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ABSTRACT
Background. As hybridization can reduce biodiversity or cause extinction, it is
important to identify both purebred parental species and their hybrids prior to
conserving them. The Suwon tree frog, Dryophytes suweonensis, is an endangered
wildlife species in Korea that shares its habitat and often hybridizes with the Japanese
tree frog, D. japonicus. In particular, D. suweonensis, D. japonicus, and their hybrids
often have abnormal ovaries and gonads, which are known causes that could threaten
their existence.
Methods. We collected 57 individuals from six localities whereD. suweonensis is known
to be present. High-resolution melting curve (HRM) analysis of the mitochondrial 12S
ribosomal RNA gene was performed to determine the maternal species. Thereafter, the
DNA sequences of five nuclear genes (SIAH, TYR, POMC, RAG1, and C-MYC) were
analyzed to determine their parental species and hybrid status.
Results. The HRM analysis showed that the melting temperature of D. suweonensis
was in the range of 79.0–79.3 ◦C, and that of D. japonicus was 77.7–78.0 ◦C, which
clearly distinguished the two tree frog species. DNA sequencing of the five nuclear genes
revealed 37 single-nucleotide polymorphism (SNP) sites, and STRUCTURE analysis
showed a two-group structure as the most likely grouping solution. No heterozygous
position in the purebred parental sequences with Q values ≥ 0.995 were found, which
clearly distinguished the two treefrog species from their hybrids; 11 individuals were
found to be D. suweonensis, eight were found to be D. japonicus, and the remaining 38
individuals were found to be hybrids.
Conclusion. Thus, it was possible to unambiguously identify the parental species and
their hybrids using HRM analysis and DNA sequencing methods. This study provided
fundamental information for D. suweonensis conservation and restoration research.

Subjects Conservation Biology, Molecular Biology, Taxonomy, Zoology
Keywords Mitochondrial gene, Nuclear genes, Hybridization, Endangered species, Dryophytes
suweonensis

INTRODUCTION
Hybridization is the reproduction between two genetically distinct species (Barton &
Hewitt, 1985). It is caused due to human activities such as the introduction of plant
or animal species or habitat fragmentation and modification (Grabenstein & Taylor,
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2018). The more rapidly these activities interact, the more rapidly hybridization occurs
(Rhymer & Simberloff, 1996). This can cause outbreeding depression, which in severe
cases can lead to species extinction and reduced biodiversity (Hoffmann et al., 2015;
Huff et al., 2011). Moreover, hybrids may be less stable than purebreds because of
interspecific incompatibilities or various negative effects (Coyne & Orr, 2004; Moulia,
1999). Hybrid individuals that inherit half the genes from each parental species are often
morphologically indistinguishable from their parents (Leary, Gould & Sage, 1996). It is
currently estimated that hybridization occurs in approximately 10% of animal species
(Lepidoptera: Rhopalocera and Heliconiina, Paradisaeidae and Paridae, etc.), although
the actual percentage is likely to be higher because most hybrids are difficult to identify
in the wild (Mallet, 2005). Moreover, hybridization is common in frogs (Berger, 1968;
Kierzkowski et al., 2013; Peek et al., 2019). Identifying hybrids is important as specific
species population can be restored by removing hybrid individuals or by captive breeding
if a population contains a sufficient number of parental individuals without hybrids
(Allendorf et al., 2001).

The Suwon tree frog,Dryophytes suweonensis, has become an endangered wildlife species
because of population fragmentation, hybridization, competition, and continued habitat
loss (Borzée, 2018; Zhang et al., 2019). As a result, this species is designated as a Class
I endangered wildlife in Korea and is listed as Endangered (EN) on the IUCN Red List
(IUCN, 2017).While the Japanese tree frog,D. japonicus uses a variety of habitats, including
forests, wetlands, and rice fields, and is widely distributed in Asia, D. suweonensis is mainly
found in lowland rice field wetlands and is known to be endemic to the Korean Peninsula
(Do et al., 2017). D. suweonensis diverged from D. japonicus between 6.4 mya and 5.1 mya
and is characterized by very low genetic diversity compared to D. japonicus (Chun et al.,
2012; Li et al., 2015).

Purebred species and their hybrids have been identified using a various analytical
methods, such as mitochondrial DNA (mtDNA) sequencing, microsatellite analysis,
single-nucleotide polymorphism (SNP) analysis, and restriction-site associated DNA
capture (rapture) sequencing (Iwaoka et al., 2021; Simoes, Lima & Farias, 2012; Melville et
al., 2017; Peek et al., 2019). A previous study reported that hybridization has also occurred
between D. suweonensis and D. japonicus in their wild populations by analyzing both
mitochondrial cytochrome c oxidase I (COI) and microsatellite markers (Borzée et al.,
2020). mtDNA is widely used in population genetics to measure genetic variation in
various wildlife species to assess population differentiation and habitat conservation
strategies (Avise et al., 1987; Moritz, 1994). However, there are limitations with respect to
determining hybridization usingmtDNA alone as it only provides information onmaternal
inheritance (Sato & Sato, 2013). Moreover, the use of microsatellite markers from different
species can cause errors because of the high probability of null allele occurrences as the
taxonomic distance between species increases (Wan et al., 2004).

In this study, the high-resolution melting curve (HRM) technique was employed to
identify the two tree frog species, D. suweonensis and D. japonicus, and their hybrids, based
on the mitochondrial 12S ribosomal RNA (rRNA) gene, which allowed us to identify their
maternal parents (Yoo et al., 2022). Moreover, primer sets for five nuclear genes, namely
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E3 ubiquitin protein ligase 1 (SIAH ), tyrosinase (TYR), proopiomelanocortin (POMC),
V(D)J recombination-activating protein 1 (RAG1), and transcriptional regulator Myc-like
(C-MYC) were designed, and single-nucleotide polymorphism (SNP) sites were detected by
sequencing their amplicons to determine their parentage and hybridization. This integrated
approach facilitated the unambiguous identification of purebred parental species and their
hybrids, thus providing valuable information for conservation and restoration research of
D. suweonensis.

MATERIALS & METHODS
Sampling and DNA extraction
From April to June 2021, we sampled a total of 57 tree frog individuals from six localities in
South Korea, including Suwon (two) and Pyeongtaek (14) cities in Gyeonggi-do, Chungju
City (nine) in Chungcheongbuk-do, Asan City (14) in Chungcheongnam-do, Iksan City
(eight) and Wanju County (10) in Jeollabuk-do, where D. suweonensis is known to be
present (Fig. 1). Surveys were conducted during the day when the tree frogs were found
to be active, and they were captured randomly while walking around rice field banks in
the vicinity of rice field wetlands, which are the main habitats of this species (Kim et al.,
2012). To perform molecular experiments, oral epithelial cells were called non-invasively
obtained according to Goldberg, Kaplan & Schwalbe (2003), that is, a sterile cotton swab
(Han Chang Medic, Cheonan, Korea) was used to gently swab the inside the frog’s
mouth for approximately 30 s to 1 min. Genomic DNA (gDNA) was extracted using the
DNeasy Blood & Tissue Kit (Qiagen, Hilden, Germany) according to the manufacturer’s
instructions. The amount of extracted gDNA was determined using a spectrophotometer
(DeNovix DS-11 FX, DeNovix Inc., Wilmington, USA).

HRM analysis
HRM analysis of the mitochondrial 12S rRNA gene was performed as previously described
by Yoo et al. (2022). Briefly, a total volume of 20 µl PCR reaction was prepared, containing
10 µl of MeltDoctor™ HRM Master Mix (Thermo Fisher Scientific, Waltham, MA,
USA), gDNA (10 ng/ µl), and 2 µl of a primer set at 5 µM (HYL-12S-0250f: 5′-
GTTACACCACGAGGCTCA-3′ HYL-12S-0343r: 5 ′-TGAGTTTCTTAAGAACAAGCG-
3′), with 6 µl of sterile distilled water. The PCR reaction was performed using the
QuantStudio 5 Real-Time PCR System (Thermo Fisher Scientific, Waltham, MA, USA)
with an initial denaturation step at 95 ◦C for 10 min, followed by 40 cycles of 95 ◦C for 15
s and 60 ◦C for 1 min for annealing/extension. The meltcurve and dissociation steps for
HRM analysis were conducted at 95 ◦C for 10 s for denaturation and 60 ◦C for 1 min for
binding. Subsequently, high-resolution melting was performed at 95 ◦C for 15 s, followed
by 60 ◦C for 15 s for binding.

For an individual that did not show a reliable melting temperature, its gDNA was
PCR amplified using the forward primer 5′-AAAGCRTAGCACTGAAAATG-3′ (ANU-
MT-00018f) and the reverse primer 5′-TCGGTGTAAGCGAGATGCTTT-3′ (ANU-
MT-01017r). The amplified PCR products were then sequenced using the method
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Figure 1 Sampling localities of individuals ofDryophytes suweonensis,D. japonicus, and their hybrids
in South Korea.

Full-size DOI: 10.7717/peerj.16728/fig-1

described above and identification was performed using BLASTn in National Center
for Biotechnology Information (NCBI, https://www.ncbi.nlm.nih.gov/).

PCR primer design and DNA sequencing
To design primer sets for PCR amplification of the five nuclear genes, SIAH, TYR, POMC,
RAG1, and C-MYC, the nucleotide sequence information of Dryophytes and Hyla spp.
available in the GenBank database of the NCBI was downloaded.

The nucleotide sequence information of the five nuclear genes was subjected to multiple
sequence alignment using ClustalW (Thompson, Gibson & Higgins, 2003) in BioEdit 7.2
(https://thalljiscience.github.io/), and five new primer sets were designed based on the
information around the highly conserved regions (Table 1). To validate the primer sets,
the PCR reactions were carried out with 10 µl of Platinum Hot Start PCR Master Mix 2X
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Table 1 Primer sets newly designed in this study to identify purebredDryophytes suweonensis,D. japonicus, and their hybrids.

Genes Primer name Sequence (5′–>3′)* Tm (◦C) Total bases (bp)

DS_SIAH_F TGGCAAGAAAAACAATATCCTCTC 60.1 24E3 ubiquitin protein ligase 1
(SIAH ) DS_SIAH_R ATGTCAGAGCGGACATCTTGT 59.4 21

DS_TYR_F TGTGCCAGGGCGCGAAG 59.6 17
Tyrosinase (TYR)

DS_TYR_R TTAGTGGGATTGACGATMGRGAAA 60.1 24
DS_RAG1_F AACCTGTGTGTTTAATGCTGGC 60.3 22V(D)J recombination-activating

protein 1 (RAG1) DS_RAG1_R TTCGGGCAAAGTTTCCATTCA 61.1 21
DS_POMC_F AACGTCCGRAAGTACGTCATGA 60.3 22

Proopiomelanocortin (POMC)
DS_POMC_R CCATCGRAAGTGATGCATTTTGTA 60.1 24
DS_C-MYC_F TCCAGCCTTTTTCCATCTACTGA 60.3 23Transcriptional regulator Myc-

like (C-MYC) DS_C-MYC_R GCTGGTCCTACTGGTTCCTA 60.5 20

Notes.
*M =A+C , R=A+G.

(Invitrogen, Waltham, USA), 100 ng of gDNA, 1 µl of each primer at 5 µM, and the final
volume was adjusted to 20 µl using sterilized tertiary distilled water. The PCR reaction
consisted of an initial denaturation at 94 ◦C for 2min, followed by 38 cycles of denaturation
at 94 ◦C for 30 s, annealing at 56 ◦C for 30 s, and extension at 72 ◦C for 30 s. Finally, after an
extension step at 72 ◦C for 1 min, the results obtained were confirmed by electrophoresis
on a 2% agarose gel stained with GelRed (Invitrogen, Waltham, MA, USA).

The amplified PCR products were purified using the AccuPrep® PCR Purification Kit
(Bioneer, Daejeon, Korea) following the user manual. For DNA sequencing, the BigDye™
Terminator v3.1 Cycle Sequencing Kit (Thermo Fisher Scientific, Waltham, MA, USA) and
the DNA Analyzer 3730xl (Thermo Fisher Scientific, Waltham, MA, USA) were utilized.
The forward and reverse primers used in PCR for each nuclear gene were further used
for cycle sequencing. Subsequently, the raw data for each nuclear gene were aligned using
SEQUENCHER version 5.4.6 (Nishimura, 2000), and unnecessary parts were trimmed to
complete the contigs.

STRUCTURE analysis
To identify patterns in the degree of hybridization betweenD. suweonensis andD. japonicus,
we conducted a STRUCTURE analysis using the Bayesian clustering algorithm. For this
analysis, a nucleotide sequence matrix that included both SNPs representing interspecific
differences between the two tree frog species and SNPs identifying individual variations
were created. SNPs were analyzed using STRUCTURE v. 2.3.4. (Pritchard, Stephens &
Donnelly, 2000) with 100,000 burn-ins and 500,000 simulations. Moreover, posterior
probabilities (LnP(D)) values were calculated using the delta K (1K) method through
STRUCTURE HARVESTER (Evanno, Regnaut & Goudet, 2005) to determine the optimal
K value (Earl & VonHoldt, 2012).
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Table 2 Single-nucleotide polymorphism (SNP) sites (left) and parsimony informative sites (PI)
(right), separated by a forward slash, in five nuclear genes of purebredDryophytes suweonensis,
D. japonicus, and their hybrids.

SIAH TYR POMC RAG1 C-MYC

Dryophytes suweonensis 0/0 0/0 2/0 2/0 1/1
Dryophytes japonicus 0/0 5/4 1/1 1/0 0/0
Hybrids 3/3 4/4 7/6 9/7 3/2
Total 3/3 9/9 9/7 11/9 4/2

RESULTS
HRM analysis
The HRM analysis of the mitochondrial 12S rRNA gene revealed distinct melting
temperatures of 79.0–79.3 ◦C for D. suweonensis and 77.7–78.0 ◦C for D. japonicus,
enabling reliable species identification. However, one individual (SJ02_5) had a melting
temperature of 78.6 ◦C, which made it challenging to identify that particular species
accurately. The species identification success rate using HRM analysis was approximately
97.88%. DNA sequencing identified SJ02_5 as D. japonicus with 99.78% identity to the
nucleotide information in the GenBank database (GenBank accession number: OK156173).

DNA sequencing
DNA sequencing of the five nuclear genes sampled from the 57 individuals ofD. suweonensis
and D. japonicus revealed the following specific sequence lengths for each gene; 267 bp for
SIAH, 361 bp for TYR, 372 bp for POMC, 561 bp for RAG1, and 301 bp for C-MYC. When
comparing the variable sites and parsimony-informative sites (PIs) of each gene in the two
tree frog species and their hybrids, no variable sites and PIs were identified in TYR and
SIAH for D. suweonensis, and no PIs were identified in C-MYC and SIAH for D. japonicus.
The nuclear genes with the most variable sites overall were RAG1, whereas those with the
most PIs were TYR and RAG1 (Table 2).

DNA sequencing of the five nuclear genes revealed that their sequence chromatograms
displayed heterozygous sequences at the SNPs between the two tree frog species in numerous
individuals (Fig. 2). For instance, the hybrid individuals showed a heterozygous sequence
of (G/A) at 175 bp in SIAH, of (T/C) at 202 bp in TYR, of (G/C) and (G/A) at 91 bp and
93 bp in POMC, and (A/T) at 97 bp in RAG1.

STRUCTURE analysis
STRUCTURE analysis was performed to calculate the optimal number of groups based on
the Q values calculated repeatedly using the STRUCTURE HARVESTER, and the highest
delta K value was found at K = 2 (Fig. 3A). Using the optimal number of groups K = 2, the
graph with the lowest maximum likelihood value (K = 2, Est. Ln prob. of data = 1,232.8)
was selected (Fig. 3B).

In STRUCTURE analysis, the Q value is the estimated probability that each individual
belongs to a specific species or population. When the Q value, which is the criterion that no
heterozygous sequences appear at the heterozygous mutation positions and is a sequence
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Figure 2 Examples of heterozygous sequences at single-nucleotide polymorphism (SNP) sites in se-
quencing chromatograms of five nuclear genes ofDryophytes suweonensis,D. japonicus, and their hy-
brids. (A–C) SIAH, (D–F) TYR, (G–I) POMC, (J–L) RAG1, and (M–O) C-myc of D. suweonensis, D.
japonica, and their hybrids. Red box represents heterozygous sequences.

Full-size DOI: 10.7717/peerj.16728/fig-2

Figure 3 Identification results of purebredDryophytes suweonensis,D. japonicus, and their hybrids.
(A) The number K of groups for D. suweonensis and D. japonicus obtained by the delta K (1K) method in
STRUCTURE Harvester. The value of 1K was highest at 2 (1K: 1681.844). (B) Results of HRM analysis
of mitochondrial 12S rRNA gene (A captial ‘‘S’’ means D. suweonensis and a capital ‘‘J’’ means D. japoni-
cus) and probabilistic assignment to genetic clusters (K = 2) using the STRUCTURE software. A vertical
column represents each individual, and the length of each column indicates the proportional membership
(Q value) in each cluster (D. suweonensis is green, D. japonicus is blue, and red box represents highly ad-
mixed individuals).

Full-size DOI: 10.7717/peerj.16728/fig-3

that shows SNPs between species among the five nuclear gene sequences, was determined
to be 0.995 or higher, 11 individuals were determined to be purebred D. suweonensis,
eight individuals were purebred D. japonicus, and 38 individuals were hybrids (Fig. 3B).
Individuals with a Q value of 0.750 or higher for one species and a Q value of less than
0.250 for the other species in the STRUCTURE analysis were assumed to be backcrosses
(Weetman et al., 2014). Therefore, 32 hybrid individuals were backcrossed using the above
criteria. Among them, 13 individuals were assumed to be backcrossed with the maternal
parentage by the mtDNA haplotype of D. japonicus and 19 of D. suweonensis, representing
56.14% of the total individuals.

For most individuals, the HRM analysis of the mitochondrial 12S rRNA gene and
the ratio of Q values from the STRUCTURE analysis of the five nuclear genes were
consistent with theirmaternal parentage determination. For example,most individuals with
maternal inheritance ofD. japonicus had a Q value of 0.721 or higher for the corresponding
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species, and most individuals with D. suweonensis had a Q value of 0.716 or higher for the
corresponding species. However, two individuals, SJ02_5 and JN02, were determined to
be D. japonicus as maternal inheritance, but STRUCTURE analysis showed that their Q
values of 0.406 and 0.346, respectively, were attributable to D. japonicus, indicating a least
admixed individual or cyto-nuclear discordance.

DISCUSSION
In general, nuclear DNA (nuDNA) is stably transmitted to the offspring and is characterized
by biparental inheritance, whereas mtDNA is characterized by maternal inheritance.
Methods that analyze both mtDNA and nuDNA for species and hybrid identification have
been shown to significantly increase the accuracy in determining their parental lineage
(McKay & Zink, 2010; Sun & Pang, 2013; Toews & Brelsford, 2012; Whittaker, Assinder &
Shaw, 1994; Funk & Omland, 2003). Studies identifying hybrids through mtDNA-nuDNA
comparative analysis have been used to identify introgressive hybrids to elucidate the
process of introgressive hybridization and understand the level of genetic diversity (Zhang
et al., 2018). These methods have been used in amphibian researches, including the
identification of potential polyploid hybrids and backcrosses (Correa et al., 2012; Stöck
et al., 2010; Velo-Antón et al., 2021). In this study, we used the mitochondrial 12S rRNA
gene of D. suweonensis, D. japonicus, and their hybrids to identify maternal parentage by
HRM analysis and applied DNA sequencing to five nuclear genes that contained SNPs,
thereby greatly improving the identification accuracy of the purebred species and hybrids.

Sequence chromatograms from the five nuclear genes have the advantage of being able
to reconstruct parental sequences of DNA segments from heterozygotes and interspecies
hybrids for multiple linked points through the identification of SNPs and heterozygous
sequence patterns (Sousa-Santos et al., 2005). While interspecific F1 hybrid individuals are
commonly characterized by heterozygous sequences at all SNPs between the two species
(Depaquit et al., 2019; Sousa-Santos et al., 2005). However, the individuals analyzed in this
study showed an irregular pattern. Most of the hybrids in this study were backcrosses.

VÄHÄ & Primmer (2006) employed two Bayesian-based programs, STRUCTURE
and NEWHYBRIDS to effectively detect hybrids. They determined the optimal genetic
differentiation threshold based on three key aspects, efficiency, accuracy, and overall
performance, with a Q value of 0.900 or higher. In a previous study, hybrids of D.
suweonensis were classified when the assignment probability was below 90.0% (Borzée
et al., 2020). However, our study proposed a Q value threshold of 0.995 because of the
absence of heterozygous sequences between D. suweonensis and D. japonicus across the
five nuclear genes. Although reducing the threshold might result in a larger number of
individuals being classified as purebred parental species, we argue that a stricter threshold
aligns more closely with the criteria essential for determining parental species, particularly
in the context of conserving endangered wildlife species (De Hert et al., 2012; Yan et al.,
2017).

Admixture analysis can be used to identify F1 and F2 hybrids, and first-generation
backcrosses, which are characterized by a decrease in the admixture rate (Q) of the species
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by approximately one-half with each new backcross generation (VÄHÄ & Primmer, 2006;
Weetman et al., 2014). In this study, we were able to accurately identify hybrids between D.
suweonensis and D. japonicus, and the proportion of individuals that could be presumed
to be backcrosses was very high, at 56.14% of the total individuals. In particular, the fact
that no F1 hybrids were identified between D. suweonensis and D. japonicu s suggests that
hybridization between the two tree frog species has occurred over a long period of time,
and hybrids can interbreed with one of their parental species that share the same habitats
and that these species are not completely isolated and are largely admixed. Therefore, as
mentioned above, it emphasizes the need to apply strict threshold values when separating
the two tree frog species and their hybrids by Q values in STRUCTURE analysis, using the
method developed in this study.

Hybridization, which is recognized as a significant driver of extinction, can imperil
endangered wildlife species through processes such as hybridization suppression or
genetic assimilation. The impact of hybridization on species can be detrimental, as it
facilitates gene flow between different species, potentially leading to reduced biodiversity
through direct and indirect pathways or even culminating in species extinction (Levin,
2002; Rieseberg & Carney, 1998). Our findings indicate that substantial hybridization
or backcrosses between D. suweonensis and D. japonicus could markedly diminish their
populations. Moreover, half of all individuals were backcrosses. Backcrosses tend to
exhibit a higher imbalance in mitochondrial/nuclear ratios owing to paternal leakage,
which detrimentally influences their survival (Vilaça et al., 2023). In the present study, two
individuals of D. japonicus displayed a high level of admixture, with D. Japonicus mtDNA
haplotype and a predominantly D. suweonensis nuDNA background. Similar instances of
genetic mismatches between mtDNA and nuDNA have been observed in other amphibian
species (Ambu et al., 2023; Cairns et al., 2021; Eto, Matsui & Sugahara, 2013). Majtyka
et al. (2022) showed that the introgression of mtDNA was a consequence of repeated
backcrossing and some hybrids between Hyla arborea and H. orientalis exhibited instances
of cyto-nuclear discordance. The occurrence of cyto-nuclear discordance may suggest
factors such as introgression through hybridization (Lee-Yaw et al., 2019), sex-biased
dispersal (Seixas, Boursot & Melo-Ferreira, 2018), or shifts in hybrid zones (Wielstra, 2019).
Notably, amphibians have demonstrated differential growth in individuals based on their
mitochondrial type (mitotype), with lower growth rates occurring during instances of
cyto-nuclear discordance (Lee-Yaw, Jacobs & Irwin, 2014). This is not only the case of cyto-
nuclear discordance, but also the case of the presence of nuclear copies of mitochondrial
pseudogenes (NUMTs) (Hlaing et al., 2009) that could be considered. Therefore, future
studies should comprehensively clarify whether such genotypes are related to habitat or
environmental factors.
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CONCLUSIONS
Previous studies have underscored that hybridization between D. suweonensis and D.
japonicus constitutes a primary driver of the extinction threat faced by the former species
(Borzée, Andersen & Jang, 2018; Borzée et al., 2020). Given the substantial number of
hybrid individuals in this study, it is imperative to explore strategies to curb hybridization
and safeguard endangered wildlife species. Hence, the crucial course of action involves
elucidating the mechanisms underlying hybridization and promoting population
stabilization (Bohling, 2016). The DNA sequencing strategy of the five nuclear genes
used in this study is expected to offer several benefits. This can counteract the potential
data bias attributed to null alleles when solely employing microsatellite markers for
hybridization analysis. Additionally, nuclear gene markers can enable the stringent
determination of purebred parental species with a higher resolution, thus significantly
aiding in unraveling the mechanisms of hybridization. This study lays the groundwork
for systematic investigations, enhancing the precise identification of purebred parental
species and their hybrids, D. suweonensis and D. japonicus. Such advancements serve as
a fundamental framework for guiding efforts toward the restoration of reproductive
processes, a critical endeavor that necessitates the conservation and restoration of
endangered D. suweonensis.
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