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Abstract

Background

The Suwon treefrog, Dryophytes suweonensis, is an endangered wildlife species in Korea.

This species shares jts habitat and often hybridizes with the common treefrog, D. japonicus.

(Deleted:

the

Because hybridization can reduce biodiversity or cause extinction it is important to identify

purebred parental species and their hybrids prior to conservation plans such as for D.

(Deleted: endangered

suweonensis. In particular, D. suweonensis and D. japonicus, and their hybrids often have

abnormal ovaries and gonads, which are known to be a source of extinction threat.
Methods

We collected 57 individuals from six localities, in which D. suweonensis has been known to
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5

be distributed. We first performed a high-resolution melting curve (HRM) analysis of the
mitochondrial 12S ribosomal RNA gene to determine their maternal species. Thereafter, we

analyzed DNA sequences of five nuclear genes, (SI4H, TYR, POMC, RAGI, and C-MYC) to

determine their parental species and hybrids.
Results

The HRM analysis showed that the melting temperature of D. suweonensis was in the range
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0f 79.0-79.3°C, and that of D. japonicus was 77.7-78.0°C, which clearly distinguished the
two treefrog species. DNA sequencing the five nuclear genes revealed a total of 37 single
nucleotide polymorphism (SNP) sites between them, and STRUCTURE analysis inferred
from the variant sites showed a delta K of two. We showed no double peaks in the purebred
parental sequences with Q values > 0.995, which clearly distinguished the two treefrog

species from their hybrids; eleven individuals were D. suweonensis, eight were D. japonicus,

and the other 38 were hybrids.

Conclusion

Therefore, it was possible to unambiguously identify the parental species and their hybrids
using the HMR analysis and DNA sequencing methods we applied in this study, which will

provide fundamental information for D. suweonensis conservation and restoration research,
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1. Introduction

The Suwon treefrog, Dryophytes suweonensis, is an endangered wildlife species due to a
number of factors, including population fragmentation and continued habitat loss (Borzée
2018; Zhang et al. 2019). As a result, this species is designated as a Class I endangered
wildlife in Korea and listed as Endangered (EN) on the IUCN red list (IUCN, 2017). While
the common treefrog, D. japonicus uses a variety of habitats including forests and wetlands
as well as rice fields and is widely distributed in Asia, D. suweonensis is mainly found in
lowland rice field wetlands and known to be endemic to the Korean Peninsula (Do et al.
2017). Dryophytes suweonensis diverged from D. japonicus between 6.4 mya and 5.1 mya
and is characterized by very low genetic diversity compared to D. japonicus (Chun et al.

2012; Li et al. 2015).

Hybridization is the reproduction of two genetically different species (Barton &
Hewitt 1985). It is primarily caused by human activities such as the introduction of plant or
animal species, or habitat fragmentation and modification. The more rapidly these activities
interact, the more rapidly hybridization occurs (Rhymer & Simberloff 1996). It can cause
outbreeding depression, which in severe cases can lead to species extinction and reduced
biodiversity (Hoffmann et al. 2015; Huff et al. 2011). In addition, hybrids may be less healthy
than purebreds due to interspecific incompatibilities or various negative effects (Coyne & Orr
2004; Moulia 1999). Hybrid individuals that have inherited half genes from each parental
species are often morphologically indistinguishable from their parents (Leary et al. 1996). It
is currently estimated that hybridization occurs in about 10% of animals, although the actual
percentage is likely higher because most hybrids are difficult to identify in the wild (Maloy &
Hughes 2013). Interspecific hybridization is common in frogs (Berger 1968; Kierzkowski et

al. 2013; Peek et al. 2019). Identifying hybrids is important because populations can be CDeleted: the

restored by removing hybrid individuals or by captive breeding if a population contains a

sufficient number of parental individuals without hybrids (Allendorf et al. 2001).

Identification of purebred parental species and their hybrids has been identified using

a variety of analytical methods, including mitochondrial DNA (mtDNA) sequencing, (Deleted: and

microsatellite analysis, single nucleotide polymorphism (SNP) analysis, Restriction-site
associated DNA capture (Rapture) sequencing, and so forth (Iwaoka et al. 2021; Simoes et al.
2012; Melville et al. 2017; Peek et al. 2019). A previous study reported that hybridization has

also occurred between D. suweonensis and D. japonicus in their wild populations by
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analyzing both mitochondrial cytochrome o oxidase I (COI) and microsatellite markers
(Borzée et al. 2020). mtDNA is widely used in population genetics to measure genetic
variation of various wildlife animals to assess the population differentiation and habitat

conservation strategies (Avise et al. 1987; Moritz 1994). It is also useful in phylogenetic

studies because its mutation rates are ten times faster than those of nuclear DNA (nuDNA) (Deleted: can be determined

and it shows low recombination rates (Brown et al. 1979; Masuda & Yoshida 1994).
However, there are limitations in determining hybridization using mtDNA alone because it
only provides information on maternal inheritance (Sato & Sato 2013). In addition, use of
microsatellite markers from different species can cause errors due to the high probability of

null allele occurrences as the taxonomic distance between species increases (Wan et al. 2004).

In this study, we employed the high-resolution melting curve (HRM) technique to
identify the two treefrog species, D. suweonensis and D. japonicus, and their hybrids based

on the mitochondrial 12S ribosomal RNA (rRNA) gene, which allowed us to identify their

maternal parentage (Yoo et al. 2022). Additionally, we newly designed primer sets for five (Deleted: five

nuclear genes, E3 ubiquitin protein ligase 1 (SI4H), tyrosinase (TYR). proopiomelanocortin (Deleted: ,

(POMC), V(D)J recombination-activating protein 1 (RAGI), and transcriptional regulator

Myec-like (C-MYC), and detected single nucleotide polymorphism (SNP) sites by sequencing
their amplicons to determine their parentage and hybridization. This integrated approach

facilitated the unambiguous identification of the purebred parental species and their hybrids,

proving to be a valuable information prior to conservation and restoration research, of D. (Deleted: es

SUWeOonensis.

2. Materials & Methods
Sampling and DNA extraction

This study was performed in accordance with the recommendations of the Animal Ethics

Review Committee of National Institute of Ecology (NIEIACUC-2020-012). We had (Deleted: And

approval for captive and management wildlife from Han River Basin Environmental Office
(No. 2020-24), Geum River Basin Environmental Office (No. 2020-24), Jeonbuk Regional
Environmental Office (No. 2020-22), and Won-ju Regional Environmental Office (No. 2020-
24) by Wildlife Protection and Management Act
(https://elaw.klri.re.kr/kor_service/lawTwoView.do?hseq=49116).
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From April to June 2021, we sampled a total of 57 individuals of treefrogs from six localities
in South Korea, including Suwon and Pyeongtaek cities in Gyeonggi-do, Chungju city in
Chungcheongbuk-do, Asan city in Chungcheongnam-do, and Iksan and Wanju counties in
Jeollabuk-do, where D. suweonensis has been known to occur (Fig. 1). Surveys were
conducted during the day time when treefrogs were active, and they were captured randomly
by walking around the rice field banks in the vicinity of rice field wetlands, the main habitats

of this species (Kim et al. 2012). For sample collection for molecular experiments, oral

(Deleted: treefrogs

epithelial cells were non-invasively obtained according to Goldberg et al. (2003), i.e., by
gently swabbing a sterile cotton swab (Han ChangMedic, City, Korea) inside the frog’s
mouth for about 30 seconds to 1 minute. Genomic DNA (gDNA) was extracted using the
DNeasy Blood & Tissue Kit (QIAGEN, Germany) according to the manufacturer’s manual.
The amount of extracted gDNA was determined using a spectrophotometer (DeNovix DS-11
FX, DeNovix Inc., Wilmington, DE USA).

PCR primer design and DNA sequencing

To design primer sets for PCR amplification of five nuclear genes, SIAH, TYR, POMC,
RAGI, and C-MYC, we downloaded the nucleotide sequence information of treefrog species
available in GenBank database in National Center for Biotechnology Information (NCBI)
(https://www.ncbi.nlm.nih.gov/).

The nucleotide sequence information of the five nuclear genes was subjected to
multiple sequence alignment using ClustalW (Thompson et al. 2003) in BioEdit 7.2
(www.mbio.ncsu.edu/BioEdit/bioedit.html), and five primer sets were newly designed based
on their information around the highly conserved regions (Table 1). To validate the primer
sets, the PCR reactions were carried out with 10 pl of Platinum Hot Start PCR Master Mix
2X (Invitrogen, Waltham, MA USA), 100 ng of gDNA, 1 pl of each primer at 5 uM, and the
final volume was adjusted to 20 ul using sterilized tertiary distilled water. The PCR reaction
consisted of an initial denaturation at 94°C for 2 minutes, followed by 38 cycles of
denaturation at 94°C for 30 seconds, annealing at 56°C for 30 seconds, and extension at 72°C
for 30 seconds. Finally, after an elongation step at 72°C for 1 minute, the success of the PCR
reaction was confirmed by electrophoresis on a 2% agarose gel stained with GelRed

(Invitrogen, USA).
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The amplified PCR products were purified using the AccuPrep® PCR Purification Kit
(Bioneer, Daejeon, Korea) following the user manual. For DNA sequencing, the BigDye™
Terminator v3.1 Cycle Sequencing Kit (Thermo Fisher Scientific, Waltham, MA, USA) and
the DNA Analyzer 3730x/ (Thermo Fisher Scientific) were utilized. The forward and reverse
primers used in the PCR reaction for each nuclear gene were used for cycle sequencing.
Subsequently, the raw data of each nuclear gene were aligned using SEQUENCHER version
5.4.6 (Nishimura 2000), and unnecessary parts were appropriately trimmed to complete the

contigs.

HRM analysis

HRM analysis of the mitochondrial 12S rRNA gene was performed using the method
described by Yoo et al. (2022). Briefly, a total volume of 20 pul PCR reaction was prepared,
containing 10 pl of MeltDoctor™ HRM Master Mix (Thermo Fisher Scientific), gDNA (10
ng/pl), and 2 pl of a primer set at 5 uM (HYL-12S-0250f: 5'-GTTACACCACGAGGCTCA-
3"HYL-12S-0343r: 5'-TGAGTTTCTTAAGAACAAGCG-3"), with 6 ul of sterile distilled
water. The PCR reaction was performed using the QuantStudio 5 Real-Time PCR System
(Thermo Fisher Scientific) with an initial denaturation step at 95°C for 10 minutes, followed
by 40 cycles of 95°C for 15 seconds and 60°C for 1 minute for ligation/extension. The
Meltcurve and dissociation steps for HRM analysis were conducted at 95°C for 10 seconds
for denaturation and 60°C for 1 minute for binding. Subsequently, high-resolution melting

was performed at 95°C for 15 seconds, followed by 60°C for 15 seconds for binding.

For an individual that did not show reliable melting temperuature, its gDNA was
PCR amplified using the forward primer 5-AAAGCRTAGCACTGAAAATG-3' (ANU-MT-
00018f) and the reverse primer 5'-TCGGTGTAAGCGAGATGCTTT-3' (ANU-MT-01017r)
according to Yoo et al. (2022). The amplified PCR products were then sequenced using the

same method as mentioned above, and identification was performed using BLASTn in NCBI.

STRUCTURE analysis

To identify patterns in the degree of hybridization between D. suweonensis and D. japonicus,

we conducted a STRUCTURE analysis using the Bayesian clustering algorithm. For this
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analysis, we created a nucleotide sequence matrix that included both SNP sites representing
interspecific differences between the two treefrog species and SNPs identifying individual
variations. The SNP sites were then analyzed using STRUCTURE v. 2.3.4. (Pritchard et al.
2000) with 100,000 burn-in and 500,000 simulations. Additionally, posterior probabilities
(LnP(D)) values were calculated using the delta K (4K) method through STRUCTURE
HARVESTER (Evanno et al. 2005) to determine the optimal K value (Earl & VonHoldt
2012).

3. Results
HRM analysis

The HRM analysis of the mitochondrial 12S rRNA gene revealed distinct melting
temperatures of 79.0-79.3°C for D. suweonensis and 77.7-78.0°C for D. japonicus, enabling
reliable species identification (Fig. 3). However, one individual (SJ02_5) showed a melting
temperature of 78.6°C, which made it challenging to identify the species accurately. As a
result, the species identification success rate using HRM analysis was approximately 97.88%.
Its DNA sequencing identified SJ02_5 as D. japonicus with 99.78% identity with the

nucleotide information in GenBank database (GenBank accession number: OK156173).

DNA sequencing

The DNA sequencing of the five nuclear genes sampled from 57 individuals of D.
suweonensis and D. japonicus revealed specific sequence lengths for each gene; 267 bp in
SIAH, 361 bp in TYR, 372 bp in POMC, 561 bp in RAGI, and 301 bp in C-MYC. When
comparing the variable sites and parsimony informative sites (PIs) of each gene in the two
treefrog species and their hybrids, no variable sites and PIs were identified in TYR and SI4H
for D. suweonensis, and no Pls were identified in C-MYC and SIAH for D. japonicus. The
nuclear genes with the most variable sites overall were RAGI, while those with the most Pls

were TYR and RAGI (Table 2).

The DNA sequencing of the five nuclear genes revealed that their sequence
chromatograms displayed double peaks in the SNP sites between the two treefrog species in

numerous individuals (Fig. 2). For instance, the hybrid individuals showed a double peak of
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(G/A) at 175 bp in SIAH, a double peak of (T/C) at 202 bp in TYR, double peaks of (G/C) and
(G/A) at 91 bp and 93 bp positions in POMC, respectively, and a double peak of (A/T) in 97
bp in RAGI.

STRUCTURE analysis

STRUCTURE analysis was performed to calculate the optimal number of groups based on
the Q values calculated repeatedly using the STRUCTURE HARVESTER, and the highest
delta K value was found at K = 2 (Fig. 3a). Using the optimal number of groups, K = 2, the
graph with the lowest maximum likelihood value (K = 2, Est. Ln prob. of data = 1232.8) was
selected (Fig. 3b).

In the STRUCTURE analysis, if the Q value, which means the estimated probability
that each individual belongs to a specific species or population, is 0.800 or higher based on
one species, 16 hybrids were determined with a rate of 28.07%. If the Q value is 0.900 or
higher based on one species, 23 hybrids were determined with a rate of 40.35%. On the other
hand, when the Q value, which is the criterion that no double peaks appeared at the
heterozygous mutation positions, which is a sequence that shows SNPs between species
among the five nuclear gene sequences, was determined to be 0.995 or higher, eleven

individuals were determined to be purebred, D. suweonensis, eight individuals purebred D.

Jjaponicus, and 38 individuals hybrids (Fig. 3b). Individuals with a Q value of 0.750 or more

for one species and a Q value of less than 0.250 for the other species in the STRUCTURE
analysis can be assumed to be backcrosses (Weetman et al. 2014). Therefore, applying the

above criteria, a total of 32 hybrid individuals were backcrosses. 13 individuals were

assumed to be backcrosses with the maternal parentage of D. japonicus, and 19 of D.

suweonensis, representing 56.14% of the total individuals.

For most individuals, HRM analysis of mitochondrial 12S rRNA gene and the ratio
of Q values from STRUCTURE analysis of the five nuclear genes were consistent for their
maternal parentage determination. For example, most of the individuals determined as
maternal inheritance with D. japonicus had a Q value of 0.721 or higher for the
corresponding species, and most of the individuals with D. suweonensis had a Q value of
0.716 or higher for the corresponding species. On the other hand, two individuals, SJ02 5
and JNO2 were determined to be D. japonicus as maternal inheritance, but the STRUCTURE
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analysis showed that their Q values of 0.406 and 0.346, respectively, were attributed to D.

Jjaponicus, indicating a cyto-nuclear discordance.

4. Discussion

In general, nuDNA is stably transmitted to offspring and characterized by biparental
inheritance. Methods that analyze both mtDNA and nuDNA for species and hybrid
identification have been shown to significantly increase accuracy in determining their
parental lineage (McKay & Zink 2010; Sun & Pang 2013; Toews & Brelsford 2012;
Whittaker et al. 1994; Funk & Omland 2003). Studies identifying hybrids through mtDNA-
nuDNA comparative analysis have been used to identify introgressive hybrids to elucidate the
process of introgressive hybridization, and to understand the level of genetic diversity (Zhang
et al. 2018). These methods have been used in amphibians research, including the
identification of potential polyploid hybrids and backcrosses (Correa et al. 2012; Stdck et al.
2010; Velo-Anton et al. 2021). In this study, we used the mitochondrial 12S rRNA gene of D.
suweonensis and D. japonicus, and their hybrids to identify the maternal parentage by HRN
analysis, and also applied the DNA sequencing of the five nuclear genes that contains SNP
sites, thereby greatly improving the identification accuracy of the purebred parental species

and hybrids.

Sequence chromatograms from the five nuclear genes have the advantage of being
able to reconstruct parental sequences for DNA segments from heterozygotes and interspecies
hybrids for multiple linked points through the identification of SNP sites and double peak
patterns (Sousa-Santos et al. 2005). While interspecific Fi hybrid individuals are commonly
characterized by double peaks at all SNPs where the heterozygous mutation between the two
species occurs (Depaquit et al. 2019; Sousa-Santos et al. 2005), the individuals analyzed in
this study showed an irregular pattern; the double peak was not consistently observed only in
the interspecific SNP sequences of the Fi hybrid, making it challenging to identify the

purebred parental species and their hybrids based on the presence of a simple double peak.

Vihd& Primmer (2006) employed two Bayesian-based programs, STRUCTURE and
NEWHYBRIDS, to effectively detect hybrids. They determined the optimal genetic
differentiation threshold based on three key aspects: efficiency, accuracy, and overall

performance, with a Q value of 0.900 or higher. In a previous study, hybrids of D.
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suweonensis were classified as such when the assignment probability was below 90.0%
(Borzée et al. 2020). In contrast, our study proposed a Q value threshold of 0.995 for the
absence of double peaks at heterozygous mutation sites between D. suweonensis and D.
Jjaponicus across the five nuclear genes. While reducing the threshold may result in a larger
number of individuals being classified as the purebred parental species, we argue that a
stricter threshold aligns more closely with the criteria essential for determining the parental
species, particularly in the context of conserving endangered wildlife species (De Hert et al.

2012; Yan et al. 2017).

Admixture analysis can be used to identify F; and F» hybrids, and first-generation
backcrosses, which are characterized by a decrease in the admixture rate (Q) of the species by
approximately one-half with each new backcross generation (Vdhd& Primmer 2006;
Weetman et al. 2014). In this study, we were able to accurately identify hybrids between D.
suweonensis and D. japonicus, and the proportion of individuals that could be presumed to be
reverse hybrids was very high at 56.14% of the total individuals. In particular, the fact that
there were no Fi hybrids identified between D. suweonensis and D. japonicus suggests that
hybridization between the two treefrog species has occurred over a long period of time and
hybrids can interbreed with one of their parental species that shares the same habitats.
Therefore, as mentioned above, it emphasizes the need to apply strict threshold values when
separating the two treefrog species and their hybrids by Q values in STRUCTURE analysis
using the method developed in this study.

Hybridization, recognized as a significant driver of extinction, can imperil
endangered wildlife species through processes like hybridization suppression or genetic
assimilation. The impact of hybridization on species can be detrimental as it facilitates the
gene flows between different species, potentially leading to reduced biodiversity through
direct and indirect pathways or even culminating in species extinction (Levin 2002;
Rieseberg & Carney 1998). Our findings indicate that substantial occurrences of
hybridization or backcrosses between D. suweonensis and D. japonicus could markedly
diminish their population. Of greater concern, however, is the fact that 81.58% of these
hybrids are backcrosses. Backcrosses tend to exhibit a higher imbalance in
mitochondrial/nuclear ratios, which detrimentally influences their survival (Vilaca et al.
2023). In this study, we identified two D. japonicus individuals displaying cyto-nuclear

discordance. Similar instances of genetic mismatches between mtDNA and nuDNA have
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been also observed in other amphibian species (Ambu et al. 2023; Cairns et al. 2021; Eto et
al. 2013). The occurrence of cyto-nuclear discordance may suggest factors such as
hybridization through introgression (Lee-Yaw et al. 2019), sex-biased dispersal (Seixas et al.
2018), or shifts in hybrid zones (Wielstra 2019). Notably, amphibians have demonstrated
differential growth in individuals based on their mitochondrial type (mitotype), with lower
growth rates occurring in instances of cyto-nuclear discordance (Lee-Yaw et al. 2014).
Hence, it is plausible that individuals displaying cyto-nuclear discordance among hybrids

between the two treefrog species also exhibit growth disparities compared to the purebred

N N

JIndividuals from their respective mitotypes. (Deleted: parental species
Conclusions

Previous studies have underscored that hybridization between D. suweonensis and D.

Japonicus constitute,a primary driver behind the extinction threat faced by the former species (Deleted: that

(Borzée et al. 2018; Borzée et al. 2020). Given the substantial identification of hybrid CDeIetEd: s

individuals in this study, it becomes imperative to explore strategies for curbing hybridization

to safeguard this endangered wildlife species, Hence, the crucial course of action involves CDeleted: an
elucidating the mechanisms underlying its hybridization and promoting population (Deleted: , 1. suweonensis

stabilization (Bohling 2016). The strategy of the DNA sequencing of five nuclear genes
applied through this study is expected to offer several benefits. It can counteract potential
data bias attributed to null alleles when solely employing microsatellite markers for
hybridization analysis. Additionally, the nuclear gene markers can enable a stringent
determination of the purebred parental species with a higher resolution, thus significantly
aiding in unraveling the mechanisms of hybridization. This research lays the groundwork for
systematic investigations, enhancing the precise identification of the purebred parental
species and their hybrids of D. suweonensis and D. japonicus. Such advancements serve as a
fundamental framework for guiding efforts toward the restoration of reproductive processes,
a critical endeavor during times necessitating the conservation and restoration of the

endangered D. suweonensis.
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Tables and Figures legends

Table 1. Primer sets newly designed in this study to identify purebred Dryophytes

CDeleted: parental species of

suweonensis., D. japonicus, and their hybrids.

Table 2. Sequence nucleotide polymorphism (SNP) sites and parsimony informative sites

(P]) in five nuclear genes of purebred Dryophytes suweonensis, D. japonicus, and their

hybrids.

Figure 1. Sampling localities of individuals of Dryophytes suweonensis.,D. japonicus, and

(Deleted: and

(Deleted: parental species of

(Deleted: and

NN

(Deleted: and

their hybrids in South Korea.

Figure 2. Examples of double peaks at sequence nucleotide polymorphism (SNP) sites in

sequencing chromatograms of five nuclear genes of Dryophytes suweonensis, D. japonicus,

(Deleted: and

and their hybrids. (a-c) SIAH, (d-f) TYR, (g-i) POMC, (j-1), RAGI and (m-o0), and C-myc of D.
suweonensis and D. japonica, and their hybrids. (a, d, g, j, m) homozygous peaks in D.
Japonica, (b, e, h, k, n) heterozygous peaks in hybrids between D. japonicus and D.

suweonensis, and (c, f, 1, 1, 0) homozygous peaks in D. suweonensis.

Figure 3. Identification results of purebred Dryophytes suweonensis, D. japonicus, and their

hybrids. (a) The best suitable K of D. suweonensis and D. japonicus obtained by the delta K
(4K) method in STRUCTURE Harvester. The value of 4K was highest at 2 (4K: 1681.844).
(b) Results of mitochondrial 12S rRNA using HRM analysis (mtDNA) and probabilistic
assignment to genetic clusters (K = 2) using the STRUCTURE software. A vertical column
represents each individual, and the length of each column indicates the proportional
membership (Q value) in each cluster (D. suweonensis is green, D. japonicus is blue, and red

box represents cyto-nuclear discordant individuals).

(Deleted: parental species of
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