable information (if you want to remain anonymous).

Files

Download and review all files from the <u>materials page</u>.

- 1 Tracked changes manuscript(s)
- 1 Rebuttal letter(s)
- 5 Figure file(s)
- 3 Table file(s)

Custom checks

Vertebrate animal usage checks

- Have you checked the authors <u>ethical approval statement?</u>
- Were the experiments necessary and ethical?
- Have you checked our animal research policies?

Structure and Criteria

Structure your review

The review form is divided into 5 sections. Please consider these when composing your review:

- 1. BASIC REPORTING
- 2. EXPERIMENTAL DESIGN
- 3. VALIDITY OF THE FINDINGS
- 4. General comments
- 5. Confidential notes to the editor
- You can also annotate this PDF and upload it as part of your review

When ready submit online.

Editorial Criteria

Use these criteria points to structure your review. The full detailed editorial criteria is on your guidance page.

BASIC REPORTING

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context.
 Literature well referenced & relevant.
- Structure conforms to <u>PeerJ standards</u>, discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
- Raw data supplied (see <u>PeerJ policy</u>).

EXPERIMENTAL DESIGN

- Original primary research within Scope of the journal.
- Research question well defined, relevant & meaningful. It is stated how the research fills an identified knowledge gap.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.

VALIDITY OF THE FINDINGS

- Impact and novelty not assessed.

 Meaningful replication encouraged where rationale & benefit to literature is clearly stated.
- All underlying data have been provided; they are robust, statistically sound, & controlled.

Conclusions are well stated, linked to original research question & limited to supporting results.

Standout reviewing tips

The best reviewers use these techniques

Τ	p

Support criticisms with evidence from the text or from other sources

Give specific suggestions on how to improve the manuscript

Comment on language and grammar issues

Organize by importance of the issues, and number your points

Please provide constructive criticism, and avoid personal opinions

Comment on strengths (as well as weaknesses) of the manuscript

Example

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57-86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that an international audience can clearly understand your text. Some examples where the language could be improved include lines 23, 77, 121, 128 – the current phrasing makes comprehension difficult. I suggest you have a colleague who is proficient in English and familiar with the subject matter review your manuscript, or contact a professional editing service.

- 1. Your most important issue
- 2. The next most important item
- 3. ...
- 4. The least important points

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.

Factors influencing space-use and kill distribution of sympatric lion prides in a semi-arid savanna landscape

Allan Tarugara $^{\text{Corresp., 1}}$, Bruce Clegg $^{\text{1}}$, Sarah Clegg $^{\text{1}}$

¹ Research Department, Malilangwe Wildlife Reserve, Chiredzi, Masvingo, Zimbabwe

Corresponding Author: Allan Tarugara Email address: allan@malilangwe.org

Understanding lions' (Panthera leo) space-use is important for the management of multispecies wildlife systems because lions can have profound impacts on ecosystem-wide ecological processes. Semi-arid savanna landscapes are typically heterogeneous with species space-use driven by the availability and distribution of resources. Previous studies have demonstrated that lions select areas close to water as encounter rates with prey are higher and hunting success is greater in these regions. Where multiple lion prides exist, landscape partitioning is expected to follow a despotic distribution in which competitively superior prides occupy high-quality areas while subordinates select poorer habitats. In this study, Global Positioning System collar data and logistic regression were used to investigate space-use and hunting success among 50% of lion prides at Malilangwe Wildlife Reserve, Zimbabwe. Our findings show that lion space-use was driven by surface water availability and that home range selection was socially hierarchical with the dominant pride occupying habitat in which water was most abundant. In addition, we found that the effect of shrub cover, clay content and soil depth on kill probability was area specific and not influenced by hierarchical dominance. Where multiple lion prides are studied, we recommend treating prides as individual units because pooling data may obscure site and pride specific response patterns.

1 2	Factors influencing space-use and kill distribution of sympatric lion prides in a semi-arid savanna landscape
3	Allan Tarugara ¹ , Bruce W. Clegg ¹ and Sarah B. Clegg ¹
4	
5 6 7 8 9 10 11	¹ Malilangwe Wildlife Reserve, Private Bag 7085, Chiredzi, Masvingo, Zimbabwe Corresponding author: Allan Tarugara Malilangwe Wildlife Reserve, Private Bag 7085, Chiredzi, Masvingo, Zimbabwe Email address: corresponding_author_allan@malilangwe.com
12	Abstract
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28	Understanding lions' (<i>Panthera leo</i>) space-use is important for the management of multi-species wildlife systems because lions can have profound impacts on ecosystem-wide ecological processes. Semi-arid savanna landscapes are typically heterogeneous with species space-use driven by the availability and distribution of resources. Previous studies have demonstrated that lions select areas close to water as encounter rates with prey are higher and hunting success is greater in these regions. Where multiple lion prides exist, landscape partitioning is expected to follow a despotic distribution in which competitively superior prides occupy high-quality areas while subordinates select poorer habitats. In this study, Global Positioning System collar data and logistic regression were used to investigate space-use and hunting success among 50% of lion prides at Malilangwe Wildlife Reserve, Zimbabwe. Our findings show that lion space-use was driven by surface water availability and that home range selection was socially hierarchical with the dominant pride occupying habitat in which water was most abundant. In addition, we found that the effect of shrub cover, clay content and soil depth on kill probability was area specific and not influenced by hierarchical dominance. Where multiple lion prides are studied, we recommend treating prides as individual units because pooling data may obscure site and pride specific response patterns.
30	Introduction
31 32 33 34 35	Understanding why animals occur where they do is a cornerstone of ecology (Burt 1943; Krebs 1980; Powers & McKee 1994). Where animals spend most of their time in a habitat is determined by a complex interplay of social and environmental factors (Davies et al. 2016; Moyer et al. 2008). Prey availability and catchability are major factors driving patterns of spaceuse among large carnivores (Davidson et al. 2012; Hopcraft et al. 2005; Ogutu & Dublin 2004),

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68 69

70

71

72

73

but for social species, access to profitable areas may be moderated by social pressures 36 (Struhsaker 1967). Lions (Panthera leo) are an important focal species in most conservation and 37 tourism-based systems (Loveridge et al. 2009) and as an apex predator, they have profound 38 impacts on ecosystem-wide ecological processes and, therefore, understanding their space-use 39 40 patterns and predation dynamics is important for informing management decisions on carrying capacities and herbivore stocking rates (Webb et al. 2008; Tambling et al. 2010; McPhee et al. 41 2012). Lion spatial and foraging ecology in savanna ecosystems has been extensively researched 42 yet new studies are warranted to broaden the body of knowledge. This is because, generalizations 43 can be misleading because prey assemblages, social and demographic factors as well as 44 environmental conditions differ between prides, home ranges and protected areas. As such, 45 studies that consider both environmental and social factors at the inter-pride level could provide 46 valuable insights into lion behaviour. 47

Semi-arid savanna landscapes are typically heterogeneous, with resources patchily distributed and habitats varying in quality (Gaillard et al. 1998; Jetz et al. 2004). Habitat quality is determined by environmental conditions with surface water availability being the primary factor limiting the distribution of herbivore populations (Owen-Smith 1996; Redfern et al. 2003; Valeix et al. 2009). Most herbivores need to drink regularly and, as such, areas close to water sources are usually associated with large aggregations of prey and, in turn, attract predators (De Boer et al. 2010; Cain et al. 2012). Several studies have demonstrated that lions select habitats close to water as these provide increased encounters with prey and associated hunting success (Duncan et al. 2012; Harrington et al. 1999; Kittle et al. 2022; Owen-Smith 1996; Valeix et al. 2010). Such areas are profitable to lions as they provide the least energetic cost to acquire food (Mitchell & Powell 2004). Where multiple prides exist, landscape partitioning is expected to follow an ideal despotic distribution (Fretwell & Lucas 1969) in which competitively superior prides occupy the most profitable areas forcing subordinates into sub-optimal environments. When this occurs, prides are expected to respond to environmental determinants of space-use in accordance with their position in the social hierarchy. We hypothesize that distance from permanent surface water has a strong negative effect for the dominant pride, a medium negative effect for prides mid-way in the social hierarchy, and a weak negative or even a positive effect for the most subordinate prides, meaning that dominant prides are expected to be positively associated with surface water.

Among sympatric lion prides, social hierarchy is shaped by agonism (Heinsohn 1996). The outcome of agonistic encounters depends upon the individual strength of contending prides (Packer et al. 1990; Heinsohn 1996). Previous studies have shown that lion group size plays an important role in shaping hierarchy dynamics, with large prides routinely outcompeting smaller ones (Hamilton 1971; Alexander 1974; Wilson 1975; Packer et al. 1990). In addition, pride strength is determined by the age-sex constitution of the pride (Mosser & Packer 2009). For example, prides containing several adult males or females have a competitive advantage over

those largely constituted of younger inexperienced individuals (Packer et al. 1990; Mosser &
 Packer 2009; Chakrabarti et al. 2020).

This study posits that broad-scale (study area) home range choice and fine-scale (kill site) 76 hunting success of lions at MW e influenced by both environmental and social factors. Being 77 ambush predators, lions use the cover of vegetation when stalking prey (Hopcraft et al. 2005; 78 Davidson et al. 2012) with areas containing sufficient cover improving hunting success. Soil 79 depth and clay content determine plant available moisture and nutrients which, in turn, 80 influences forage quality (Walker & Langridge 1997). Deeper soils can contain large amounts of 81 82 water and retain it for longer (Calvino et al. 2003; Meerveld & McDonnell 2006) while soils with a high clay content release more nutrients ensuring healthy plant growth (Tahir & 83 Marschner 2016; Kome et al. 2019). As such, habitats with deeper soils and high clay content are 84 able to sustain healthy foraging material for extended periods thus attracting herbivore 85 populations and, consequently, occupation by lions. The specific objectives of this study were to 86 examine the functional relationships between lion home range selection and hunting success, and 87 likely determinants of prey density viz. (i) distance to permanent surface water, (ii) shrub canopy 88 cover and (iii) soil properties. 89

90

91

92

Method

Study area

- The study was conducted at MWR which is located in the south-eastern lowveld of Zimbabwe
- 94 between 20°58′ and 21°15′S and 31°47′ and 32°01′E (Figure 1). MWR is a non-hunting property
- 95 whose main objectives are conservation and community development (Ball et al. 2019). The
- 96 reserve is approximately 490 km² in size and altitude ranges from 290 m, in river systems, to 500
- 97 m above sea level on hills (Traill and Bigalke 2007). Rainfall (mean ≈ 560 mm per year) is
- 98 seasonal with approximately 84 % of precipitation occurring between November and March and
- 99 the average minimum and maximum monthly temperatures ranging from 13.4 °C (July) to 23.7
- 100 °C (December) and 23.2 °C (June) to 33.9 °C (November) respectively (Clegg and O'Connor
- 101 2012). The southern boundary, bordering Gonarezhou National Park has a short fence that allows
- some movement of carnivores and smaller ungulates but restricts the movement of large

103 herbivores.

104

105

106107

108

109

110

Although soils vary, they are principally derived from alluvium, sandstone, gneiss and basalt (Clegg and O'Connor 2012). Vegetation types at MWR can be broadly classified as riverine, hill miombo, mopane (*Colophospermum mopane*) veld, thorn thicket and open woodland (Clegg and O'Connor 2012). Hills are largely dominated by redwood (*Brachystegia tamarindiodes*) and mnondo (*Julbernardia globiflora*) tree species, while low lying areas are characterized by mixed broadleaf woodland. The grass layer on MWR is mostly composed of *Urochloa mossambicensis*, *Heteropogon contortus*, *Digitaria eriantha* and *Aristida spp*. A wide

variety of prey species inhabit the heterogenous landscape including Cape buffalo (Syncerus 111 caffer), zebra (Equus burchellii) and impala (Aepyceros melampus) among other antelope 112 species. Competing predators of lions include leopards (*Panthera pardus*), spotted hyenas 113 (Crocuta crocuta) and wild dogs (Lycaon pictus). 114 115

116

Collaring of animals

Three independent lion prides [Banyini n = 12 (males = 2, females = 4, subadults = 6), Nduna n117 = 6 (males = 1, females = 2, subadults = 3) and Hlamba mlonga n = 4 (males = 0, females = 2, 118 subadults = 2)] were identified for collaring at MWR. Between February 21 and August 02, 119 2004, three GPS/drop-off collars (Televilt, Lindesberg, Sweden) were fitted onto either an adult 120 male or female member of each pride. Subjete were chemically immobilized with a combination 121 of Zoletil-Medetomidine (1.0-20 mg/kg body mass), with the anaesthetic being darted into the 122 muscular region of the hindquarters. Reversal was achieved by subcutaneous injection of 123 Antisedan (at 2.5 mg/mg of Medetomidine) or Yohimbine (at 1 ml/50 kg of body weight) and 124 subjects were monitored until they fully recovered from the effects of the anaesthesia. Safe, 125 professional, and humane animal care guidelines stipulated by the Scientific Experiments on 126 Animals Act of Zimbabwe (Chapter 19:12 of 1963) and Olfert et al. (1993) were adhered to. The 127 National Animal Research Ethics Committee of Zimbabwe approved the study protocols (permit 128 number: NAREC/008/23) and all animal handling procedures were performed by a licensed 129 practitioner (with Zimbabwean Dangerous Drugs License number: 034/2004). Three other lion 130 prides were present in the study area [Matsanga (n = 10, north-western section), Chiloveka (n = 10, north-western section). 131

134

135

136

137

138 139

140

141

142

143

144

145

146

132 133

Collar and kill data collection

investigation but were not included in this study.

Collars were programmed to fix a GPS position at 30-min intervals from 16:15 to 07:15 and at two 3-hourly intervals during the hottest part of the day, when lions are presumed to be less active (Kingdon et al. 2013) (i.e., 33 positions per day). A potential kill site was defined as a cluster of ≥3 consecutive GPS positions located within a 50 m radius of each other i.e., a locatic 5 where a pride spent at least one and a half hours without moving (Tambling et al. 2010). A single point that was central within the cluster was chosen as a reference for the location of the site. The coordinates of potential kill sites were relayed to field scouts who visited the locations. At the site, the surroundings (50 m radius) were inspected for evidence of a kill. Data recorded included the presence or absence of a kill, the species of animal killed, identification method (bones, fur, horns etc.). Time since kill and possible pride composition were estimated from expert opinion by experienced field technicians.

8, south-western section) and Tennis Court (n = 6, south-eastern section)] over the period under

147

Data analysis

This study postulates that space-use and hunting success of lions at MWR are influenced by both environmental and social factors. Lion space-use generally matches the distribution of their prey (Heithaus 2001; Vanak et al. 2013) which, in turn, is shaped by surface water availability, vegetation cover and range condition [previous studies by Clegg & O'Connor (2012; 2017) showed that soil depth and clay content were the main gradients explaining the composition and structure of vegetation at MWR]. Because previous studies have demonstrated that large groups outcompete smaller ones (Adams 2001; Carlson 1986; Cheney 1992; Grinnell et al. 1995; Packer et al. 1990; Wilson & Wrangham 2003) and occupy higher quality territories (Woolfenden & Fitzpatrick 1984; Kauffman et al. 2007; Mosser & Packer 2009), we used pride size as a proxy for social dominance. We predicted that the Banvini pride would be dominant as it was twice the size of the next largest pride and had the highest number of adult males and females.

Landscape level home range selection

Minimum convex polygons (MCPs) delineating each lion pride's home range were constructed using GPS presence data in Quantum GIS v3.26 (QGIS Development Team 2022) and their sizes calculated. Logistic regression was used for analysis but because input data needs to be binomial (McCullagh & Nelder 1989) and GPS collars only provide presence information, "pseudo-absence" points must be generated to produce a presence-absence dataset (Odendaal-Holmes et al. 2014). To determine which environmental parameters were important for home range selection, each pride's location fixes were overlaid onto MWR's base map as training sites for spatial distribution modelling in MaxEnt v3.4 (Phillips et al. 2006). MaxEnt uses presence data together with environmental variables to model an approximation of a species' niche within the geographical bounds of its environment (Phillips et al. 2006). Presence locations and the associated environmental attributes (distance to surface water, shrub canopy volume, soil depth, clay content) were used to model the suitability of MWR's landscape in relation to each pride's space-use choices. Areas classified as suitable were those in which 95 % of a pride's presence positions were recorded. Using this threshold, an environmental suitability map was created for each pride and reclassed to produce two categories: suitable and unsuitable.

Using QGIS, a set of spatially independent randomly distributed points (absence data) equal to the number of each pride's presence points was generated within the unsuitable habitat of each pride. The full extent of MWR's landscape was considered available to each pride when generating the absence data. Next, a raster surface of permanent water locations across the study area was created by mapping point (permanent pans, springs and dams) and linear (perennial streams and rivers) sources from digital aerial photographs and the DISTANCE module of TerrSet (Eastman 2015) was used to calculate Euclidean distances between the presence and absence points and their nearest water sources. Similarly, data for shrub canopy volume, soil

depth and clay content were extracted for the presence and absence points using respective maps created from a 2003 dataset [see Clegg & O'Connor (2012) for how these maps were created].

187 188 189

190

191

192

186

The *lme4* package of the R statistical platform was used to perform logistic regression analysis to determine the effects of the environmental variables on the outcome of each pride's ranging behaviour (Bates et al. 2014; R Development Core Team 2017). *Presence probability* (presence or absence) was used as a response variable while *distance to water, shrub canopy volume, soil depth* and *clay content* were treated as fixed effects:

193194195

Presence probability ~ *distance to water* + *shrub canopy volume* + *soil depth* + *clay content*.

196 197

198 199 From model results, significance values (at $\alpha = 0.05$) were used to identify environmental factors that were important in determining the ranging choices of each pride and the relationships plotted using marginal effects. Environmental variables that were considered important were those that were statistically significant and elicited consistent responses across all prides.

201

202

200

Home range level kill site selection

- 203 Within each pride's home range, we theorized that the location of sites where lions made kills
- was not random but that kill locations were a result of a combination of favourable
- 205 environmental conditions. Following the methodology described above, kill data and
- 206 environmental variables were used in MaxEnt to model fine-scale environmental suitability for
- 207 kill success for each lion pride. An equal number of pseudo-absence points as kill locations were
- 208 placed in the zone which lacked kills and values of distance to water, shrub canopy volume, soil
- 209 *depth* and *clay content* extracted for use in logistic regression with *kill probability* being used as
- 210 the response variable.

211

212

Prey encounter within home ranges

- 213 The rate at which lions encounter prey within an environment has an influence on hunting
- success (Cosner et al. 1999; Hayward et al. 2011). We tested the assumption that prey encounter
- rates (number of groups identified per search effort) were positively correlated to lion kill rates,
- 216 with home ranges having high encounter rates expected to have correspondingly higher kill rates
- 217 (Scheel 1993; Nachman 2006; Fryxell et al. 2007). Prey species population and distribution data
- 218 were obtained from MWR's 2004 census data. Malilangwe Wildlife Reserve conducts annual
- 219 aerial surveys where the entire property is flown by helicopter along predetermined transects and
- 220 animal numbers are counted (Clegg 2011). The number of groups per unit area of prey species
- 221 within lions' preferred weight range (Hayward & Kerley 2005) encountered during the survey

were recorded and prey encounter rates were derived for each pride's home range for comparison with lion hunting success and space-use.

Results

A total of 2 994 presence points (Banyini n = 1 935, Nduna n = 323, Hlamba mlonga n = 736) and 146 confirmed kills (Banyini n = 67, Nduna n = 42, Hlamba mlonga n = 37) were recorded over the study period (Figure 2). The Banyini pride, being the largest in size and having the most adult male and female individuals, was considered the most dominant, followed by the Nduna pride and lastly, the Hlamba mlonga pride which was smallest in size and had the least number of adults and no males. Analysis showed that the Banyini pride occupied a home range in which the average distance to water was shortest, while the Hlamba mlonga pride was found in an environment where the average distance to water was longest (Table 1). This outcome was expected. Intervals between kills decreased with increasing pride size and home range size was negatively correlated with pride size (Figure 3). This indicates that where prey encounter rates (and by extension, prey density) are high, kill rates are also high and small home ranges are capable of supporting large prides.

Influence of environmental factors on home range selection

The Banyini pride showed a strong (P<0.01) negative response to distance from surface water (most presence points for this pride were <4 km from water) (Table 2, Figure 4). The Nduna pride, which was next in size, also showed a negative response to distance from water but the effect was weaker (P<0.15). In contrast, the Hlamba mlonga pride, which was the smallest in size, showed a strong (P<0.01) positive response to distance from water. The change in direction and strength of the response across the prides was consistent with our predictions of how pride size would modify the response to an environmental variable, with the largest pride selecting habitats closest to surface water and the smallest pride relegated to marginal landscapes where surface water was relatively scarce, and the middle pride occupying a home range with conditions somewhere in between the two extremes.

Home range selection appeared to be influenced by shrub cover, soil clay content and soil depth but responses to these variables were neither consistent among prides, nor aligned with the predicted effects of hierarchical dominance. The Banyini and Hlamba mlonga prides were positively associated with soil depth and clay content but negatively associated with shrub cover while the Nduna pride was positively associated with shrub cover and negatively associated with soil depth and clay content.

Influence o	of environmental	factors on k	ill probability
			0

- 258 For the Banvini pride, soil clay content (P<0.01) and soil depth (P<0.01) were negatively
- associated with kill probability while shrub canopy cover (P<0.05) was positively associated
- 260 with kill probability. Shrub cover (P<0.01) and clay content (P<0.05) positively influenced the
- Nduna and Hlamba mlonga prides respectively (Table 3). Distance to water was not significantly
- associated with kill probability for any of the prides (Table 3). Lion prides' responses to the
- 263 environmental variables measured were not consistent, for example kill probability was
- 264 negatively and positively related to shrub canopy volume for the Banyini and Nduna prides
- respectively (Figure 5). Overall, the relationship between environmental variables and kill
- probability appeared to be weaker, as depicted by the large confidence intervals around the
- 267 mean, compared to that with presence probability which had smaller confidence intervals
- 268 (Figures 4 and 5).

269

270

Discussion

- 271 Understanding where animals spend their time in an environment is a central tenet of ecology
- 272 (Powers & McKee 1994; Stephens & Krebs 1986). The factors that underpin home range choice
- and hunting success among carnivores have been extensively explored (Brown & Kotler 2004;
- Davies et al. 2016; Fryxell 1991) yet new studies are warranted to broaden the body of
- 275 knowledge. This study used GPS data to investigate the influence of environmental conditions
- and hierarchical dominance on the space-use and hunting success of three lion prides at MWR,
- 277 Zimbabwe. Lion response was tested using soil depth, clay content, vegetation cover and
- 278 distance to water as predictor variables. Being primary building blocks of habitats, these
- variables are universal in every landscape and can thus be used to gauge expected lion behaviour
- 280 where habitat-specific data are not available. Our findings showed that surface water was a key
- determinant of lion space-use and that pride size influenced home range selection among
- 282 sympatric prides.

283

284

Factors influencing lion ranging and feeding ecology at MWR

- Our study demonstrated that of the environmental variables measured, only distance from water
- reflected the predicted pride hierarchical response. Areas close to water are ordinarily associated
- with large aggregations of galacthereby facilitating higher prey encounter and kill rates (Redfern
- et al. 2003; Valeix et al. 2009). Our findings were consistent with the work of Owen-Smith
- 289 (1996), Harrington et al. (1999), Valeix et al. (2010), De Boer et al. (2010), Cain et al. (2012),
- Duncan et al. (2012) and Kittle et al. (2022) who have also shown that lions preferentially select
- areas in which surface water is abundant. The ideal free distribution model (Fretwell and Lucas
- 292 1969) has been widely used to demonstrate how resource availability and competition influence
- animal space-use where habitats vary. Our findings support our hypothesis that pride dominance

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

determines home range selection among lions at MWR with the Banvini pride, which was the 294 largest in size, occupying the central section of the reserve, which was well-endowed with water, 295 while the Nduna (intermediate size) and Hlamba mlonga (smallest in size) prides selected the 296 northern and southern sections with intermediate and low levels of surface water, respectively. 297 298 Pride strength is a function of group size and the age-sex structure of a unit (Packer et al. 1990; Heinsohn 1996). This is supported by earlier studies that document large prides routinely 299 outcompeting smaller ones in inter-pride conflicts (Bertram 1978; Packer et al. 1990) to occupy 300 higher quality territories (Kauffman et al. 2007; Mosser et al. 2009). Where unrestricted, a pride 301 is expected to select the most profitable portion of the landscape (Larson 1980; Mitchell & 302 Powell 2004; Morris 2003) and we speculate that had either the Nduna or the Hlamba mlonga 303 pride had sole jurisdiction over the study area, they too would have selected the home range 304 occupied by the Banvini pride. 305

Shrub cover, soil clay content and soil depth exhibited neither a consistent pattern nor hierarchical dominance in response to space-use by the three prides studied at MWR. As such, these variables were regarded lower order, and the associated responses inconsequential. We posit that once a home range has been selected based on the availability of surface water within the constraints of dominance hierarchy, a pride must make do with the configuration of lower order environmental attributes found in that habitat. At the resolution of our data, presence probability responses had smaller confidence intervals while kill probability responses had larger confidence intervals. This was likely because explanatory data for kills were not collected at the actual kill sites but were coarse averages derived at the scale of a vegetation map unit [see Clegg & O'Connor (2012)]. Within a vegetation unit there are variations in shrub canopy cover, clay content and soil depth. Obtaining kill site specific measurements would have improved the resolution of these data but this was not feasible given the limited resources available for the study. Notwithstanding, management actions are seldom informed from findings derived from specific points in the landscape but from larger ecological units. Contrary to our hypothesis, proximity to surface water did not significantly influence kill probability. This outcome may be explained by prey species associating areas close to water with higher predation risk and so increasing vigilance in these areas (Tuytens 2019; Valeix et al. 2007).

Where a generalized population-level response is required, it is common practice to pool observations from several groups belonging to the same population (Barker et al. 2023; Machlis, et al. 1985). However, in this study it was observed that while the lions belonged to the same ecological system, the interaction of individual prides with their immediate environments differed and, in this case, pooling data would hide pride and habitat specific response patterns and produce flawed inferences. Knowledge of this effect is important because where it occurs, analyses of space-use that pools data across prides may yield spurious results. This is because pooling data assumes non-independence among intergroup observations and where such does not hold true the approach is likely to obscure functional differences that may exist between groups (Aebischer et al. 1993; Kuhar 2006; Pollet et al. 2015). For example, an earlier analysis that was

run using a pooled dataset produced a no relationship response between lion position data and distance from water, yet this was a key factor which lost significance when averaging directly opposing response patterns. Where lion ecology is studied and multiple prides are investigated, we recommend treating study prides as individual units. This is because the configuration of components and resources found in each pride's home range vary and, likewise, each pride's adaptations and interaction with its bounding habitat may be different. Where baseline information is not available, it is advisable to model ecological interactions from primary parameters (soil, water, vegetation) as secondary data (e.g., game census statistics) may not be readily available or are costly to generate.

Management implications

This study shows that surface water availability is a key driver of lion space-use in semi-arid environments. The introduction of permanent water in previously waterless environments favours population growth of water-dependent animal species thereby improving conditions for lion success (De Boer et al. 2010; Kittle et al. 2022). For example, in Kruger National Park, South Africa the number of water points was increased across the park between 1939 and 1989 with a view to improving conditions for animals, but this triggered an increase in lion numbers precipitated by a proliferation of prev over a wider area of the landscape (Bryden 1976; Grant et al. 2002; Harrington et al. 1999; Mills et al. 1995; Owen-Smith 1996; Smuts 1978). Access to prey is a key determinant of home range size among carnivores (Brown & Kotler 2004; Loveridge et al. 2009; Mosser et al. 2009). Where prey is abundant (synonymous with habitats that are well-endowed with water), lion home range sizes are generally small and vice-versa (Joshi et al. 1995; Macdonald & Carr 1989; Mills & Knowlton 1991).

Even though study prides did not show consistent responses to soil clay content, soil depth and shrub cover, the additive effect of these factors is important in defining habitat quality and, by extension, prey abundance and catchability (Hopcraft et al. 2005). Among the lower order variables, shrub cover is the one that can be easily manipulated by property managers either to open up or revegetate sections of veld depending on management's goals. Earlier studies have shown that vegetation cover is an important factor in predator-prey interactions with both predators and prey using the cover of vegetation to their advantage, i.e., either to aid or evade predation (Orsdol 1984; Spong 2002; Hebblewhite et al. 2005; Hopcraft et al. 2005; Davidson et al. 2012; Minnie et al. 2015). Kills were recorded in both open and closed environments indicating that lions are adaptable in hunting strategy. This implies that in heterogenous environments management should maintain open and closed habitats as both are functionally important to the space-use and feeding ecology of lions.

The lion population at MWR follows a despotic distribution with the dominant pride inhabiting the area with the highest probability prey encounter and the most inferior pride occupying marginal environment where prey encounter rates were lowest. While marginal areas

371 372 373 374 375 376 377 378	may be less profitable in terms of lion hunting, they are ecologically important to conservation managers as they serve as foraging grounds and refugia for species such as sable (<i>Hippotragus niger</i>) and Lichtenstein's hartebeest (<i>Alcelaphus lichtensteinii</i>). Sable and hartebeest prefer taller grass which is usually found further from surface water due to reduced grazing pressure. In addition, the limited utilisation of these areas by water-dependent species results in reduced competition for food, low tick loads and low predator presence (Cain et al. 2012; Capon et al. 2013; Harrington et al. 1999). The existence and preservation of such habitats at MWR is considered to have contributed to the persistence of sable and Lichtenstein's hartebeest's populations on the property (Capon et al. 2013; Clegg et al. 2013).
380	
381 382 383 384 385 386 387 388 389 390 391	Conclusions This study has demonstrated that both social and environmental factors influence the ranging decisions and hunting success of lions at MWR. Most studies have focused on top-down processes of predator-prey interactions as the primary drivers and determinants of carnivore space-use choices. However, considering space-use and predation patterns in isolation from environmental and social factors does not provide a holistic understanding because ranging decisions are influenced by an interplay of biotic, abiotic and co-existence factors. Our findings confirm the hypothesis that the availability of surface water across the landscape influences space-use decisions of lions and shows that social dominance determines where in the landscape individual prides acquired their nutrition. Repeating the experiment with a larger sample size and discrete habitat classes is the next step to producing habitat-specific responses and refined inferences for management.
393	
394	Acknowledgements
395 396 397	We thank Colin Wenham for assistance with immobilizing target lions for collaring. We are indebted to Pandeni Chitimela, Julius Shimbani and the Malilangwe Scouts force for their assistance with field data collection.
398	
399	
400	
401	
402	
403	
404	

1	Λ	г	

REFERENCES

- Adams, Eldridge S. 2001. "Approaches to the Study of Territory Size and Shape." *Annual Review of Ecology and Systematics* 32(1):277–303.
- Aebischer, Nicholas J., Peter A. Robertson, and Robert E. Kenward. 1993. "Compositional Analysis of Habitat Use from Animal Radio-tracking Data." *Ecology* 74(5):1313–25.
- Alexander, Richard D. 1974. "The Evolution of Social Behavior." *Annual Review of Ecology* and Systematics 5(1):325–83.
- Ball, Mike, Colin Wenham, Bruce Clegg, and Sarah Clegg. 2019. "What Does It Take to Curtail
- Rhino Poaching? Lessons Learned from Twenty Years of Experience at Malilangwe
- Wildlife Reserve, Zimbabwe." *Pachyderm* 60:96–104.
- Barker, Nancy A., Francois G. Joubert, Marthin Kasaona, Gabriel Shatumbu, Vincent
- Stowbunenko, Kathleen A. Alexander, Rob Slotow, and Wayne M. Getz. 2023. "Coursing
- Hyenas and Stalking Lions: The Potential for Inter- and Intraspecific Interactions." *PLoS*
- 419 *ONE* 18(2 February). doi: 10.1371/journal.pone.0265054.
- Bates, Douglas, Martin Mächler, Ben Bolker, and Steve Walker. 2014. "Fitting Linear Mixed-Effects Models Using Lme4." *ArXiv Preprint ArXiv:1406.5823*.
- Bertram, B. C. 1978. *Pride of Lions*. New York: Scribner Book Company.
- De Boer, Willem F., Marc J. P. Vis, Henrik J. De Knegt, Colin Rowles, Edward M. Kohi, Frank
- 424 Van Langevelde, Mike Peel, Yolanda Pretorius, Andrew K. Skidmore, Rob Slotow, Sipke
- E. Van Wieren, and Herbert H. T. Prins. 2010. "Spatial Distribution of Lion Kills
- Determined by the Water Dependency of Prey Species." *Journal of Mammalogy*
- 427 91(5):1280–86. doi: 10.1644/09-MAMM-A-392.1.
- Brown, Joel S., and Burt P. Kotler. 2004. "Hazardous Duty Pay and the Foraging Cost of
- 429 Predation." *Ecology Letters* 7(10):999–1014.
- Bryden, Bruce Robert. 1976. "The Biology of the African Lion(Panthera Leo, Linn 1758) in the Kruger National Park." University of Pretoria, Pretoria.
- Burt, William Henry. 1943. "Territoriality and Home Range Concepts as Applied to Mammals." *Journal of Mammalogy* 24(3):346–52.
- 434 Cain, J. W., N. Owen-Smith, and V. A. Macandza. 2012. "The Costs of Drinking: Comparative
- Water Dependency of Sable Antelope and Zebra." *Journal of Zoology* 286(1):58–67. doi:
- 436 10.1111/j.1469-7998.2011.00848.x.
- 437 Capon, Simon D., Alison J. Leslie, and Bruce Clegg. 2013. "The Use of Population Viability
- Analysis to Identify Possible Factors Contributing to the Decline of a Rare Ungulate
- Population in South-Eastern Zimbabwe." *Koedoe: African Protected Area Conservation*
- *and Science* 55(1):1–9.

- Carlson, Allan. 1986. "Group Territoriality in the Rattling Cisticola, Cisticola Chiniana." *Oikos* 181–89.
- Chakrabarti, S., Kolipakam, V., Bump, J.K. and Jhala, Y.V., 2020. The role of kinship and demography in shaping cooperation amongst male lions. *Scientific Reports*, 10(1), p.17527.
- Cheney, Dorothy L. 1992. "Intragroup Cohesion and Intergroup Hostility: The Relation between
 Grooming Distributions and Intergroup Competition among Female Primates." *Behavioral Ecology* 3(4):334–45.
- Clegg, B. W. 2011. Large Mammal Population Estimates for Malilangwe Wildlife Reserve:
 September October 2011. Internal Management Report for The Malilangwe Trust.
- Clegg, B. W., and T. G. O'Connor. 2012. "The Vegetation of Malilangwe Wildlife Reserve,
 South-Eastern Zimbabwe." *African Journal of Range & Forage Science* 29(3):109–31.
- Clegg, B., Wenham C., Clegg, S., and Hywood, L. 2013. "The Re-Introduction of Lichtenstein's
 Hartebeest to Malilangwe Wildlife Reserve, South-Eastern Zimbabwe." Global Re Introduction Perspectives: 2013. Further Case Studies from around the Globe 148.
- Clegg, B. W., and O'Connor, T. G. 2017. Determinants of seasonal changes in availability of food patches for elephants (*Loxodonta africana*) in a semi-arid African savanna. *PeerJ*, 5, e3453.
- Cosner, C., DeAngelis, D. L., Ault, J. S., and Olson, D. B. 1999. Effects of spatial grouping on the functional response of predators. *Theoretical Population Biology*, *56*(1), 65-75.
- Davidson, Zeke, Marion Valeix, Andrew J. Loveridge, Jane E. Hunt, Paul J. Johnson, Hillary
 Madzikanda, and David W. MacDonald. 2012. "Environmental Determinants of Habitat and
 Kill Site Selection in a Large Carnivore: Scale Matters." *Journal of Mammalogy* 93(3):677–
 85. doi: 10.1644/10-MAMM-A-424.1.
- Davies, Andrew B., Craig J. Tambling, Graham I. H. Kerley, and Gregory P. Asner. 2016.
 "Effects of Vegetation Structure on the Location of Lion Kill Sites in African Thicket."
 PLoS ONE 11(2). doi: 10.1371/journal.pone.0149098.
- Duncan, Clare, Alienor L. M. Chauvenet, Louise M. McRae, and Nathalie Pettorelli. 2012.
 "Predicting the Future Impact of Droughts on Ungulate Populations in Arid and Semi-Arid
 Environments." *PloS One* 7(12):e51490.
- Eastman, J. R. 2015. "TerrSet: Geospatial Monitoring and Modeling Software." *Clark Labs, Clark University*.
- Fretwell SD, and Lucas Jr HL. 1969. "On Territorial Behavior and Other Factors Influencing Habitat Distribution in Birds. III. Breeding Success in a Local Population of Field Sparrows (Spizella Pusilla Wils.)." *Acta Biotheoretica* 46–52.
- Fryxell, John M. 1991. "Forage Quality and Aggregation by Large Herbivores." *The American Naturalist* 138(2):478–98.

PeerJ

- 477 Fryxell, J. M., Mosser, A., Sinclair, A. R., & Packer, C. (2007). Group formation stabilizes
- predator–prey dynamics. *Nature*, 449(7165), 1041-1043.
- Gaillard, Jean-Michel, Marco Festa-Bianchet, and Nigel Gilles Yoccoz. 1998. "Population
- Dynamics of Large Herbivores: Variable Recruitment with Constant Adult Survival."
- 481 *Trends in Ecology & Evolution* 13(2):58–63.
- 482 Grant CC, Davidson T, Funston PJ, and Pienaar DJ. 2002. "Challenges Faced in the
- Conservation of Rare Antelope: A Case Study on the Northern Basalt Plains of the Kruger
- 484 National Park." *Koedoe* 45(2):45–66.
- 485 Grinnell, Jon, Craig Packer, and Anne E. Pusey. 1995. "Cooperation in Male Lions: Kinship,
- 486 Reciprocity or Mutualism?" *Animal Behaviour* 49:95–105.
- 487 Hamilton, William D. 1971. "Geometry for the Selfish Herd." Journal of Theoretical Biology
- 488 31(2):295–311.
- 489 Harrington, Rhidian, Norman Owen-Smith, Petri C. Viljoen, Harry C. Biggs, Darryl R. Mason,
- and Paul Funston. 1999. "Establishing the Causes of the Roan Antelope Decline in the
- Kruger National Park, South Africa." *Biological Conservation* 90(1):69–78.
- Hayward, M. W., and Kerley, G. I. 2005. Prey preferences of the lion (Panthera leo). Journal of
- 493 *zoology*, *267*(3), 309-322.
- Hayward, M.W., Hayward, G.J., Tambling, C.J., and Kerley, G.I.H. 2011. Do Lions Panthera leo
- 495 Actively Select Prey or Do Prey Preferences Simply Reflect Chance Responses via
- Evolutionary Adaptations to Optimal Foraging? *PLoS ONE* 6(9): e23607.
- 497 doi:10.1371/journal.pone.0023607
- 498 Hebblewhite, Mark, Clifford A. White, Clifford G. Nietvelt, John A. McKenzie, Tomas E. Hurd,
- John M. Fryxell, Suzanne E. Bayley, and Paul C. Paquet. 2005. "Human Activity Mediates
- a Trophic Cascade Caused by Wolves." *Ecology* 86(8):2135–44. doi: 10.1890/04-1269.
- Hopcraft, J. Grant C., Anthony R. E. Sinclair, and Craig Packer. 2005. "Planning for Success:
- Serengeti Lions Seek Prey Accessibility Rather than Abundance." *Journal of Animal*
- 503 *Ecology* 74(3):559–66.

Jetz, Walter, Chris Carbone, Jenny Fulford, and James H. Brown. 2004. "The Scaling of Animal

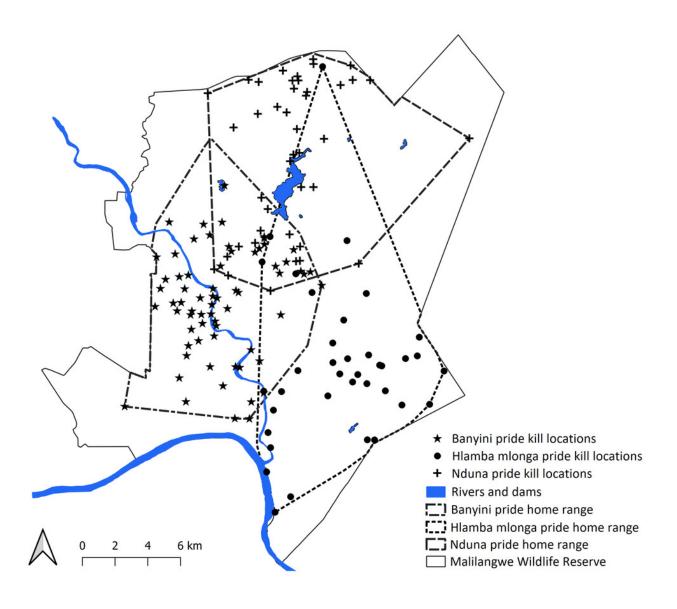
- 505 Space Use." *Science* 306(5694):266–68.
- Joshi, A. R., J. L. Smith, and F. J. Cuthbert. 1995. "Influence of Food Distribution and Predation
- Pressure on Spacing Behavior in Palm Civets." *Journal of Mammalogy* 76(4):1205–12. doi:
- 508 10.2307/1382613.
- Kauffman, Matthew J., Nathan Varley, Douglas W. Smith, Daniel R. Stahler, Daniel R.
- MacNulty, and Mark S. Boyce. 2007. "Landscape Heterogeneity Shapes Predation in a
- Newly Restored Predator–Prey System." *Ecology Letters* 10(8):690–700.
- Kittle, A. M., J. K. Bukombe, A. R. E. Sinclair, S. A. R. Mduma, and J. M. Fryxell. 2022.
- "Where and When Does the Danger Lie? Assessing How Location, Season and Time of

- Day Affect the Sequential Stages of Predation by Lions in Western Serengeti National
- Park." *Journal of Zoology* 316(4):229–39. doi: 10.1111/jzo.12944.
- Kome, G.K., Enang, R.K., Tabi, F.O., and Yerima, B.P.K. 2019. Influence of Clay Minerals on
- Some Soil fertility Attributes: A Review. *Open Journal of Soil Science*, 9(9):155-188.
- 518 Krebs, John R. 1980. "Optimal Foraging, Predation Risk and Territory Defence." Ardea 55(1-
- 519 2):83–90.
- 520 Kuhar, Christopher W. 2006. "In the Deep End: Pooling Data and Other Statistical Challenges of
- Zoo and Aquarium Research." *Zoo Biology* 25(4):339–52. doi: 10.1002/zoo.20089.
- Larson, Ralph J. 1980. "Competition, Habitat Selection, and the Bathymetric Segregation of Two
- Rockfish (Sebastes) Species." *Ecological Monographs* 50(2):221–39.
- Loveridge, Andrew J., Marion Valeix, Zeke Davidson, Felix Murindagomo, Hervé Fritz, and
- David W. MacDonald. 2009. "Changes in Home Range Size of African Lions in Relation to
- Pride Size and Prey Biomass in a Semi-Arid Savanna." *Ecography* 32(6):953–62. doi:
- 527 10.1111/j.1600-0587.2009.05745.x.
- Macdonald, D. W., and G. M. Carr. 1989. "Food Security and the Rewards of Tolerance."
- 529 *Comparative Socioecology: The Behavioural Ecology of Humans and Animals* 75–99.
- Machlis, L., P. W. D. Dodd, and J. C. Fentress. 1985. "The Pooling Fallacy: Problems Arising
- When Individuals Contribute More than One Observation to the Data Set." Zeitschrift Für
- 532 *Tierpsychologie* 68(3):201–14. doi: 10.1111/j.1439-0310.1985.tb00124.x.
- McCullagh, P., and J. A. Nelder. 1989. "Generalized Linear Models, Vol. 37 of Monographs on
- Statistics and Applied Probability London." *Chapman and Hall* 10:971–78.
- McPhee, H. M., Webb, N.F., and Merrill, E.H. 2012. Time-to-kill: measuring attack rates in a
- heterogenous landscape with multiple prey types. *Oikos*.;121: 711–720.
- 537 Mills, L. Scott, and Frederick F. Knowlton. 1991. "Coyote Space Use in Relation to Prey
- Abundance." Canadian Journal of Zoology 69(6):1516–21.
- Mills, M. G., H. C. Biggs, and I. J. Whyte. 1995. "The Relationship between Rainfall, Lion
- Predation and Population Trends in African Herbivores." *Wildlife Research* 22(1):75–88.
- Minnie, L., Boshoff, A. F., and Kerley, G. I. 2015. Vegetation type influences livestock
- 542 predation by leopards: implications for conservation in agro-ecosystems. African Journal of
- 543 Wildlife Research, 45(2), 204-214.
- Mitchell, Michael S., and Roger A. Powell. 2004. "A Mechanistic Home Range Model for
- Optimal Use of Spatially Distributed Resources." *Ecological Modelling* 177(1–2):209–32.
- Morris, Douglas W. 2003. "Toward an Ecological Synthesis: A Case for Habitat Selection."
- 547 *Oecologia* 136(1):1–13.

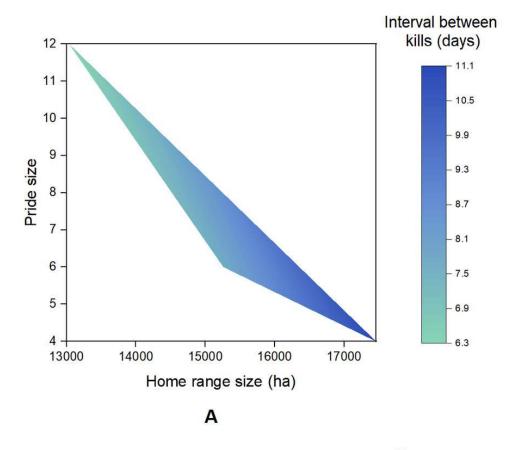
- Mosser, Anna, John M. Fryxell, Lynn Eberly, and Craig Packer. 2009. "Serengeti Real Estate:
- Density vs. Fitness-Based Indicators of Lion Habitat Quality." *Ecology Letters*
- 550 12(10):1050–60. doi: 10.1111/j.1461-0248.2009.01359.x.
- Mosser, Anna, and Craig Packer. 2009. "Group Territoriality and the Benefits of Sociality in the
- African Lion, Panthera Leo." *Animal Behaviour* 78(2):359–70.
- Moyer, Melissa A., J. Walter McCown, and Madan K. Oli. 2008. "Scale-Dependent Habitat
- Selection by Female Florida Black Bears in Ocala National Forest, Florida." *Southeastern*
- 555 *Naturalist* 7(1):111–24.
- Nachman, G. 2006. A functional response model of a predator population foraging in a patchy
- habitat. *Journal of Animal Ecology*, 75(4), 948-958.
- Odendaal-Holmes, Karen, Jason P. Marshal, and Francesca Parrini. 2014. "Disturbance and
- Habitat Factors in a Small Reserve: Space Use by Establishing Black Rhinoceros (Diceros
- Bicornis)." South African Journal of Wildlife Research 44(2):148–60.
- Ogutu, J. O., and H. T. Dublin. 2004. Spatial Dynamics of Lions and Their Prey along an
- *Environmental Gradient*. Vol. 42.
- Olfert, E. D., Cross, B. M., and McWilliam, A. A. 1993. Guide to the care and use of
- experimental animals (Vol. 1, No. 2). Ottawa: Canadian Council on Animal Care.
- Orsdol, Karl G. Van. 1984. "Foraging Behaviour and Hunting Success of Lions in Queen
- Elizabeth National Park, Uganda." *African Journal of Ecology* 22(2):79–99. doi:
- 567 10.1111/j.1365-2028.1984.tb00682.x.
- 568 Owen-Smith, Norman. 1996. "Ecological Guidelines for Waterpoints in Extensive Protected
- Areas Provision." *South African Journal of Wildlife Research* 26(4):107–12.
- Packer, C., D. Scheel, and A. E. Pusey. 1990. "Why Lions Form Groups: Food Is Not Enough."
- 571 *American Naturalist* 136(1):1–19. doi: 10.1086/285079.
- 572 Phillips, Steven J., Robert P. Anderson, and Robert E. Schapire. 2006. "Maximum Entropy
- 573 Modeling of Species Geographic Distributions." *Ecological Modelling* 190(3–4):231–59.
- Pollet, Thomas V, Gert Stulp, S. Peter Henzi, and Louise Barrett. 2015. "Taking the Aggravation
- out of Data Aggregation: A Conceptual Guide to Dealing with Statistical Issues Related to
- the Pooling of Individual-level Observational Data." *American Journal of Primatology*
- 577 77(7):727–40.
- Powers, Donald R., and Todd McKee. 1994. "The Effect of Food Availability on Time and
- Energy Expenditures of Territorial and Non-Territorial Hummingbirds." *The Condor*
- 580 96(4):1064–75.
- R Development Core Team. 2017. "R Statistical Program."

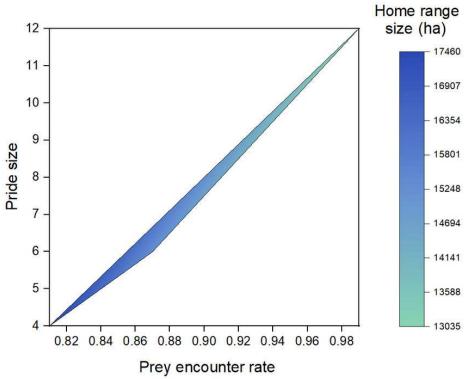
- Redfern, Jessica V, Rina Grant, Harry Biggs, and Wayne M. Getz. 2003. "Surface-water
- Constraints on Herbivore Foraging in the Kruger National Park, South Africa." *Ecology*
- 584 84(8):2092–2107.
- Scheel, D. 1993. Profitability, encounter rates, and prey choice of African lions. *Behavioral Ecology*, 4(1), 90-97.
- Smuts, G. L. 1978. "Interrelations between Predators, Prey, and Their Environment." *BioScience* 28(5):316–20.
- Spong, Goran. 2002. "Space Use in Lions, Panthera Leo, in the Selous Game Reserve: Social
- and Ecological Factors." *Behavioral Ecology and Sociobiology* 52(4):303–7. doi:
- 591 10.1007/s00265-002-0515-x.
- 592 Stephens, David W., and John R. Krebs. 1986. *Foraging Theory*. Vol. 6. Princeton university press.
- 594 Struhsaker, Thomas T. 1967. "Social Structure among Vervet Monkeys (Cercopithecus 595 Aethiops)." *Behaviour* 29(2–4):83–121.
- Tahir., S, and Marschner, P. 2016. Clay amendment to sandy soil effect of clay concentration
- and ped size on nutrient dynamics after residue addition. Journal of Soils and Sediments
- 598 16:2072–2080. DOI 10.1007/s11368-016-1406-5
- Tambling CJ, Cameron EZ, Du Toit JT, and Getz WM. 2010. Methods for locating African lion
- kills using global positioning system movement data. *Journal of Wildlife Management*.74:
- 601 549–556.
- Traill, Lochran W., and Rudi C. Bigalke. 2007. "A Presence-Only Habitat Suitability Model for
- Large Grazing African Ungulates and Its Utility for Wildlife Management." *African Journal*
- 604 *of Ecology* 45(3):347.
- Tuytens, Karen. 2019. "Ecological Dynamics of Temporary Ponds in a Subtropical Savannah
- Habitat, with Particular Attention for Hydrology and Interactions with Large Terrestrial
- 607 Mammals."
- Valeix, M., A. J. Loveridge, S. Chamaillé -Jammes, Z. Davidson, F. Murindagomo, H. Fritz, and
- D. W. Macdonald. 2009. Behavioral Adjustments of African Herbivores to Predation Risk
- *by Lions: Spatiotemporal Variations Influence Habitat Use.* Vol. 90.
- Valeix, Marion, Simon Chamaillé-Jammes, and Hervé Fritz. 2007. "Interference Competition
- and Temporal Niche Shifts: Elephants and Herbivore Communities at Waterholes."
- 613 *Oecologia* 153:739–48.
- Valeix, Marion, Andrew J. Loveridge, Zeke Davidson, Hillary Madzikanda, H. Fritz, and David
- W. Macdonald. 2010. "How Key Habitat Features Influence Large Terrestrial Carnivore
- Movements: Waterholes and African Lions in a Semi-Arid Savanna of North-Western
- 617 Zimbabwe." *Landscape Ecology* 25(3):337–51. doi: 10.1007/s10980-009-9425-x.

618 619	Webb NF, Hebblewhite M, Merrill EH. Statistical methods for identifying wolf kill sites using global positioning system locations. <i>Journal of Wildlife Management</i> . 2008;72: 798–807.
620 621	Wilson, David Sloan. 1975. "The Adequacy of Body Size as a Niche Difference." <i>The American Naturalist</i> 109(970):769–84.
622 623	Wilson, Michael L., and Richard W. Wrangham. 2003. "Intergroup Relations in Chimpanzees." <i>Annual Review of Anthropology</i> 32(1):363–92.
624 625	Woolfenden, Glen Everett, and John W. Fitzpatrick. 1984. <i>The Florida Scrub Jay: Demography of a Cooperative-Breeding Bird</i> . Vol. 20. Princeton University Press.

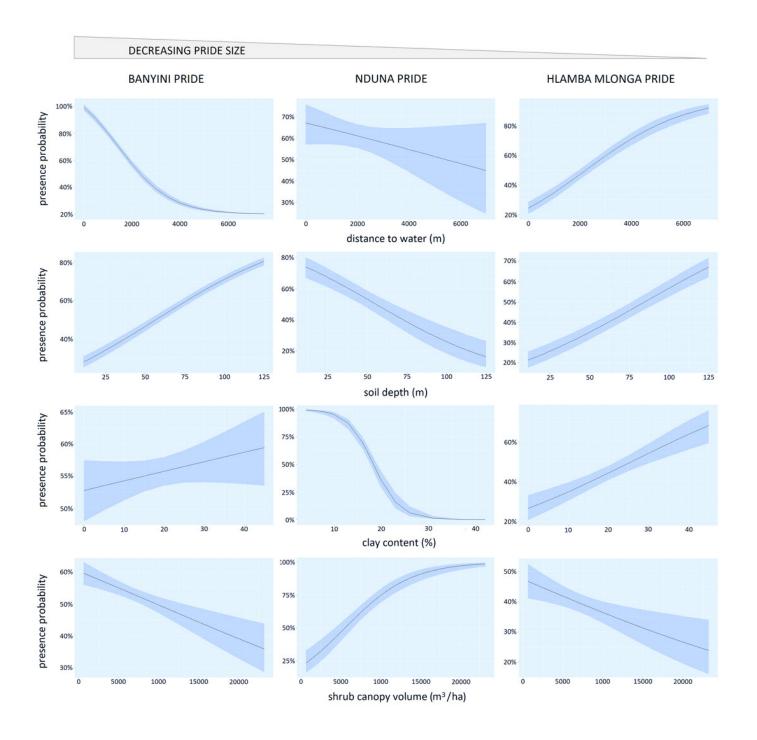

Location of the study area.

Map created with QGIS v3.26. Map hillshade credit: QGIS v3.26.


Map showing the location of home ranges and kill locations of the three study lion prides.


Map created with QGIS v3.26.

Contour plots showing the relationships between pride size, home range size, interval between kills and prey encounter rate.



B

Panel chart showing the relationship between the probability of lion presence and the logistic regression marginal effects of distance to water, shrub canopy volume, soil clay content and soil depth.



Panel chart showing the relationship between kill probability and the logistic regression marginal effects of distance to water, shrub canopy volume, soil clay content and soil depth.

Table 1(on next page)

Home range characteristics for the three study lion prides

Pride	Pride size (n)	Home range size (ha)	Average distance to water (km)	Average shrub canopy cover (m³/ha)	Average clay content (%)	Average soil depth (m)	Game encounter rate (groups/km²)	Interval between kills (days)
Banyini	12	13 035	1.1	8537	21	77	0.99	6.3
Nduna	6	15 259	1.3	7843	14	66	0.87	7.7
Hlamba mlonga	4	17 460	2.4	5876	20	71	0.81	11.1

Table 2(on next page)

Results of logistic regression analysis: Presence probability \sim distance to water + shrub canopy cover + clay content + soil depth. Pr(>|z|) values <0.05 were considered significant

	Fixed effects	Estimate	Std. Error	z value	Pr(> z)
Banyini pride	Intercept	0.05	0.15	0.36	0.720
	distance to water	-9e-04	4e-05	-21.67	2e-16
	shrub canopy cover	-4e-05	1e-05	-4.26	2e-05
	clay content	0.01	4e-03	1.356	0.175
	soil depth	0.02	9e-04	22.409	2e-16
Nduna pride	Intercept	5.81	0.85	6.86	7e-12
	distance to water	-1e-04	9e-05	-1.44	0.150
	shrub canopy cover	2e-04	3e-05	8.101	5e-16
	clay content	0.36	0.04	-8.851	2e-16
	soil depth	0.02	4e-03	-6.35	2e-10
Hlamba mlonga pride	Intercept	-2.84	0.25	-11.28	2e-16
	distance to water	5e-04	4e-05	12.24	2e-16
	shrub canopy cover	-5e-05	2e-05	-3.02	0.003
	clay content	0.04	0.01	5.40	7e-08
	soil depth	0.02	2e-03	11.40	2e-16

Table 3(on next page)

Results of logistic regression analysis: Kill probability \sim distance to water + shrub canopy cover + clay content + soil depth. Pr(>|z|) values <0.05 were considered significant

	Fixed effects	Estimate	Std. Error	z value	Pr(> z)
Banyini pride	Intercept	4.53	1.19	3.66	>0.001
	distance to water	-6e-04	4e-04	-1.43	0.152
	shrub canopy cover	-2e-04	8e-05	-2.25	0.025
	clay content	0.18	0.04	-4.22	2e-05
	soil depth	0.03	0.01	2.76	0.006
Nduna pride	Intercept	-4.00	1.56	-2.57	0.010
	distance to water	>0.01	>0.01	0.41	0.679
	shrub canopy cover	>0.01	>0.01	2.96	0.003
	clay content	0.05	0.03	1.59	0.249
	soil depth	0.01	0.01	1.15	0.112
Hlamba mlonga pride	Intercept	-1.39	0.98	-1.41	0.158
	distance to water	1e-04	2e-04	0.69	0.490
	shrub canopy cover	-3e-05	8e-05	-0.34	0.738
	clay content	0.06	0.03	1.97	0.049
	soil depth	-4e-04	0.01	-0.06	0.950