Factors influencing pride dominance, space-use and hunting success of sympatric lion prides in a semiarid savanna landscape (#89660)

First submission

Guidance from your Editor

Please submit by 28 Sep 2023 for the benefit of the authors (and your token reward).

Structure and Criteria

Please read the 'Structure and Criteria' page for general guidance.

Custom checks

Make sure you include the custom checks shown below, in your review.

Raw data check

Review the raw data.

Image check

Check that figures and images have not been inappropriately manipulated.

If this article is published your review will be made public. You can choose whether to sign your review. If uploading a PDF please remove any identifiable information (if you want to remain anonymous).

Files

Download and review all files from the <u>materials page</u>.

5 Figure file(s)

3 Table file(s)

Vertebrate animal usage checks

Have you checked the authors ethical approval statement?

Were the experiments necessary and ethical?

Have you checked our <u>animal research policies</u>?

Structure and Criteria

Structure your review

The review form is divided into 5 sections. Please consider these when composing your review:

- 1. BASIC REPORTING
- 2. EXPERIMENTAL DESIGN
- 3. VALIDITY OF THE FINDINGS
- 4. General comments
- 5. Confidential notes to the editor
- You can also annotate this PDF and upload it as part of your review

When ready submit online.

Editorial Criteria

Use these criteria points to structure your review. The full detailed editorial criteria is on your guidance page.

BASIC REPORTING

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context.
 Literature well referenced & relevant.
- Structure conforms to <u>PeerJ standards</u>, discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
- Raw data supplied (see <u>PeerJ policy</u>).

EXPERIMENTAL DESIGN

- Original primary research within Scope of the journal.
- Research question well defined, relevant & meaningful. It is stated how the research fills an identified knowledge gap.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.

VALIDITY OF THE FINDINGS

- Impact and novelty not assessed.

 Meaningful replication encouraged where rationale & benefit to literature is clearly stated.
- All underlying data have been provided; they are robust, statistically sound, & controlled.

Conclusions are well stated, linked to original research question & limited to supporting results.

Standout reviewing tips

The best reviewers use these techniques

Τ	p

Support criticisms with evidence from the text or from other sources

Give specific suggestions on how to improve the manuscript

Comment on language and grammar issues

Organize by importance of the issues, and number your points

Please provide constructive criticism, and avoid personal opinions

Comment on strengths (as well as weaknesses) of the manuscript

Example

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57-86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that an international audience can clearly understand your text. Some examples where the language could be improved include lines 23, 77, 121, 128 – the current phrasing makes comprehension difficult. I suggest you have a colleague who is proficient in English and familiar with the subject matter review your manuscript, or contact a professional editing service.

- 1. Your most important issue
- 2. The next most important item
- 3. ...
- 4. The least important points

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.

Factors influencing pride dominance, space-use and hunting success of sympatric lion prides in a semi-arid savanna landscape

Allan Tarugara Corresp., 1, Bruce Clegg 1, Sarah Clegg 1

Corresponding Author: Allan Tarugara Email address: allan@malilangwe.org

Understanding lions' (Panthera leo) space-use is important for the management of multispecies wildlife systems because lions can have profound impacts on ecosystem-wide ecological processes. Semi-arid savanna landscapes are typically heterogeneous with species space-use driven by the availability and distribution of resources. Previous studies have demonstrated that lions select habitats close to water as encounter rates with prey are higher and hunting success is greater in these regions. Where multiple lion prides exist, landscape partitioning is expected to follow an ideal despotic distribution in which competitively superior prides occupy high-quality key resource areas while subordinates select poorer habitats. In this study, Global Positioning System collar data and logistic regression were used to investigate space-use and kill distribution among three lion prides at Malilangwe Wildlife Reserve, Zimbabwe. Our findings show that lion space-use was driven by surface water availability and that home range selection was hierarchical with the dominant pride occupying habitat in which water was most abundant. In addition, we found that the effect of shrub cover, clay content and soil depth on kill probability was habitat specific and not influenced by hierarchical dominance. Where multiple lion prides are studied, we recommend treating prides as individual units because pooling data may obscure site and pride specific response patterns. Given that lion space-use can be indirectly impacted by the manipulation of surface water, our findings could have management relevance for both lions and their prey.

¹ Research Department, Malilangwe Wildlife Reserve, Chiredzi, Masvingo, Zimbabwe

1 2	Factors influencing pride dominance, space-use and hunting success of sympatric lion prides in a semi-arid savanna landscape
3	Allan Tarugara ¹ , Bruce W. Clegg ¹ and Sarah B. Clegg ¹
4	Than Taragara, Brace W. Clogg and Sarah B. Clogg
5 6 7 8 9 10 11	¹ Malilangwe Wildlife Reserve, Private Bag 7085, Chiredzi, Masvingo, Zimbabwe Corresponding author: Allan Tarugara Malilangwe Wildlife Reserve, Private Bag 7085, Chiredzi, Masvingo, Zimbabwe Email address: corresponding_author_allan@malilangwe.com
12	Abstract
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	Understanding lions' (<i>Panthera leo</i>) space-use is important for the management of multi-species wildlife systems because lions can have profound impacts on ecosystem-wide ecological processes. Semi-arid savanna landscapes are typically heterogeneous with species space-use driven by the availability and distribution of resources. Previous studies have demonstrated that lions select habitats close to water as encounter rates with prey are higher and hunting success is greater in these regions. Where multiple lion prides exist, landscape partitioning is expected to follow an ideal despotic distribution in which competitively superior prides occupy high-quality key resource areas while subordinates select poorer habitats. In this study, Global Positioning System collar data and logistic regression were used to investigate space-use and kill probability among three lion prides at Malilangwe Wildlife Reserve, Zimbabwe. Our findings show that lion space-use was driven by surface water availability and that home range selection was hierarchical with the dominant pride occupying habitat in which water was most abundant. In addition, we found that the effect of shrub cover, clay content and soil depth on kill probability was habitat specific and not influenced by hierarchical dominance. Where multiple lion prides are studied, we recommend treating prides as individual units because pooling data may obscure site and pride specific response patterns. Given that lion space-use can be indirectly impacted by the manipulation of surface water, our findings could have management relevance for both lions and their prey.
32	Introduction
33 34 35	Understanding why animals occur where they do is a cornerstone of ecology (Burt 1943; Krebs 1980; Powers and McKee 1994). Where animals spend most of their time in a habitat is determined by a complex interplay of social and environmental factors (Davies et al. 2016;

51

52

53

54

55

56

57

58

59

60 61

62

63

64 65

66

67

68

69 70

71

72

73

74

- Moyer et al. 2008). Prey availability and catchability are major factors driving patterns of space-36 use among large carnivores (Davidson et al. 2012; Hopcraft et al. 2005; Ogutu and Dublin 2004), 37 but for gregarious species, access to profitable areas may be moderated by social pressures 38 (Struhsaker 1967). Lions (Panthera leo) are an important focal species in most conservation and 39 40 tourism-based systems (Loveridge et al. 2009) and as an apex predator, understanding their space-use patterns and predation dynamics is important for informing management decisions on 41 carrying capacities and herbivore stocking rates (Webb et al. 2008; Tambling et al. 2010; 42 McPhee et al. 2012). Despite extensive research on lion ecology, the determinants of space-use 43 44 and hunting success in savanna environments are not fully understood. Furthermore, generalizations can be misleading because prev assemblages, social and demographic factors as 45 well as environmental conditions differ between prides, home ranges and protected areas. As 46 such, studies that consider both environmental and social factors at the inter-pride level could 47 provide valuable insights into lion behaviour; an aspect of lion ecology that has been under 48 49 explored.
 - Semi-arid savanna landscapes are typically heterogeneous, with resources patchily distributed and habitats varying in quality (Gaillard et al. 1998; Jetz et al. 2004). Habitat quality is determined by environmental conditions with surface water availability being the primary factor limiting the distribution of herbivore populations (Owen-Smith 1996; Redfern et al. 2003; Valeix et al. 2009). Most herbivores need to drink regularly and, as such, areas close to water sources are usually associated with large aggregations of game and, in turn, have a pull effect on predators (De Boer et al. 2010; Cain et al. 2012). Several studies have demonstrated that lions select habitats close to water as these provide increased encounters with prey and associated hunting success (Duncan et al. 2012; Harrington et al. 1999; Kittle et al. 2022; Owen-Smith 1996; Valeix et al. 2010). Intrinsically, such areas are profitable to lions as they provide the least energetic cost to acquire food (Mitchell and Powell 2004). Where multiple prides exist, landscape partitioning is expected to follow an ideal despotic distribution (Fretwell and Lucas 1969) in which competitively superior prides occupy high-quality key resource areas forcing subordinates into sub-optimal habitats. When this occurs, prides are expected to respond to environmental determinants of space-use in accordance with their position in the dominance hierarchy. For example, distance from permanent surface water is predicted to have a strong negative effect for the dominant pride, a medium negative effect for prides mid-way in the dominance hierarchy, and a weak negative or even a positive effect for the most subordinate prides, meaning that dominant prides are expected to be positively associated with surface water. Knowledge of this effect is important because where it occurs, analyses of space-use that pools data across prides may yield spurious results. The aim of this study was to test this hypothesis at the scale of home range and kill site selection.

Global Positioning System (GPS) collar data were used to investigate choice of home range and the distribution of kills among three lion prides at Malilangwe Wildlife Reserve (MWR), Zimbabwe. Specific objectives were to examine the functional relationships between

lion home range selection and hunting success, and likely determinants of prey density viz. (i) 75 distance to permanent surface water, (ii) shrub canopy cover and (iii) soil properties. Previous 76 studies have shown that the presence of surface water in an environment improves conditions for 77 lion kill success (De Boer et al. 2010; Hopcraft et al. 2005; Orsdol 1984; Venter et al. 2003) and 78 79 that group size plays a role in shaping hierarchy dynamics among prides, with large prides routinely outcompeting smaller ones (Alexander 1974; Hamilton 1971; Packer et al. 1990; 80 Wilson 1975). This study hypothesized that the availability of surface water has an influence on 81 lion space-use and kill location, and that the dominant lion pride would occupy the key resource 82 habitat within the study area, with subordinate prides occupying decreasingly profitable habitats 83 with associated declines in hunting success. Our findings may provide useful information for the 84 analysis of space-use by predators and for managing the landscape, its components and prev 85 populations. 86

87

88

89

Method

Study area

The study was conducted at MWR which is located in the south-eastern lowveld of Zimbabwe 90 91 between 20°58′ and 21°15′S and 31°47′ and 32°01′E (Figure 1). MWR is a non-hunting property whose main objectives are conservation and community development (Ball et al. 2019). The 92 reserve is approximately 490 km² in size and altitude ranges from 290 m, in river systems, to 500 93 m above sea level on hills (Traill and Bigalke 2007). Rainfall (mean ≈ 560 mm per year) is 94 95 seasonal with approximately 84 % of precipitation occurring between November and March and the average minimum and maximum monthly temperatures ranging from 13.4 °C (July) to 23.7 96 °C (December) and 23.2 °C (June) to 33.9 °C (November) respectively (Clegg and O'Connor 97 2012). The southern boundary, bordering Gonarezhou National Park has a short fence that allows 98 some movement of carnivores and plains game but restricts the movement of large herbivores. 99

Although soils vary, they are principally derived from alluvium, sandstone, gneiss and basalt (Clegg and O'Connor 2012). Vegetation types at MWR can be broadly classified as riverine, hill miombo, mopane (*Colophospermum mopane*) veld, thorn thicket and open woodland (Clegg and O'Connor 2012). Hills are largely dominated by redwood (*Brachystegia tamarindiodes*) and mnondo (*Julbernardia globiflora*) tree species, while low lying areas are characterized by mixed broadleaf woodland. The grass layer on MWR is mostly composed of *Urochloa mossambicensis*, *Heteropogon contortus*, *Digitaria eriantha* and *Aristida spp*. A wide variety of prey species inhabit the heterogenous landscape including Cape buffalo (*Syncerus caffer*), zebra (*Equus burchellii*) and impala (*Aepyceros melampus*) among other antelope species. Competing predators of lions include leopards (*Panthera pardus*), spotted hyenas (*Crocuta crocuta*) and wild dogs (*Lycaon pictus*).

111

100

101

102103

104

105

106107

108

109

Collaring of animals

- Three independent lion prides (Banyini n = 12, Nduna n = 6 and Hlamba mlonga n = 4) were
- identified for collaring at MWR. Between February 21 and August 02, 2004, three GPS/drop-off
- 115 collars (Televilt, Lindesberg, Sweden) were fitted onto either an adult male or female member of
- each pride. Subjects were chemically immobilized with a combination of Zoletil-Medetomidine
- 117 (1.0-20 mg/kg body mass), with the anaesthetic being darted into the muscular region of the
- hindquarters. Reversal was achieved by subcutaneous injection of Antisedan (at 2.5 mg/mg of
- 119 Medetomidine) or Yohimbine (at 1 ml/50 kg of body weight) and subjects were monitored until
- they fully recovered from the effects of the anaesthesia. Safe, professional, and humane animal
- care guidelines stipulated by the Scientific Experiments on Animals Act of Zimbabwe (Chapter
- 19:12 of 1963) and Olfert et al. (1993) were adhered to. The National Animal Research Ethics
- 123 Committee of Zimbabwe approved the study protocols (permit number: NAREC/008/23) and all
- animal handling procedures were performed by a licensed practitioner (with Zimbabwean
- Dangerous Drugs License number: 034/2004). Three other lion prides were present in the study
- area [Matsanga (n = 10, north-western section), Chiloveka (n = 8, south-western section) and
- Tennis Court (n = 6, south-eastern section)] over the period under investigation but were not
- included in this study.

129

130

Collar and kill data collection

- 131 Collars were programmed to fix a GPS position at 30-min intervals from 16:15 to 07:15 and at
- two 3-hourly intervals during the hottest part of the day, when lions are presumed to be less
- active (i.e., 33 positions per day). For all prides, collars broadcasted Very High Frequency
- 134 (VHF) signals on Mondays, Wednesdays and Fridays. The lion prides were tracked in the field
- using VHF telemetry and GPS data were remotely downloaded and stored onboard a Televilt
- 136 RX-900 terminal (Followit, Lindesberg, Sweden). Downloaded points were transferred onto a
- laptop computer and uploaded into CartaLinx v1.2, a GIS software, for the identification of
- 138 potential kill sites.

A potential kill site was defined as a cluster of ≥ 3 consecutive GPS positions located within a 50 m radius of each other i.e., a location where a pride spent at least one and a half

hours without moving. A single point that was central within the cluster was chosen as a reference for the location of the site. The coordinates of potential kill sites were relayed to

reference for the location of the site. The coordinates of potential kill sites were relayed to field scouts who visited the locations. At the site, the surroundings were inspected for evidence of a

- scouts who visited the locations. At the site, the surroundings were inspected for evidence of a kill. Data recorded included the presence or absence of a kill, the species of animal killed,
- identification method (bones, fur, horns etc.), estimated time of kill and possible lion pride
- 146 composition.

Data analysis

- This study posited that broad-scale (study area) ranging and fine-scale (kill site) hunting success
- of lions at MWR were influenced by both environmental and social factors. The following
- underlying assumptions were made: (i) surface water availability influenced the distribution of
- prey and consequently space-use and hunting success of lions, (ii) home range selection among
- prides was predicated on competitive dominance and (iii) vegetation cover influenced lion
- hunting strategy and success. In addition, we theorized that soil depth and clay content determine
- plant available moisture and hence forage quality thereby influencing herbivore and lion
- distributions. For an environmental variable to be considered important, it must be statistically
- significant and able to elicit a consistent response across all prides. Because previous studies
- have demonstrated that large groups outcompete smaller ones (Adams 2001; Carlson 1986;
- 159 Cheney 1992; Grinnell et al. 1995; Packer et al. 1990; Wilson and Wrangham 2003) and occupy
- higher quality territories (Kauffman et al. 2007; Mosser and Packer 2009; Woolfenden and
- Fitzpatrick 1984), we used pride size as a proxy for social dominance.

162

163

Landscape level home range selection

- Minimum convex polygons (MCPs) delineating each lion pride's home range were constructed
- using GPS presence data in Quantum GIS v3.26 (QGIS Development Team 2022) and their sizes
- calculated. Resource selection models that incorporate both presence and absence data generally
- outperform presence-only methods in explaining ecological variation among data (Brotons et al.
- 2004; Engler et al. 2004). Logistic regression is used extensively to explain variation in
- binomially distributed data (McCullagh and Nelder 1989), but because GPS collar data reports
- only presence information, the data is non-binomial, precluding the use of logistic regression on
- the raw data. To address this issue "pseudo-absence" points are generated to produce a combined
- presence-absence dataset for use in the logistic regression analyses (Odendaal-Holmes et al.
- 173 2014).

174175

176

177

178179

180 181

182183

To determine which environmental parameters were important for home range selection, each pride's location fixes were overlaid onto MWR's base map as training sites for spatial distribution modelling in MaxEnt v3.4 (Phillips et al. 2006). MaxEnt uses presence data together with environmental variables to model an approximation of a species' niche within the geographical bounds of its environment (Phillips et al. 2006). Presence locations and the associated environmental attributes (distance to surface water, shrub canopy volume, soil depth, clay content) were used to model the suitability of MWR's landscape in relation to each pride's space-use choices. Habitats classified as suitable were those in which 95 % of a pride's presence positions were recorded. Using this threshold, a habitat suitability map was created for each pride and reclassed to produce two categories: suitable and unsuitable.

187

188

189 190

191

192

193 194 Using QGIS, a set of spatially independent randomly distributed points (absence data) equal to the number of each pride's presence points was generated within the unsuitable habitat of each pride. The full extent of MWR's landscape was considered available to each pride when generating the absence data. Next, a raster surface of permanent water locations across the study area was created by mapping point (permanent pans, springs and dams) and linear (perennial streams and rivers) sources from digital aerial photographs and the DISTANCE module of TerrSet (Eastman 2015) was used to calculate Euclidean distances between the presence and absence points and their nearest water sources. Similarly, data for shrub canopy volume, soil depth and clay content were extracted for the presence and absence points using respective maps created from a 2003 dataset [see Clegg and O'Connor (2012) for how these maps were created].

195 196 197

198 199

200

201

The R statistical platform was used to perform logistic regression analysis to determine the effects of the environmental variables on the outcome of each pride's ranging behaviour (Bates et al. 2014; R Development Core Team 2017). *Presence probability* (presence or absence) was used as a response variable while *distance to water, shrub canopy volume, soil depth* and *clay content* were treated as fixed effects:

202203

Presence probability ~ *distance to water* + *shrub canopy volume* + *soil depth* + *clay content*.

204205

206

207

From model results, significance values (at $\alpha = 0.05$) were used to identify environmental factors that were important in determining the ranging choices of each pride and the relationships plotted using marginal effects.

208

209

Home range level kill site selection

- 210 Within each pride's home range, we theorized that the location of sites where lions made kills
- 211 was not random but that kill locations were a result of a combination of favourable
- 212 environmental conditions. Following the methodology described above, kill data and
- 213 environmental variables were used in MaxEnt to model fine-scale habitat suitability for kill
- success for each lion pride. An equal number of pseudo-absence points as kill locations were
- 215 placed in the no-kill habitat and values of environmental variables extracted for use in logistic
- regression with *kill probability* being used as the response variable.

217

218

Game encounter within home ranges

- 219 The density of prey present in an environment influences the hunting success of resident prides
- 220 (De Boer et al. 2010; Mitchell and Powell 2004). We assumed that prey encounter rates (number
- of groups identified per search effort) were positively correlated to lion kill rates, with home
- ranges having high encounter rates expected to have correspondingly higher kill rates. Prey

species population and distribution data were obtained from MWR's 2004 census data.
Malilangwe Wildlife Reserve conducts annual aerial game surveys where the entire property is
flown by helicopter at a height of 90 m above the ground at an average air speed of 50 knots
along predetermined transects spaced 1 km apart (Clegg 2011). The number of groups of eligible
prey species encountered during the 2004 aerial game census were recorded and values for prey
encounter rates were derived and allocated to each of the subject pride's home ranges for

231

229

Results

smaller home ranges.

A total of 2 994 presence points (Banyini n = 1 935, Nduna n = 323, Hlamba mlonga n = 736) 232 and 146 confirmed kills (Banyini n = 67, Nduna n = 42, Hlamba mlonga n = 37) were recorded 233 234 over the study period (Figure 2). The Banyini pride, being the largest in size, was considered the most dominant, followed by the Nduna pride and lastly, the Hlamba mlonga pride which was 235 smallest in size. Analysis showed that the most dominant pride (Banyini) occupied a home range 236 in which the average distances to water was shortest, while the least dominant (Hlamba mlonga) 237 238 was found in habitats where the average distance to water was longest (Table 1). In addition, intervals between kills decreased with increasing pride size and home range size was negatively 239 correlated with pride size (Figure 3), meaning that larger prides kill more often despite inhabiting 240

242

243

241

Influence of environmental factors on home range selection

comparison with lion hunting success and space-use.

The Banyini pride showed a strong (P<0.01) negative response to distance from surface water 244 (most presence points for this pride were <4 km from water) (Table 2, Figure 5). The Nduna 245 pride, which was next in the dominance hierarchy, also showed a negative response to distance 246 from water but the effect was weaker (P<0.15). In contrast, the Hlamba mlonga pride, which was 247 248 least dominant, showed a strong (P<0.01) positive response to distance from water. The change in direction and strength of the response across the prides was consistent with our predictions of 249 how position in the social hierarchy would modify the response to an environmental variable, 250 with the dominant pride selecting habitats closest to surface water and the least dominant pride 251 relegated to marginal landscapes where surface water was relatively scarce, and the middle pride 252 occupying a home range with conditions somewhere in between the two extremes. 253

Home range selection appeared to be influenced by shrub cover, soil clay content and soil depth but responses to these variables were neither consistent among prides, nor aligned with the predicted effects of hierarchical dominance.

257

254

255

Influence	of anvironn	nental factors	on kill	location
Infillence	an environi	пешиг тистогу	1111 K 111	1000'31110111

- Soil clay content (P<0.001), soil depth (P<0.01) and shrub canopy cover (P<0.05) were
- 260 significantly associated with kill site for the Banyini pride, while shrub cover (P<0.01) and clay
- 261 content (P<0.05) were significant for the Nduna and Hlamba mlonga prides respectively (Table
- 3). Distance to water was not significantly associated with kill location for any of the prides
- 263 (Table 3). Lion prides' responses to the environmental variables measured were not consistent,
- 264 for example kill location was negatively and positively related to shrub canopy volume for the
- Banvini and Nduna prides respectively. Overall, the relationship between environmental
- variables and kill probability was weaker (large confidence intervals around the mean) compared
- to that with presence probability (Figures 5 and 6).

268

269

Discussion

- 270 Understanding where animals spend their time in an environment is a central tenet of ecology
- 271 (Powers and McKee 1994; Stephens and Krebs 1986). The factors that underpin home range
- 272 choice and hunting success among carnivores have been extensively explored (Brown and Kotler
- 273 2004; Davies et al. 2016; Fryxell 1991) yet knowledge gaps remain. Investigating animal
- behaviour in the field is challenging as monitoring is often invasive and can affect spatial and
- social behaviour as well as the foraging success of subjects (Carney and Sydeman 1999; Oueiroz
- and Young 2018). Advances in GPS technology have facilitated the remote collection of data on
- 277 dangerous game and study animals in inaccessible terrain (Knopff et al. 2009; Zimmermann et
- al. 2007); and it has eliminated the need for regular disturbance of subject animals. This study
- 279 used GPS data to investigate the influence of environmental conditions and hierarchical
- dominance on the space-use and hunting success of three lion prides at MWR, Zimbabwe. Our
- 281 findings showed that surface water was a key determinant of lion space-use and that pride
- dominance influenced home range selection among sympatric prides.

283

284

Factors influencing lion ranging and feeding ecology at MWR

- Our study demonstrated that of the environmental variables measured, only distance from water
- reflected the predicted pride hierarchical response. Areas close to water are ordinarily associated
- 287 with large aggregations of game thereby facilitating higher prey encounter and kill rates (Redfern
- et al. 2003; Valeix et al. 2009). Our findings were consistent with the work of Owen-Smith
- 289 (1996), Harrington et al. (1999), Valeix et al. (2010), De Boer et al. (2010), Cain et al. (2012),
- Duncan et al. (2012) and Kittle et al. (2022) who have also shown that lions preferentially select
- 291 habitats in which surface water is abundant. The ideal free distribution model (Fretwell and
- 292 Lucas 1969) has been widely used to demonstrate how resource availability and competition
- influence animal space-use where habitat quality varies. Our findings support our hypothesis that
- 294 pride dominance determines home range selection among lions at MWR with the Banyini pride,

which was the most dominant in size, occupying the central section of the reserve, which was well-endowed with water, while the Nduna (intermediate dominance) and Hlamba mlonga (least dominant) prides selected the northern and southern sections with intermediate and low levels of surface water, respectively. Group size is a key determinant of pride strength (Packer et al. 1990) and this is supported by earlier studies that document large prides routinely outcompeting smaller ones in inter-pride conflicts (Bertram 1978; Packer et al. 1990) to occupy higher quality territories (Kauffman et al. 2007; Mosser et al. 2009). Where unrestricted, a pride is expected to select the most profitable habitat the landscape offers (Larson 1980; Mitchell and Powell 2004; Morris 2003) and we postulate that had either the Nduna or the Hlamba mlonga pride had sole jurisdiction over the study area, they too would have selected the home range occupied by the Banyini pride.

Shrub cover, soil clay content and soil depth exhibited neither a consistent pattern nor hierarchical dominance in response to space-use by the three prides studied at MWR. As such, these variables were regarded lower order, and the associated responses inconsequential. We posit that once a home range has been selected based on the availability of surface water within the constraints of dominance hierarchy, a pride must make do with the configuration of lower order environmental attributes found in that habitat. At the resolution of our data, home range level responses were more ecologically significant while kill site responses were weaker and habitat specific. This was probably because explanatory data for kills were not collected at the actual kill sites but were coarse averages derived at the scale of a vegetation map unit [see Clegg & O'Connor (2012)]. Within a vegetation unit there are variations in shrub canopy cover, clay content and soil depth. Obtaining kill site specific measurements would have improved the resolution of these data but resources for the study were limited. Contrary to our hypothesis, proximity to surface water did not significantly influence kill probability. This outcome may be explained by prey species associating areas close to water with higher predation risk and so increasing vigilance in these areas (Tuytens 2019; Valeix et al. 2007).

Where a generalized population-level response is required, it is common practice to pool observations from several groups belonging to the same population (Barker et al. 2023; Machlis, et al. 1985). However, in this study it was observed that while the lions belonged to the same ecological system, the interaction of individual prides with their immediate environments differed and in this case pooling data would hide pride and habitat specific response patterns and produce flawed inferences. This is because pooling data assumes non-independence among intergroup observations and where such does not hold true the approach is likely to obscure functional differences that may exist between groups (Aebischer, et al. 1993; Kuhar 2006; Pollet et al. 2015). For example, an earlier analysis that was run using a pooled dataset produced a no relationship response between lion position data and distance from water, yet this was a key factor which lost significance when averaging directly opposing response patterns. Where lion ecology is studied and multiple prides are investigated, we recommend treating study prides as individual units. This is because the configuration of components and resources found in each

pride's home range vary and, likewise, each pride's adaptations and interaction with its bounding habitat may be different. Where baseline information is not available, it is advisable to model ecological interactions from primary parameters (soil, water, vegetation) as secondary data (e.g., game census statistics) may not be readily available or are costly to generate.

Management implications

In this study we show that surface water availability is a key driver of lion space-use in semi-arid environments, and as such it can be manipulated to control lion ecology across the landscape. The introduction of permanent water in previously arid environments favours population growth of water-dependent game species thereby improving conditions for lion success (De Boer et al. 2010; Kittle et al. 2022). For example, in Kruger National Park, South Africa the number of water points was increased across the park between 1939 and 1989 with a view to improving conditions for game, but this triggered an increase in lion numbers precipitated by a proliferation of prey over a wider area of the landscape (Bryden 1976; Grant et al. 2002; Harrington et al. 1999; Mills et al. 1995; Owen-Smith 1996; Smuts 1978). Access to prey is a key determinant of home range size among carnivores (Brown and Kotler 2004; Loveridge et al. 2009; Mosser et al. 2009). Where prey is abundant (synonymous with habitats that are well-endowed with water), lion home range sizes are generally small and vice-versa (Joshi et al. 1995; Macdonald and Carr 1989; Mills and Knowlton 1991).

Even though study prides did not show consistent responses to soil clay content, soil depth and shrub cover, the additive effect of these factors is important in defining habitat quality and, by extension, prey abundance and catchability (Hopcraft et al. 2005). Among the lower order variables, shrub cover is the one that can be easily manipulated by property managers either to open up or revegetate sections of veld depending on management's goals. Earlier studies have shown that vegetation cover is an important factor in predator-prey interactions with both predators and prey using the cover of vegetation to their advantage, i.e., either to aid or evade predation (Davidson et al. 2012; Hebblewhite et al. 2005; Hopcraft et al. 2005; Orsdol 1984; Spong 2002). In this study, lion prides made kills in both open and closed habitats thus exhibiting behavioural plasticity with respect to hunting habitat selection and strategy. This implies that in heterogenous environments management should maintain open and closed habitats as both are functionally important to the space-use and feeding ecology of lions.

The lion population at MWR follows an ideal despotic distribution with the dominant pride inhabiting the key resource habitat and the most inferior pride occupying marginal habitat where surface water availability was limited. While marginal areas may be less profitable in terms of lion hunting, they are ecologically important to conservation managers as they serve as foraging grounds and refugia for species such as sable (*Hippotragus niger*) and Lichtenstein's hartebeest (*Alcelaphus lichtensteinii*). Sable and hartebeest prefer taller grass which is usually found further from surface water due to reduced grazing pressure. In addition, the limited

372 373 374 375 376	utilisation of these areas by water-dependent species results in reduced competition for food, low tick loads and low predator presence (Cain et al. 2012; Capon et al. 2013; Harrington et al. 1999). The existence and preservation of such habitats at MWR is considered to have contributed to the persistence of sable and Lichtenstein's hartebeest's populations on the property (Capon et al. 2013; Clegg et al. 2013).
377	
378	Conclusions
379 380 381 382 383 384 385 386 387 388 389	This study has demonstrated that both social and environmental factors influence the ranging decisions and hunting success of lions at MWR. Most studies have focused on top-down processes of predator-prey interactions as the primary drivers and determinants of carnivore space-use choices. However, considering space-use and predation patterns in isolation from environmental and social factors does not provide a holistic understanding because ranging decisions are influenced by an interplay of biotic, abiotic and co-existence factors. Our findings confirm the hypothesis that the availability of surface water across the landscape influences space-use decisions of lions and shows that social dominance determines where in the landscape individual prides acquired their nutrition. Given that landscape level surface water availability can be manipulated by property managers to direct lion space-use, our findings have management relevance for both lions and their prey.
391	Acknowledgements
392 393 394	We thank Colin Wenham for assistance with immobilizing target lions for collaring. We are indebted to Pandeni Chitimela, Julius Shimbani and the Malilangwe Scouts force for their assistance with field data collection.
395	
396	
397	
398	
399	
400	
401	
402	
403	
404	

REFERENCES

- Adams, Eldridge S. 2001. "Approaches to the Study of Territory Size and Shape." Annual 406 Review of Ecology and Systematics 32(1):277–303. 407
- Aebischer, Nicholas J., Peter A. Robertson, and Robert E. Kenward. 1993. "Compositional 408 Analysis of Habitat Use from Animal Radio-tracking Data." *Ecology* 74(5):1313–25. 409
- Alexander, Richard D. 1974. "The Evolution of Social Behavior." Annual Review of Ecology 410 and Systematics 5(1):325-83. 411
- Ball, Mike, Colin Wenham, Bruce Clegg, and Sarah Clegg. 2019. "What Does It Take to Curtail 412
- Rhino Poaching? Lessons Learned from Twenty Years of Experience at Malilangwe 413
- Wildlife Reserve, Zimbabwe." Pachyderm 60:96–104. 414
- Barker, Nancy A., Francois G. Joubert, Marthin Kasaona, Gabriel Shatumbu, Vincent 415
- Stowbunenko, Kathleen A. Alexander, Rob Slotow, and Wayne M. Getz. 2023. "Coursing 416
- Hyenas and Stalking Lions: The Potential for Inter- and Intraspecific Interactions." *PLoS* 417
- ONE 18(2 February). doi: 10.1371/journal.pone.0265054. 418
- Bates, Douglas, Martin Mächler, Ben Bolker, and Steve Walker. 2014. "Fitting Linear Mixed-419 Effects Models Using Lme4." ArXiv Preprint ArXiv:1406.5823. 420
- Bertram, B. C. 1978. *Pride of Lions*. New York: Scribner Book Company. 421
- De Boer, Willem F., Marc J. P. Vis, Henrik J. De Knegt, Colin Rowles, Edward M. Kohi, Frank 422
- Van Langevelde, Mike Peel, Yolanda Pretorius, Andrew K. Skidmore, Rob Slotow, Sipke 423
- E. Van Wieren, and Herbert H. T. Prins. 2010. "Spatial Distribution of Lion Kills 424
- 425 Determined by the Water Dependency of Prey Species." Journal of Mammalogy
- 91(5):1280-86. doi: 10.1644/09-MAMM-A-392.1. 426
- Brotons, Lluís, Wilfried Thuiller, Miguel B. Araújo, and Alexandre H. Hirzel. 2004. 427
- "Presence-absence versus Presence-only Modelling Methods for Predicting Bird Habitat 428
- Suitability." Ecography 27(4):437–48. 429
- Brown, Joel S., and Burt P. Kotler. 2004. "Hazardous Duty Pay and the Foraging Cost of 430 Predation." Ecology Letters 7(10):999–1014. 431
- Bryden, Bruce Robert. 1976. "The Biology of the African Lion(Panthera Leo, Linn 1758) in the 432
- Kruger National Park." University of Pretoria, Pretoria. 433
- Burt, William Henry. 1943. "Territoriality and Home Range Concepts as Applied to Mammals." 434
- Journal of Mammalogy 24(3):346-52. 435
- Cain, J. W., N. Owen-Smith, and V. A. Macandza. 2012. "The Costs of Drinking: Comparative 436
- Water Dependency of Sable Antelope and Zebra." Journal of Zoology 286(1):58–67. doi: 437
- 10.1111/j.1469-7998.2011.00848.x. 438
- Capon, Simon D., Alison J. Leslie, and Bruce Clegg. 2013. "The Use of Population Viability 439
- Analysis to Identify Possible Factors Contributing to the Decline of a Rare Ungulate 440

441	Population in South-Eastern Zimbabwe." Koedoe: African Protected Area Conservation
442	<i>and Science</i> 55(1):1–9.

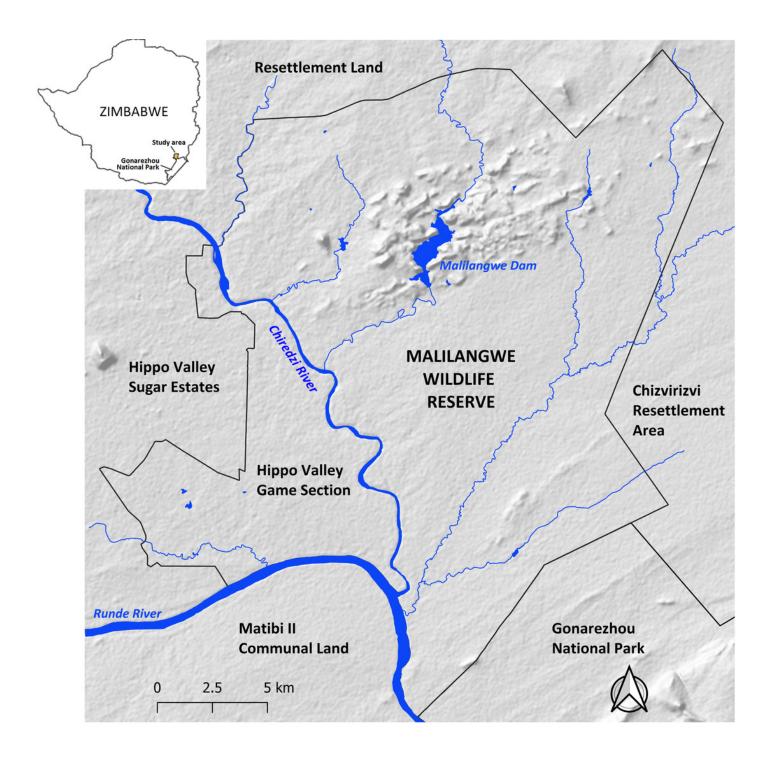
- Carlson, Allan. 1986. "Group Territoriality in the Rattling Cisticola, Cisticola Chiniana." *Oikos* 181–89.
- Carney, Karen M., and William J. Sydeman. 1999. "A Review of Human Disturbance Effects on Nesting Colonial Waterbirds." *Waterbirds* 68–79.
- Cheney, Dorothy L. 1992. "Intragroup Cohesion and Intergroup Hostility: The Relation between Grooming Distributions and Intergroup Competition among Female Primates." *Behavioral Ecology* 3(4):334–45.
- Clegg, B. W. 2011. Large Mammal Population Estimates for Malilangwe Wildlife Reserve:
 September October 2011. Internal Management Report for The Malilangwe Trust.
- Clegg, B. W., and T. G. O'connor. 2012. "The Vegetation of Malilangwe Wildlife Reserve,
 South-Eastern Zimbabwe." *African Journal of Range & Forage Science* 29(3):109–31.
- Clegg, Bruce, Colin Wenham, Sarah Clegg, and Lisa Hywood. 2013. "The Re-Introduction of Lichtenstein's Hartebeest to Malilangwe Wildlife Reserve, South-Eastern Zimbabwe."
 Global Re-Introduction Perspectives: 2013. Further Case Studies from around the Globe 148.
- Davidson, Zeke, Marion Valeix, Andrew J. Loveridge, Jane E. Hunt, Paul J. Johnson, Hillary Madzikanda, and David W. MacDonald. 2012. "Environmental Determinants of Habitat and Kill Site Selection in a Large Carnivore: Scale Matters." *Journal of Mammalogy* 93(3):677– 85. doi: 10.1644/10-MAMM-A-424.1.
- Davies, Andrew B., Craig J. Tambling, Graham I. H. Kerley, and Gregory P. Asner. 2016.

 "Effects of Vegetation Structure on the Location of Lion Kill Sites in African Thicket."

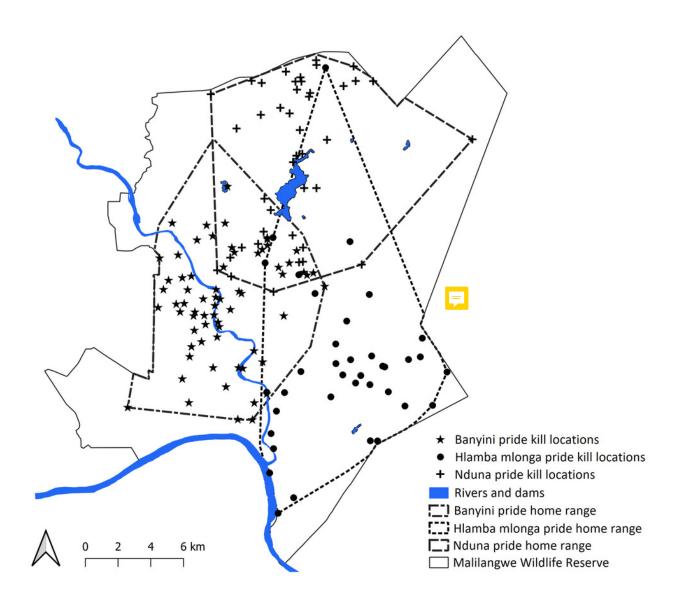
 PLoS ONE 11(2). doi: 10.1371/journal.pone.0149098.
- Duncan, Clare, Alienor L. M. Chauvenet, Louise M. McRae, and Nathalie Pettorelli. 2012.
 "Predicting the Future Impact of Droughts on Ungulate Populations in Arid and Semi-Arid Environments." *PloS One* 7(12):e51490.
- Eastman, J. R. 2015. "TerrSet: Geospatial Monitoring and Modeling Software." *Clark Labs, Clark University*.
- Engler, Robin, Antoine Guisan, and Luca Rechsteiner. 2004. "An Improved Approach for Predicting the Distribution of Rare and Endangered Species from Occurrence and Pseudo-absence Data." *Journal of Applied Ecology* 41(2):263–74.
- Fretwell SD, and Lucas Jr HL. 1969. "On Territorial Behavior and Other Factors Influencing Habitat Distribution in Birds. III. Breeding Success in a Local Population of Field Sparrows (Spizella Pusilla Wils.)." *Acta Biotheoretica* 46–52.
- Fryxell, John M. 1991. "Forage Quality and Aggregation by Large Herbivores." *The American Naturalist* 138(2):478–98.

- 478 Gaillard, Jean-Michel, Marco Festa-Bianchet, and Nigel Gilles Yoccoz. 1998. "Population
- Dynamics of Large Herbivores: Variable Recruitment with Constant Adult Survival."
- 480 *Trends in Ecology & Evolution* 13(2):58–63.
- 481 Grant CC, Davidson T, Funston PJ, and Pienaar DJ. 2002. "Challenges Faced in the
- Conservation of Rare Antelope: A Case Study on the Northern Basalt Plains of the Kruger
- 483 National Park." *Koedoe* 45(2):45–66.
- 484 Grinnell, Jon, Craig Packer, and Anne E. Pusey. 1995. "Cooperation in Male Lions: Kinship,
- Reciprocity or Mutualism?" *Animal Behaviour* 49:95–105.
- Hamilton, William D. 1971. "Geometry for the Selfish Herd." *Journal of Theoretical Biology*
- 487 31(2):295–311.
- 488 Harrington, Rhidian, Norman Owen-Smith, Petri C. Viljoen, Harry C. Biggs, Darryl R. Mason,
- and Paul Funston. 1999. "Establishing the Causes of the Roan Antelope Decline in the
- 490 Kruger National Park, South Africa." *Biological Conservation* 90(1):69–78.
- 491 Hebblewhite, Mark, Clifford A. White, Clifford G. Nietvelt, John A. McKenzie, Tomas E. Hurd,
- John M. Fryxell, Suzanne E. Bayley, and Paul C. Paquet. 2005. "Human Activity Mediates
- 493 a Trophic Cascade Caused by Wolves." *Ecology* 86(8):2135–44. doi: 10.1890/04-1269.
- Hopcraft, J. Grant C., Anthony R. E. Sinclair, and Craig Packer. 2005. "Planning for Success:
- Serengeti Lions Seek Prey Accessibility Rather than Abundance." *Journal of Animal*
- 496 *Ecology* 74(3):559–66.
- 497 Jetz, Walter, Chris Carbone, Jenny Fulford, and James H. Brown. 2004. "The Scaling of Animal
- 498 Space Use." *Science* 306(5694):266–68.
- Joshi, A. R., J. L. Smith, and F. J. Cuthbert. 1995. "Influence of Food Distribution and Predation
- Pressure on Spacing Behavior in Palm Civets." *Journal of Mammalogy* 76(4):1205–12. doi:
- 501 10.2307/1382613.
- Kauffman, Matthew J., Nathan Varley, Douglas W. Smith, Daniel R. Stahler, Daniel R.
- MacNulty, and Mark S. Boyce. 2007. "Landscape Heterogeneity Shapes Predation in a
- Newly Restored Predator–Prey System." *Ecology Letters* 10(8):690–700.
- Kittle, A. M., J. K. Bukombe, A. R. E. Sinclair, S. A. R. Mduma, and J. M. Fryxell. 2022.
- "Where and When Does the Danger Lie? Assessing How Location, Season and Time of
- Day Affect the Sequential Stages of Predation by Lions in Western Serengeti National
- 508 Park." *Journal of Zoology* 316(4):229–39. doi: 10.1111/jzo.12944.
- 509 Knopff, Kyle H., Aliah Adams Knopff, Mike B. Warren, and Mark S. Boyce. 2009. "Evaluating
- Global Positioning System Telemetry Techniques for Estimating Cougar Predation
- Parameters." *The Journal of Wildlife Management* 73(4):586–97.
- 512 Krebs, John R. 1980. "Optimal Foraging, Predation Risk and Territory Defence." Ardea 55(1–
- 513 2):83–90.

- Kuhar, Christopher W. 2006. "In the Deep End: Pooling Data and Other Statistical Challenges of Zoo and Aquarium Research." *Zoo Biology* 25(4):339–52. doi: 10.1002/zoo.20089.
- Larson, Ralph J. 1980. "Competition, Habitat Selection, and the Bathymetric Segregation of Two
 Rockfish (Sebastes) Species." *Ecological Monographs* 50(2):221–39.
- 518 Loveridge, Andrew J., Marion Valeix, Zeke Davidson, Felix Murindagomo, Hervé Fritz, and
- David W. MacDonald. 2009. "Changes in Home Range Size of African Lions in Relation to
- Pride Size and Prey Biomass in a Semi-Arid Savanna." *Ecography* 32(6):953–62. doi:
- 521 10.1111/j.1600-0587.2009.05745.x.
- Macdonald, D. W., and G. M. Carr. 1989. "Food Security and the Rewards of Tolerance."
- 523 Comparative Socioecology: The Behavioural Ecology of Humans and Animals 75–99.
- Machlis, L., P. W. D. Dodd, and J. C. Fentress. 1985. "The Pooling Fallacy: Problems Arising
- When Individuals Contribute More than One Observation to the Data Set." Zeitschrift Für
- 526 *Tierpsychologie* 68(3):201–14. doi: 10.1111/j.1439-0310.1985.tb00124.x.
- McCullagh, P., and J. A. Nelder. 1989. "Generalized Linear Models, Vol. 37 of Monographs on Statistics and Applied Probability London." *Chapman and Hall* 10:971–78.
- McPhee HM, Webb NF, Merrill EH. Time-to-kill: measuring attack rates in a heterogenous landscape with multiple prey types. *Oikos*. 2012;121: 711–720.
- Mills, L. Scott, and Frederick F. Knowlton. 1991. "Coyote Space Use in Relation to Prey Abundance." *Canadian Journal of Zoology* 69(6):1516–21.
- Mills, M. G., H. C. Biggs, and I. J. Whyte. 1995. "The Relationship between Rainfall, Lion Predation and Population Trends in African Herbivores." *Wildlife Research* 22(1):75–88.
- Mitchell, Michael S., and Roger A. Powell. 2004. "A Mechanistic Home Range Model for Optimal Use of Spatially Distributed Resources." *Ecological Modelling* 177(1–2):209–32.
- Morris, Douglas W. 2003. "Toward an Ecological Synthesis: A Case for Habitat Selection." *Oecologia* 136(1):1–13.
- Mosser, Anna, John M. Fryxell, Lynn Eberly, and Craig Packer. 2009. "Serengeti Real Estate:
- Density vs. Fitness-Based Indicators of Lion Habitat Quality." *Ecology Letters*
- 541 12(10):1050–60. doi: 10.1111/j.1461-0248.2009.01359.x.
- Mosser, Anna, and Craig Packer. 2009. "Group Territoriality and the Benefits of Sociality in the African Lion, Panthera Leo." *Animal Behaviour* 78(2):359–70.
- Moyer, Melissa A., J. Walter McCown, and Madan K. Oli. 2008. "Scale-Dependent Habitat
- Selection by Female Florida Black Bears in Ocala National Forest, Florida." *Southeastern*
- 546 *Naturalist* 7(1):111–24.
- Odendaal-Holmes, Karen, Jason P. Marshal, and Francesca Parrini. 2014. "Disturbance and
- Habitat Factors in a Small Reserve: Space Use by Establishing Black Rhinoceros (Diceros
- Bicornis)." *South African Journal of Wildlife Research* 44(2):148–60.

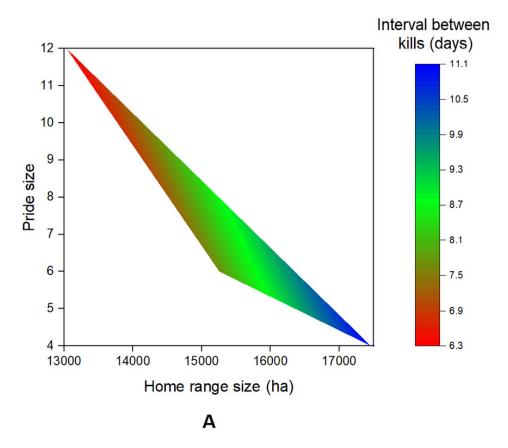

- Ogutu, J. O., and H. T. Dublin. 2004. *Spatial Dynamics of Lions and Their Prey along an Environmental Gradient*. Vol. 42.
- Olfert, E. D., Cross, B. M., & McWilliam, A. A. (1993). Guide to the care and use of experimental animals (Vol. 1, No. 2). Ottawa: Canadian Council on Animal Care.
- Orsdol, Karl G. Van. 1984. "Foraging Behaviour and Hunting Success of Lions in Queen
- Elizabeth National Park, Uganda." *African Journal of Ecology* 22(2):79–99. doi:
- 556 10.1111/j.1365-2028.1984.tb00682.x.
- Owen-Smith, Norman. 1996. "Ecological Guidelines for Waterpoints in Extensive Protected Areas Provision." *South African Journal of Wildlife Research* 26(4):107–12.
- Packer, C., D. Scheel, and A. E. Pusey. 1990. "Why Lions Form Groups: Food Is Not Enough."

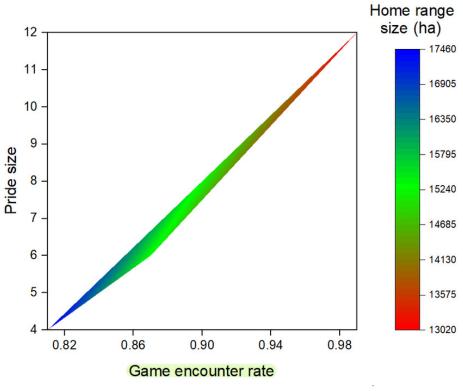
 American Naturalist 136(1):1–19. doi: 10.1086/285079.
- Phillips, Steven J., Robert P. Anderson, and Robert E. Schapire. 2006. "Maximum Entropy
 Modeling of Species Geographic Distributions." *Ecological Modelling* 190(3–4):231–59.
- Pollet, Thomas V, Gert Stulp, S. Peter Henzi, and Louise Barrett. 2015. "Taking the Aggravation out of Data Aggregation: A Conceptual Guide to Dealing with Statistical Issues Related to
- the Pooling of Individual-level Observational Data." *American Journal of Primatology*
- 566 77(7):727–40.
- Powers, Donald R., and Todd McKee. 1994. "The Effect of Food Availability on Time and Energy Expenditures of Territorial and Non-Territorial Hummingbirds." *The Condor*
- 569 96(4):1064–75.
- 570 Queiroz, Marina B., and Robert J. Young. 2018. "The Different Physical and Behavioural
- Characteristics of Zoo Mammals That Influence Their Response to Visitors." *Animals*
- 572 8(8):139.
- 573 R Development Core Team. 2017. "R Statistical Program."
- Redfern, Jessica V, Rina Grant, Harry Biggs, and Wayne M. Getz. 2003. "Surface-water
- 575 Constraints on Herbivore Foraging in the Kruger National Park, South Africa." *Ecology*
- 576 84(8):2092–2107.
- 577 Smuts, G. L. 1978. "Interrelations between Predators, Prey, and Their Environment." *BioScience* 28(5):316–20.
- 579 Spong, Goran. 2002. "Space Use in Lions, Panthera Leo, in the Selous Game Reserve: Social
- and Ecological Factors." *Behavioral Ecology and Sociobiology* 52(4):303–7. doi:
- 581 10.1007/s00265-002-0515-x.
- Stephens, David W., and John R. Krebs. 1986. *Foraging Theory*. Vol. 6. Princeton university press.
- Struhsaker, Thomas T. 1967. "Social Structure among Vervet Monkeys (Cercopithecus Aethiops)." *Behaviour* 29(2–4):83–121.



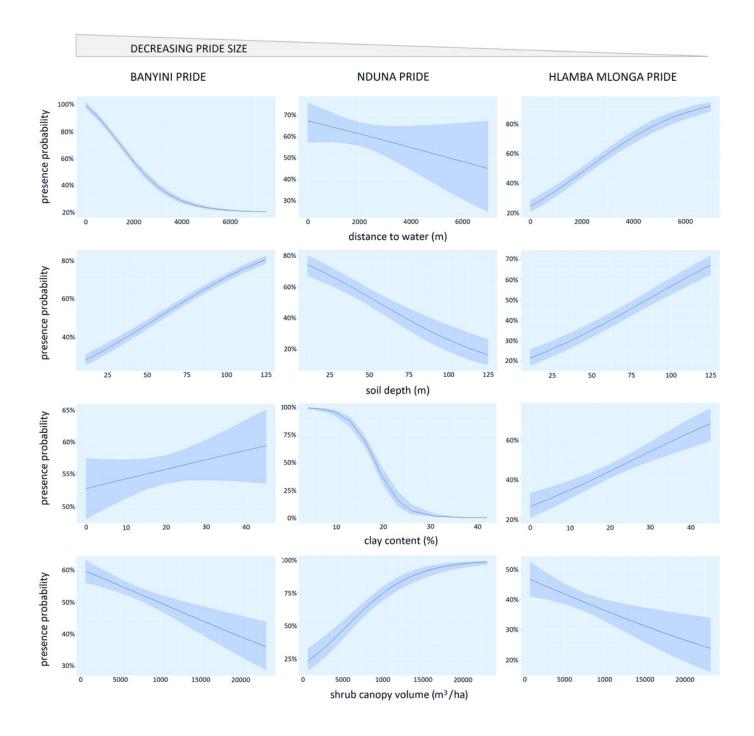
586 587 588	Tambling CJ, Cameron EZ, Du Toit JT, Getz WM. Methods for locating African lion kills using global positioning system movement data. <i>Journal of Wildlife Management</i> . 2010;74: 549–556.
589 590 591	Traill, Lochran W., and Rudi C. Bigalke. 2007. "A Presence-Only Habitat Suitability Model for Large Grazing African Ungulates and Its Utility for Wildlife Management." <i>African Journal of Ecology</i> 45(3):347.
592 593 594	Tuytens, Karen. 2019. "Ecological Dynamics of Temporary Ponds in a Subtropical Savannah Habitat, with Particular Attention for Hydrology and Interactions with Large Terrestrial Mammals."
595 596 597	Valeix, M., A. J. Loveridge, S. Chamaillé -Jammes, Z. Davidson, F. Murindagomo, H. Fritz, and D. W. Macdonald. 2009. <i>Behavioral Adjustments of African Herbivores to Predation Risk by Lions: Spatiotemporal Variations Influence Habitat Use.</i> Vol. 90.
598 599 600	Valeix, Marion, Simon Chamaillé-Jammes, and Hervé Fritz. 2007. "Interference Competition and Temporal Niche Shifts: Elephants and Herbivore Communities at Waterholes." <i>Oecologia</i> 153:739–48.
601 602 603 604	Valeix, Marion, Andrew J. Loveridge, Zeke Davidson, Hillary Madzikanda, H. Fritz, and David W. Macdonald. 2010. "How Key Habitat Features Influence Large Terrestrial Carnivore Movements: Waterholes and African Lions in a Semi-Arid Savanna of North-Western Zimbabwe." <i>Landscape Ecology</i> 25(3):337–51. doi: 10.1007/s10980-009-9425-x.
605 606 607	Venter, Freek J., Robert J. Scholes, and Holger C. Eckhardt. 2003. "The Abiotic Template and Its Associated Vegetation Pattern." <i>The Kruger Experience: Ecology and Management of Savanna Heterogeneity</i> 83:129.
608 609	Webb NF, Hebblewhite M, Merrill EH. Statistical methods for identifying wolf kill sites using global positioning system locations. <i>Journal of Wildlife Management</i> . 2008;72: 798–807.
610 611	Wilson, David Sloan. 1975. "The Adequacy of Body Size as a Niche Difference." <i>The American Naturalist</i> 109(970):769–84.
612 613	Wilson, Michael L., and Richard W. Wrangham. 2003. "Intergroup Relations in Chimpanzees." <i>Annual Review of Anthropology</i> 32(1):363–92.
614 615	Woolfenden, Glen Everett, and John W. Fitzpatrick. 1984. <i>The Florida Scrub Jay: Demography of a Cooperative-Breeding Bird</i> . Vol. 20. Princeton University Press.
616 617 618	Zimmermann, Barbara, Petter Wabakken, Håkan Sand, Hans C. Pedersen, and Olof Liberg. 2007. "Wolf Movement Patterns: A Key to Estimation of Kill Rate?" <i>The Journal of Wildlife Management</i> 71(4):1177–82.

Location of the study area.




Map showing the location of home ranges and kill locations of the three study lion prides.

Contour plots showing the relationships between pride size, home range size, interval between kills and game encounter rate.



В

Panel chart showing the relationship between the probability of lion presence and the logistic regression marginal effects of distance to water, shrub canopy volume, soil clay content and soil depth.



Panel chart showing the relationship between kill probability and the logistic regression marginal effects of distance to water, shrub canopy volume, soil clay content and soil depth.

Table 1(on next page)

Home range characteristics for the three study lion prides

Pride	Pride size (n)	Home range size (ha)	Average distance to water (km)	Average shrub canopy cover (m³/ha)	Average clay content (%)	Average soil depth (m)	Game encounter rate (groups/km²)	Interval between kills (days)
Banyini	12	13 035	1.1	8537	21	77	0.99	6.3
Nduna	6	15 259	1.3	7843	14	66	0.87	7.7
Hlamba mlonga	4	17 460	2.4	5876	20	71	0.81	11.1

Table 2(on next page)

Results of logistic regression analysis: Presence probability \sim distance to water + shrub canopy cover + clay content + soil depth. Pr(>|z|) values <0.05 were considered significant

	Fixed effects	Estimate	Std. Error	z value	Pr (> z)
Banyini pride	Intercept	0.05	0.15	0.36	0.720
	distance to water	-9e-04	4e-05	-21.67	2e-16
	shrub canopy cover	-4e-05	1e-05	-4.26	2e-05
	clay content	0.01	4e-03	1.356	0.175
	soil depth	0.02	9e-04	22.409	2e-16
Nduna pride	Intercept	5.81	0.85	6.86	7e-12
	distance to water	-1e-04	9e-05	-1.44	0.150
	shrub canopy cover	2e-04	3e-05	8.101	5e-16
	clay content	0.36	0.04	-8.851	2e-16
	soil depth	0.02	4e-03	-6.35	2e-10
Hlamba mlonga pride	Intercept	-2.84	0.25	-11.28	2e-16
	distance to water	5e-04	4e-05	12.24	2e-16
	shrub canopy cover	-5e-05	2e-05	-3.02	0.003
	clay content	0.04	0.01	5.40	7e-08
	soil depth	0.02	2e-03	11.40	2e-16

Table 3(on next page)

Results of logistic regression analysis: Kill probability \sim distance to water + shrub canopy cover + clay content + soil depth. Pr(>|z|) values <0.05 were considered significant

	Fixed effects	Estimate	Std. Error	z value	Pr(> z)
Banyini pride	Intercept	4.53	1.19	3.66	>0.001
	distance to water	-6e-04	4e-04	-1.43	0.152
	shrub canopy cover	-2e-04	8e-05	-2.25	0.025
	clay content	0.18	0.04	-4.22	2e-05
	soil depth	0.03	0.01	2.76	0.006
Nduna pride	Intercept	-4.00	1.56	-2.57	0.010
	distance to water	>0.01	>0.01	0.41	0.679
	shrub canopy cover	>0.01	>0.01	2.96	0.003
	clay content	0.05	0.03	1.59	0.249
	soil depth	0.01	0.01	1.15	0.112
Hlamba mlonga pride	Intercept	-1.39	0.98	-1.41	0.158
	distance to water	1e-04	2e-04	0.69	0.490
	shrub canopy cover	-3e-05	8e-05	-0.34	0.738
	clay content	0.06	0.03	1.97	0.049
	soil depth	-4e-04	0.01	-0.06	0.950