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ABSTRACT
Ferroptosis is a form of cell death, i.e., programmed cell death characterized by lipid
peroxidation and iron dependence, which has unique morphological and biochemical
properties. This unique mode of cell death is driven by iron-dependent phospholipid
peroxidation and regulated by multiple cell metabolic pathways, including redox
homeostasis, iron metabolism, mitochondrial activity, and the metabolism of amino
acids, lipids, and sugars. Many organ injuries and degenerative pathologies are caused
by ferroptosis. Ferroptosis is closely related to central nervous system injury diseases
and is currently an important topic of research globally. This research examined the
relationships between ferroptosis and the occurrence and treatment of central nervous
system injury diseases. Additionally, ferroptosis was assessed from the aspect of theory
proposal, mechanism of action, and related signaling pathways per recent research.
This review provides a relevant theoretical basis for further research on this theory, the
prospect of its development, and the prevention and treatment of such diseases.

Subjects Biochemistry, Cell Biology, Neurology
Keywords Ferroptosis, Nerve damage, Redox, GPX4

INTRODUCTION
At present, programmed cell death (PCD) is regarded as the most important type of cell
death (Bedoui, Herold & Strasser, 2020; Tower, 2015). Furthermore, PCD is a self-directed
and ordered process that is crucial for the growth andmaintenance of organisms (Kopeina &
Zhivotovsky, 2022). PCD plays a crucial role in maintaining tissue and organ homeostasis
by regulating the activation and expression of various fate-determining genes through
complex and distinct signaling pathways (Lockshin, 2016). Moreover, recent genetic and
biochemical studies have unveiled the remarkable flexibility and molecular plasticity
within these PCD pathways, emphasizing their ability to adapt and maintain organismal
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homeostasis (Maniam &Maniam, 2021; Samir, Malireddi & Kanneganti, 2020). Besides the
well-known apoptosis, PCD also includes autophagy, necroptosis, pyroptosis, ferroptosis,
and other processes. They are morphologically similar to apoptosis, can also induce severe
inflammatory responses, and significantly affect the homeostasis of the body (Li et al.,
2023; Tong et al., 2022).

Among these PCDs, ferroptosis is a unique form of programmed cell death that is
iron-dependent and characterized by the accumulation of lipid peroxides (reactive oxygen
species (ROS). It is distinct from other types of cell death and is regulated by various factors
including amino acids, lipids, redox, and ironmetabolism (Dixon et al., 2012). The primary
mechanism involves the catalysis of the highly expressed unsaturated fatty acids on the
cell membrane to undergo lipid peroxidation under the action of divalent iron or ester
oxygenase, thereby inducing cell death (Cao & Dixon, 2016). The decrease in the regulatory
core enzyme (Glutathione peroxidase 4 (GPX4)) of the antioxidant system (glutathione
system) is also associated with ferroptosis. The process is described as complex, but specific
details of its intricacies remain unexplored (Dixon et al., 2014). Research has shown that
ferroptosis is closely associated with the occurrence of a variety of diseases which also
include central nervous system (CNS) injury diseases. The relationship between ferroptosis
and the occurrence and treatment of such diseases, along with the research on ferroptosis
in recent years, was analyzed based on theory proposal, mechanism of action, and related
signaling pathways. Furthermore, growing research has increasingly demonstrated the
significant regulatory roles of ferroptosis in the progression of CNS damage diseases
(David et al., 2022; Jhelum et al., 2020; Xie et al., 2019; Zhu et al., 2022). Gaining a deeper
understanding of the mechanism of ferroptosis may effectively improve the diagnosis
and treatment of CNS diseases. Therefore, the aim of the review is to provide a relevant
theoretical basis for further research on this theory, the likelihood of its development, and
the prevention and treatment of CNS injury diseases.

SURVEY METHODOLOGY
We searched related literature by pubmed using the key words (ferroptosis) AND (central
nervous system damage)/(ferroptosis) AND (central nervous system disease)/(ferroptosis)
AND (central nervous system injury). However, the papers which were not research articles
or reviews were excluded.

The concept of ferroptosis
Cell death is a key driver factor of degenerative diseases and also a fundamental characteristic
of multicellular organism development. Many diseases can affect the rate of metabolism,
which can lead to a reduction in the normal production of energy and biomolecules. For
the normal development of multicellular organisms, cell death is very important, and
in many diseases, it is abnormally initiated or inhibited. Up until the mid-20th century,
cell death was believed to be uncontrollable before the idea of programmed cell death
was introduced. The following decades led to the discovery of a type of programmed cell
death called apoptosis. For the next few years, apoptosis was used interchangeably with
programmed cell death; before the concept of programmed necrosis emerged in the early
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21st century. This led to the discovery of a type of cell death that is regulated by their
molecules, i.e., ‘‘regulated cell death,’’ this term encompasses other types of cell death, such
as necrosis and pyroptosis (Dixon et al., 2012; Santagostino et al., 2021; Tang et al., 2019).

In 2003, Erastin, a small molecule, was discovered to selectively attack tumor cells
through a non-apoptotic mechanism (Dolma et al., 2003). In the following years, it was
discovered that Erastin and several other compounds could activate a distinct form of
cell death that relied on iron, and differed from apoptosis and other types of necrosis
like pyroptosis (Yang & Stockwell, 2008). This iron-dependent cell death was termed
‘‘ferroptosis’’ in 2012 and is characterized by unique morphological, biochemical, and
genetic features that set it apart from apoptosis, necrosis, and autophagy. Ferroptosis is
closely associated with iron metabolism, lipids, and redox processes. Morphologically, it
is characterized by mitochondrial atrophy, reduction or disappearance of mitochondrial
cristae, increased density ofmitochondrial membranes, and rupture of outermitochondrial
membranes. Biochemically, ferroptosis is marked by the accumulation of iron ions,
aggregation of ROS, and lipid peroxidation (Dixon et al., 2012). Scientific literature has
established a correlation between ferroptosis and various pathological features associated
with tissue injury, as well as its physiological role in immune surveillance. Consequently,
targeting ferroptosis inhibition holds promise as a potential therapeutic strategy for
ferroptosis-related diseases. Notably, studies and reports have elucidated the induction
of ferroptosis through catalyzing the elevated expression of unsaturated fatty acids on
cell membranes, leading to lipid peroxidation under the influence of divalent iron or
ester oxygenase. Additionally, investigations have explored alternative mechanisms, apart
from GPX4 and glutathione (GSH) (Yang et al., 2014), employed by cells to counteract
ferroptosis. Nonetheless, a comprehensive understanding of the intricate molecular
pathways governing ferroptosis induction necessitates further research and analysis.

Mechanism of ferroptosis
Relationships between ferroptosis and regulation of GPX4 and GSH lipid
peroxidation
Ferroptosis is a form of cell death that was first reported in 2012 (Dixon et al., 2012).
Initially, it was believed that the specific mechanism through which ferroptosis occurs
was related to the metabolism of cysteine and glutathione and the peroxidation of
phospholipids. Notably, ferroptosis was found to be characterized by the accumulation of
lipid peroxides within certain cells. Inhibiting the defense system responsible for removing
these lipid peroxides results in their accumulation to lethal levels. This can be achieved,
for example, by inhibiting the cystine-glutamate reverse transporter protein, depleting the
cellular antioxidant glutathione, reducing the glutathione-dependent GPX4 and ultimately
leading to the accumulation of increased levels of lipid peroxides (Hirschhorn & Stockwell,
2019; Yang et al., 2014). Furthermore, the connection between ferroptosis and the role
of GPX4 is evident in studies involving mice with a knockout GPX4 gene. These mice
exhibited neurodegenerative changes and cognitive impairment that were related to the
activation of extracellular signal-regulated kinases, lipid peroxidation, and a significant
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increase in neuroinflammation (Dugger & Dickson, 2017). The research noted that the
impact of the absence of GPX4 was quite severe.

Various studies noted that reduced glutathione, selenium, and GPX4 contribute to the
cellular antioxidant defense system and help regulate iron-dependent cell death. The most
abundant reductant in mammalian cells, reduced GSH, functions as a cofactor for a variety
of enzymes, including glutathione-s-transferases and glutathione peroxidases (GPXs). An
important regulator of the occurrence of iron death is the trace element selenium, which
is an essential for the biosynthesis of selenoproteins that clears the ROS. This also included
GPX4 (Yang et al., 2014). It was noted that the oxidized form of cysteine (Cystine) also
counteracts ferroptosis by promoting the activity of GPXs (Banjac et al., 2008; Mandal et
al., 2010; Seiler et al., 2008; Shi et al., 2000; Yant et al., 2003), when absorbed by the cystine-
glutamate reverse transporter (Bannai & Kitamura, 1980; Sato et al., 1999). Furthermore,
ferroptosis can be influenced by environmental stress and intracellular and intercellular
signal transport events which impact ROS levels and cellular metabolism. In-depth studies
have revealed that the deficiency of GPX4 can lead to lipid peroxidation dependence. This
in turn affects the neurodegeneration of hippocampal and cortical regions within the brain
(Jia et al., 2020). Furthermore, the interplay of oxidative stress between cells can also affect
ferroptosis, ultimately leading to nerve injury. The above process is also summarized in
Fig. 1.

Hippo-YAP signaling pathway
The functional performance of GPX4 is closely linked to the regulation of the Hippo-YAP
signaling pathway (Wu et al., 2019; Zhang et al., 2022). The effect of the Hippo-YAP
pathway on ferroptosis in epithelial cells is regulated by calmodulin-mediated cell–cell
contact. This contact inhibits the expression of melin, leading to the activation of the
Hippo signaling pathway through the Neurofibromatosis type 2 (NF2) gene. Consequently,
the YAP activity, which is co-regulated by nuclear translocation and transcription, is
suppressed. The Hippo-YAP pathway encompasses Acyl-CoA Synthetase Long Chain
Family Member 4 (ACSL4), the transferrin receptor protein 1 (TFR1), and other possible
genes that act as regulatory factors for ferroptosis. Notably, ACSL4 has been implicated as
a transferrin receptor involved in sperm development. Furthermore, ASCL4 can further
contribute to the activation of polyunsaturated fatty acid phospholipids (PUFA-PLs)
and phospholipid hydroperoxides (PLOOH) (Schneider et al., 2009; Ufer et al., 2008). The
activity of the Hippo pathway performs a crucial function in the occurrence of ferroptosis,
and heightened susceptibility to Hippo will increase the sensitivity of ferroptosis (Fig. 2)
(Wu et al., 2019). The data acquired indicated that the Hippo-YAP signaling pathway is
intricately intertwined with ferroptosis and diseases caused by neurological damage. It was
noted that this pathway is significantly upregulated and activated in the astrocytes of the
optic nerve of mice with encephalomyelitis. This activation also resulted in activating both
astrocytes and microglia, leading to the suppression of neuroinflammatory infiltration
and the prevention of optic nerve demyelination (Wu et al., 2021). The involvement of
the Hippo-YAP pathway in these processes highlights its potential in the modulation of
ferroptosis-related pathways in the context of neurological damage.
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Figure 1 GPX4 as a key linker in the development of ferroptosis.GPX4 has been a key linker in the de-
velopment of ferroptosis. First, GPX4 is an essential inhibitor of phospholipid peroxidation, together with
the damage of mitochondria to contribute to the development of ferroptosis. In addition, the oxidized
form of cysteine (Cystine) also counteracts ferroptosis by promoting the activity of GSH/GPX4. Further-
more, GPX4 induced ferroptosis can be influenced by environmental stress and intracellular and inter-
cellular signal transport events which impact ROS levels, cellular metabolism and the level of Iron. In-
depth studies have revealed that the deficiency of GPX4 can affect lipid peroxidation dependence. Also,
Selenium/PUFA-PLs and scavenging superoxide affect the GPX4 induced ferroptosis. In addition, CoQ10
serves as a vital component of mitochondria and also inhibits lipid peroxidation outside the mitochondria.
Consequently, the depletion of CoQ10 renders cells more susceptible to ferroptosis.

Full-size DOI: 10.7717/peerj.16741/fig-1

Ferroptosis-related inducers
Erastin and RSL3. Erastin and RSL3 compounds were discovered initially as inducers for
the occurrence of ferroptosis. The mechanism of both compounds for inducing ferroptosis
involves targeting GPX4. Erastin and RSL3 can both directly lead to the inactivation of
GPX4. In the case of Erastin, it can also indirectly lead to the inactivation of GPX4 by
inhibiting the conversion of cystine, an essential component of glutathione synthesis.
Consequently, lipid peroxidation is catalyzed, ultimately resulting not only in ferroptosis
but also in neurodegenerative processes (Conteh et al., 2019).

FIN56. The FIN56 compound is a novel chemical inducer of ferroptosis (Cao et al., 2019).
It functions by a dual mechanism involving the depletion of mevalonate and GPX4 protein,
as well as Coenzyme Q10 (CoQ10). CoQ10 serves as a vital component of mitochondria
and also inhibits lipid peroxidation outside the mitochondria. Consequently, the depletion
of CoQ10 renders cells more susceptible to ferroptosis. In addition, prevention of the
activity of the HMG coenzyme A reductase further heightens the vulnerability of cells to
ferroptosis (Cao et al., 2019; Shimada et al., 2016). This context was also presented in Fig. 1.

Lipoxygenases (LOXs). Some studies have now found that LOXs compounds may also be
inducers of ferroptosis (Chen et al., 2021; Yang et al., 2016). Ferroptosis can be inhibited
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Figure 2 Hippo-YAP signaling pathway contributes to the occurrence of ferroptosis. The effect of the
Hippo-YAP pathway on ferroptosis in epithelial cells is regulated by e-calmodulin-mediated cell–cell con-
tact. This contact inhibits the expression of melin, leading to the activation of the Hippo signaling path-
way through the NF2 gene. Consequently, the YAP activity is suppressed. The Hippo-YAP pathway en-
compasses ACSL4, TFR1, and other possible genes that act as regulatory factors for ferroptosis. Notably,
ASCL4 can further contribute to the activation of PUFA-PLs and PLOOH. The activity of the Hippo path-
way performs a crucial function in the occurrence of ferroptosis, and heightened susceptibility to Hippo
will increase the sensitivity of ferroptosis.

Full-size DOI: 10.7717/peerj.16741/fig-2

by some LOXs pharmacological inhibitors (Li, Maher & Schubert, 1997), and baicalin can
protect mice from an ischemic brain injury when Alox15 is knocked out or when LOXs
inhibitors are applied (van Leyen et al., 2006). However, some reports do not support this
view. In the context of GPX4 knockout, further removal of the Alox15 gene did not prevent
ferroptosis of fibroblasts in mice, nor did it prevent acute ischemic kidney injury and
was linked to in vivo lethality (Friedmann Angeli et al., 2014). However, it is noteworthy
that LOXs are primarily implicated in ferroptosis triggered by cysteine deficiency, as
opposed to ferroptosis triggered by GPX4 deficiency. This observation suggests the
necessity of a distinct model to further analyze the role of LOXs in diseases related to
ferroptosis. The data indicates the possibility of an alternate mechanism compensating
for the absence of ALOX15 activity and suggests that LOXs may be involved in certain
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Table 1 A summary of the inducers of ferroptosis.

Name Function Molecular mechanism

Erastin Inducer of ferroptosis Directly lead to the inactivation of GPX4; indirectly lead to
the inactivation of GPX4 by inhibiting the conversion of
cystine

RSL3 Inducer of ferroptosis Directly lead to the inactivation of GPX4
FIN56 A novel chemical inducer

of ferroptosis
Depletion of mevalonate and GPX4 protein, as well as
Coenzyme Q10

LOXs Inducer of ferroptosis Deficiency of cysteine

cases of ferroptosis-related diseases. It is also worth considering that the inhibitor typically
employed to specifically LOXs may possess additional properties beyond their intended
specificity. These might exhibit non-specific activity as free radical trapping antioxidants,
leading to their inhibitory effects on ferroptosis through thismechanism (Zilka et al., 2017).
Certainly, the predominantly used LOX inhibitors exhibit antioxidant activity, enabling
them to capture free radicals. This poses a challenge to the conventional understanding
of the role of LOXs in diseases associated with ferroptosis. Furthermore, it was noted
that the occurrence of RSL3-induced ferroptosis was not prevented by the combined
downregulation of all LOX isozymes. Interestingly, this downregulation had a significant
rescuing effect on ferroptosis induced by Erastin, as it is possible that Erastin treatment is
associated with the activation of LOX enzymes (Shah, Shchepinov & Pratt, 2018; Yang et al.,
2016). These findings suggest that while oxidation may not be the primary factor driving
ferroptosis in most cases, it could still contribute to the initiation and progression of injury
under certain circumstances. Accordingly, in specific mouse models of cancer inhibition
or neurodegeneration, the deficiency of Alox12 or Alox15 showed a positive effect (Chu et
al., 2019). A summary of the inducers of ferroptosis is shown in Table 1.

Iron metabolism is involved in the regulation of ferroptosis
The role and regulation of iron in ferroptosis have recently been reported in studies despite
the inclusion of ‘‘ferro’’ (meaning iron) in the name of this form of cell death. At the
outset, understanding the precise cause of lipid peroxidation, a critical characteristic of
ferroptosis, presented a challenge. It remained uncertain whether the transfer of an unstable
iron pool within the cell membrane and its subsequent reaction with lipid peroxides was
the primary trigger, or if the peroxidation process was predominantly driven by the activity
of iron-dependent enzymes alone. Recent studies have shown that iron death is triggered
by iron-dependent lipoxygenases by generating lipid peroxides. Additionally, it has been
observed that unstable iron, which is not bound to these enzymes, further facilitates the
catalysis of these peroxides, resulting in increased lipid peroxidation (Shah, Shchepinov &
Pratt, 2018; Wenzel et al., 2017). In ferroptosis, cytochrome P450 oxidoreductase, an iron-
dependent enzyme has been implicated in the process of lipid peroxidation, potentially
playing a significant role (Zou et al., 2020). A critical determinant of ferroptosis progression
is the abundance of ferritin, a protein involved in iron storage. Higher levels of ferritin
confer resistance against ferroptosis, as they sequester iron and limit the availability of
unstable iron pools. Conversely, the depletion of ferritin may result in the release of
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iron into these unstable iron pool, leading to greater sensitivity against ferroptosis. Prior
experiments have demonstrated that ferritin-targeted autophagy, known as ferritinophagy,
triggers the breakdown of ferritin within lysosomes and releases iron into unstable iron
pools, thereby increasing the sensitivity to ferroptosis (Gao et al., 2016; Hou et al., 2016).
Furthermore, Prominin2 (PROM2) inhibits ferroptosis by promoting iron transport out
of the cell by multivesicular bodies and exosomes containing ferritin (Brown et al., 2019).

The role of mitochondria in ferroptosis
Mitochondria generates key senescence metabolites during cellular metabolism and alters
the sensitivity of cells to the tricarboxylic acid (TCA) cycle. Thereby increasing ferroptosis
by altering the unstable iron content of cells. Mitochondria play a crucial role in regulating
the respiration rate, and an increase in their activity can lead to enhanced production of ROS
by automatically increasing the availability of cellular iron (Gao et al., 2015). Therefore,
the normal degradation of ferritin within mitochondria along with its metabolic function
appears to promote ferroptosis (Gao et al., 2016; Hou et al., 2016). Similarly, transferrin
and its receptor play a collaborative role in iron homeostasis, facilitating the import of
iron into cells. Moreover, it has been established that they actively participate in enhancing
the export of iron from cells to promote oxidation (Hou et al., 2016; Tuo et al., 2017),
thus promoting the formation ferroptosis. Additionally, recent studies have proposed
a connection between the RSL3 induced-inhibition of O-GlcNAcylation modification
and the increased autophagy of both iron and mitochondria. This enhanced autophagy
regulation influences the sensitivity to ferroptosis, leading to the accumulation of unstable
iron and facilitating the progression of ferroptosis (Yu et al., 2022). In nerve cells, the
contraction of mitochondria and the accumulation of iron increase the occurrence of
ferroptosis and lead to increased nerve injury, such as lumbosacral nerve root avulsion
injuries (Zhou et al., 2022).

The relationship between ferroptosis and central nervous system
injury diseases
Many studies have reported that ferroptosis plays an important role in the progression of
central nervous system injury disorders. These include stroke (Cui et al., 2021; Liu et al.,
2020), Parkinson’s disease (Mahoney-Sanchez et al., 2021), Alzheimer’s disease (AD) (Yan
& Zhang, 2019), and Huntington’s traumatic brain injury (TBI) (Geng et al., 2021; Mi et
al., 2019). A growing number of studies have shown that ferroptosis plays a crucial role
in neurodegenerative diseases, which are characterized by the accumulation of Fe2+, lipid
peroxidation, and alterations of mitochondrial structure.

Stroke
Current studies suggest that ferroptosis is an important causative element of cerebral
ischemia/reperfusion (I/R) injury. Research indicates that spermidine/spermine n1-
acetyltransferase 1 (SSAT1) activates the upregulation of arachidonic acid 15-lipoxygenase
(ALOX15). Consequently, the upregulation of ALOX15 resulted in the triggering of
ferroptosis in brain neurons, thereby exacerbating brain ischemia/reperfusion injury (Zhao
et al., 2022). This form of cell death has also been implicated in the pathophysiological

Li et al. (2024), PeerJ, DOI 10.7717/peerj.16741 8/19

https://peerj.com
http://dx.doi.org/10.7717/peerj.16741


process of TBI. Furthermore, studies have shown that melatonin can inhibit ferroptosis in
the brain neurons after TBI and thus have a neuroprotective effect on the brain (Rui et al.,
2021).

AD
AD is characterized by the progressive occurrence of cortical and hippocampal neuronal
dysfunction and death. Its main pathological changes include neuronal degeneration and
synaptic loss (Hansson, 2021), with neuronal death as a potential cause of AD (Hambright
et al., 2017). Ferroptosis is characterized by increased iron content and altered lipid
peroxidation in AD along with cognitive impairment (Chen et al., 2015; Hambright et al.,
2017). Increased intracellular iron content directly induces oxidation-related neuronal
damage (Thirupathi & Chang, 2019; Yoo et al., 2010). Thereby, the oxidation-related
neuronal damage further promoted the generation and increase of ROS (Derry et al.,
2020), which may be involved in the ferroptosis pathway (Li et al., 2019). The occurrence
of mitochondrial oxidative dysfunction, reduced DNA repair, apoptosis, and increased
autophagy associated with this leads to neuronal loss and an increased risk of AD (Brickman
et al., 2021; Goel et al., 2022).

Parkinson’s disease
Parkinson’s disease is characterized by accumulation of misfolded alpha synuclein and loss
of neurons in several brain regions, particularly dopaminergic neurons in the substantia
nigra (Guiney et al., 2017). The key therapeutic goal is to improve dopamine levels in the
brain and prevent neuronal degeneration. Notably, dopaminergic neurons in Parkinson’s
pathology are enriched in iron, which plays a role in both enzymatic and non-enzymatic
aspects of dopamine metabolism (Moreau et al., 2018). Ferroptosis associated with iron
content is a key cell death pathway in dopaminergic neurons (Do Van et al., 2016). Iron
induces the oxidation of dopamine and the aggregation of a-synuclein. Moreover, excess
free iron can reduce the activity of GPX4, leading to the depletion of GSH (Duce et al.,
2017). Subsequently, the reduced ability of cells to scavenge ROS leads to an excess of
ROS and induces the accumulation of lipid peroxidation and iron-dependent free radicals
on neuronal and astrocyte membranes (Angelova et al., 2015). This ultimately results in
ferroptosis, which in turn leads to increased loss of dopaminergic neurons in Parkinson’s
disease, and is a possible potential pathogenic mechanism (Imai et al., 2017; Stockwell et
al., 2017).

Neuropathic pain due to spinal cord injury
In chronic neuropathic pain (NP), the level of Acyl CoA synthetase long-chain family
member 4 (ACSl4) increased due to reduced levels of GPX4 (Guo et al., 2021; Wang et
al., 2021). This led to an increase in the number of mitochondria and a decrease in the
average mitochondrial area, along with elevated iron ion levels in the spinal cord of rats.
The increase in ACS14 induces ferroptosis and further activates neurons in the dorsal horn
of the spinal cord and astrocytes involved in the maintenance of chronic pain.

Experimental studies have shown that the spinal cord segments of rats can upregulate
the expression of GPX4 and downregulate the expression of ACSL4 when treated with the

Li et al. (2024), PeerJ, DOI 10.7717/peerj.16741 9/19

https://peerj.com
http://dx.doi.org/10.7717/peerj.16741


ferroptosis inhibitor ferritin. Nonetheless, the opposite effect is achieved when treated with
the ferroptosis inducer Erastin (10 mg/kg). Iron ion levels are elevated in the spinal cord
during NP and can be modulated by interventions such as Cci-induced iron statin-1 and
Erastin; decreased by the former and increased by the latter. Ferroptosis plays a role in the
development of NP in rats following peripheral nerve injury by impairing the activation of
neurons and astrocytes in the spinal dorsal horn. Inhibition of ferroptosis with lipostatin-1
significantly alleviates mechanical and thermal hypersensitivity associated with NP (Guo et
al., 2021).

Summary and outlook
Since the term ferroptosis was coined in 2012, the study of ferroptosis has exploded over the
past few years. It is a regulated iron-dependent programmed cell death form characterized
by the accumulation of lipid peroxidation. It has also been linked with ROS, mitochondrial
metabolism, and iron metabolism; however, the exact molecular mechanism remains
unelucidated. Current studies have found that the process may be correlated with the
Hippo-YAP signaling pathway, but the exact mechanisms and the possible molecular
mechanism markers are still being explored. Tan, Fang & Gu (2021) summarized a review
about the role of ferroptosis in central nervous system diseases. Their review primarily
dealt with lipid metabolism, iron metabolism, the GSH-dependent pathway and the
CoQ10-dependent pathway. However, in our review, wemainly summarized and discussed
GPX4 and GSH lipid peroxidation, the Hippo-YAP signaling pathway, ferroptosis-related
inducers, and mitochondria in the process of ferroptosis. Notably, the role of ferroptosis-
related inducers was explored concerning the regulation of ferroptosis. These points are the
main differences between these two reviews, and we believe our review is more accessible
to a different audience compared with the review of Tan, Fang & Gu (2021).

Furthermore, during the development of nerve injury diseases, nerve cell oxidative
stress, mitochondrial damage, and lipid oxidation are closely related to the occurrence of
ferroptosis in nerve cells (Yang & Stockwell, 2016). Studies related to central nerve injury
diseases have implicated ferroptosis in the development of ischemic brain nerve injury,
traumatic brain nerve injury and neurodegenerative brain diseases. In the context of
peripheral nerve injury disease, ferroptosis plays an important role in neuropathic pain
linked with nerve injury, which is closely related to pain sensitization. The use of ferroptosis
inhibitors has shown promise for providing a neuroprotective effect by reducing the onset
of neuropathic pain.

It has been established that oxidative stress and mitochondrial dysfunction are involved
in the occurrence and development of many neurodegenerative diseases, such as AD and
Parkinson’s disease (Dell’Orco et al., 2016; Jackson, 2009). GSH, an important antioxidant
in the body, can scavenge ROS, reduce hydrogen peroxide toH2O, repair biofilms and resist
ferroptosis. In addition, the depletion of GSH can also induce a decrease in the activity of
GPX4, which is a central regulatory factor of ferroptosis and antioxidant reactions. GPX4
abnormalities are thought to be a necessary precondition for cell ferroptosis (Jia et al.,
2020), and can contribute to neurodegeneration (Cao et al., 2019).
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Under oxidative stress conditions, the level of ROS in nerve cells increases, and
promotes the peroxidation of intracellular membrane lipids and proteins, which in
turn leads to neuronal oxidative injury (Dixon & Stockwell, 2014). Furthermore, it has
been documented that excessive oxidative stress is one of the main predispositions for
neurological impairment. Ferroptosis inhibitors, including some ROS scavengers, can
effectively block the generation of iron-catalyzed ROS, resist oxidative stress reaction, clear
intracellular accumulation of ROS, and prevent ferroptosis in cells. ROS scavengers are
also commonly used as anti-nerve injury drugs. However, further investigation is needed
to determine the precise mechanisms underlying their neuroprotective effects, whether it
be through scavenging antioxidant stress or by blocking ferroptosis.

Several types of ferroptosis inhibitors have been found, and preclinical trials have
exhibited their efficacy in reducing the occurrence of ferroptosis in neuronal cells, which
may mitigate the associated nerve injury diseases in a variety of central nervous system
diseases consequently. Clinical trials are underway for the treatment of Parkinson’s
disease by using related inhibitors. Following the dose of 15 mg/Kg body weight, patients
with Parkinson’s disease received oral deferiprone (DFP) for 36 weeks. As a result, the
nigrostriatal iron context significantly decreased in the DFP group. Although other results
were not very promising (Devos et al., 2022). However, the clinical application of ferroptosis
inhibitors for other diseases are yet to be explored. In conclusion, further research is needed
to investigate the mechanisms of ferroptosis associated with nerve injury. It is essential
to explore drugs and new drug targets for the prevention and treatment of ferroptosis
associated with nerve injury.
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