SCUBE1 inhibits pulmonary artery smooth muscle cell proliferation and migration in acute pulmonary embolism by modulating BMP7 (#91224)

First submission

Guidance from your Editor

Please submit by 2 Nov 2023 for the benefit of the authors (and your token reward) .

Structure and Criteria

Please read the 'Structure and Criteria' page for general guidance.

Custom checks

Make sure you include the custom checks shown below, in your review.

Raw data check

Review the raw data.

Image check

Check that figures and images have not been inappropriately manipulated.

If this article is published your review will be made public. You can choose whether to sign your review. If uploading a PDF please remove any identifiable information (if you want to remain anonymous).

Files

Download and review all files from the <u>materials page</u>.

- 5 Figure file(s)
- 2 Raw data file(s)
- 1 Other file(s)

Human participant/human tissue checks

- Have you checked the authors ethical approval statement?
- Does the study meet our <u>article requirements</u>?
- Has identifiable info been removed from all files?
- Were the experiments necessary and ethical?

Structure and Criteria

Structure your review

The review form is divided into 5 sections. Please consider these when composing your review:

- 1. BASIC REPORTING
- 2. EXPERIMENTAL DESIGN
- 3. VALIDITY OF THE FINDINGS
- 4. General comments
- 5. Confidential notes to the editor
- You can also annotate this PDF and upload it as part of your review

When ready submit online.

Editorial Criteria

Use these criteria points to structure your review. The full detailed editorial criteria is on your guidance page.

BASIC REPORTING

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context.
 Literature well referenced & relevant.
- Structure conforms to <u>PeerJ standards</u>, discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
- Raw data supplied (see <u>PeerJ policy</u>).

EXPERIMENTAL DESIGN

- Original primary research within Scope of the journal.
- Research question well defined, relevant & meaningful. It is stated how the research fills an identified knowledge gap.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.

VALIDITY OF THE FINDINGS

- Impact and novelty not assessed.

 Meaningful replication encouraged where rationale & benefit to literature is clearly stated.
- All underlying data have been provided; they are robust, statistically sound, & controlled.

Conclusions are well stated, linked to original research question & limited to supporting results.

Standout reviewing tips

The best reviewers use these techniques

Τ	p

Support criticisms with evidence from the text or from other sources

Give specific suggestions on how to improve the manuscript

Comment on language and grammar issues

Organize by importance of the issues, and number your points

Please provide constructive criticism, and avoid personal opinions

Comment on strengths (as well as weaknesses) of the manuscript

Example

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57-86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that an international audience can clearly understand your text. Some examples where the language could be improved include lines 23, 77, 121, 128 – the current phrasing makes comprehension difficult. I suggest you have a colleague who is proficient in English and familiar with the subject matter review your manuscript, or contact a professional editing service.

- 1. Your most important issue
- 2. The next most important item
- 3. ...
- 4. The least important points

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.

SCUBE1 inhibits pulmonary artery smooth muscle cell proliferation and migration in acute pulmonary embolism by modulating BMP7

Xiaoya Qu Corresp., 1, Dongmei Huang 1, Xiaomin Zhou 1, Wenwen Ruan 1

Corresponding Author: Xiaoya Qu Email address: quxiaoya@mail.ustc.edu.cn

Objectives: Activated platelets after acute pulmonary embolism (APE) can release bioactive factors to promote pulmonary artery smooth muscle cell (PASMC) proliferation and migration. SCUBE1 was reported to be able to participate in platelet-platelet interactions, possibly involved in the activation of platelets in early onset thrombi. This study was intended to investigate the expression changes of SCUBE1 in PASMCs after APE and the underlying mechanism. **Methods:** The plasma of APE patient and healthy control was collected. The hyperproliferative model of PASMCs was established by using PDGF as a stimulator. Cell counting kit-8 (CCK-8), Transwell, wound healing, Western blot and co-IP assays were used to investigate the regulation of SCUBE1-mediated BMP7 on PDGFinduced PASMC proliferation and migration. Results: Increased of SCUBE1 was found in APE patient plasma and PDGF-induced PASMCs. Interference of SCUBE1 relieved PDGFinduced proliferation, migration and decreased PCAN expression. Mechanism studies demonstrated that SCUBE1 bound with BMP7 and positively BMP7 expression. Enhanced of BMP7 abolished the impact of SCUBE1 silencing on proliferation and migration of PASMCs after PDGF treatment. Conclusion: In the PDGF-induced proliferation of PASMCs, the expression of SCUBE1 was upregulated and the expression of BMP7 was downregulated, SCUBE1 silencing may inhibit the PDGF-induced proliferation and migration of PASMCs by restraining BMP7.

¹ Department of Basic Medicine, Xiamen Medical College, Fujian, China

- 1 SCUBE1 inhibits pulmonary artery smooth muscle cell proliferation and migration
- 2 in acute pulmonary embolism by modulating BMP7
- 3 Xiaoya Qu*, Dongmei Huang, Xiaomin Zhou, Wenwen Ruan
- 4 Department of Basic Medicine, Xiamen Medical College, Xiamen, Fujian 361023, China
- **5 Corresponding Author:**
- 6 Xiaoya Qu.
- 7 No.1999, Guankou Middle Road, Jimei District, Xiamen, Fujian 361023, China.
- 8 Email address: quxiaoya@mail.ustc.edu.cn

- 10 Abstract
- Objectives: Activated platelets after acute pulmonary embolism (APE) can release
- bioactive factors to promote pulmonary artery smooth muscle cell (PASMC) proliferation
- and migration. SCUBE1 was reported to be able to participate in platelet-platelet
- interactions, possibly involved in the activation of platelets in early onset thrombi. This
- study was intended to investigate the expression changes of SCUBE1 in PASMCs after
- 16 APE and the underlying mechanism.
- 17 Methods: The plasma of APE patient and healthy control was collected. The
- 18 hyperproliferative model of PASMCs was established by using PDGF as a stimulator. Cell
- 19 counting kit-8 (CCK-8), Transwell, wound healing, Western blot and co-IP assays were
- used to investigate the regulation of SCUBE1-mediated BMP7 on PDGF-induced PASMC
- 21 proliferation and migration.
- 22 Results: Increased of SCUBE1 was found in APE patient plasma and PDGF-induced
- 23 PASMCs. Interference of SCUBE1relieved PDGF-induced proliferation, migration and
- 24 decreased PCAN expression. Mechanism studies demonstrated that SCUBE1 bound with
- 25 BMP7 and positively BMP7 expression. Enhanced of BMP7 abolished the impact of
- 26 SCUBE1 silencing on proliferation and migration of PASMCs after PDGF treatment.
- 27 Conclusion: In the PDGF-induced proliferation of PASMCs, the expression of SCUBE1
- 28 was upregulated and the expression of BMP7 was downregulated, SCUBE1 silencing may
- 29 inhibit the PDGF-induced proliferation and migration of PASMCs by restraining BMP7.

30 **Keywords:** Acute pulmonary embolism, pulmonary artery smooth muscle cell, SCUBE1,

31 proliferation, migration

32

33

1 Introduction

Acute pulmonary embolism (APE) is the collective term for a group of disorders or clinical 34 syndromes in which various emboli occlude the pulmonary arterial system as the cause of 35 their morbidity [1, 2]. APE is a common and severe life-threatening condition associated 36 with myocardial infarction, stroke and known as the three major cardiovascular diseases. 37 The rapid progression of the onset of APE, the variety of symptoms, the high case fatality 38 rate of severe illness, and the common phenomenon of diagnosis and treatment error, 39 increasingly become the life-threatening medical difficulty of people in today's era [3, 4]. 40 Although diagnostic techniques are constantly improving, approximately 30% of patients 41 still die without being diagnosed with acute pulmonary embolism [5]. At present, clinical 42 according to the degree of embolization is commonly used drug treatment modalities are 43 divided into thrombolytic therapy and anticoagulant therapy, but thrombolytic side effects 44 are also more obvious, and patients need to face the risk of bleeding. Therefore, clear 45 46 diagnosis and seeking for therapeutic drugs and targets become effective means to reduce 47 the case fatality of acute pulmonary embolism. With the development of biological research, researchers have found that platelet-derived 48 growth factor (PDGF), a major bioactive factor released by activated platelets after APE, 49 has a strong vasoconstrictor effect and is also able to promote the proliferation of 50 pulmonary artery smooth muscle cells (PASMCs) and promote the transformation of 51 fibroblasts into smooth muscle cells, which leads to the remodeling of the pulmonary 52 vasculature [6, 7]. PASMCs are located in the tunica media of the pulmonary artery wall 53 and, under pathological stimuli, can migrate from the tunica media to the intima, the 54 interior of which initiates the abnormal proliferation of PASMCs through a series of cell 55 signal transduction systems [8]. Therefore, it is important to elucidate the molecular 56 mechanisms and signaling pathways that lead to abnormal proliferation and migration in 57 PASMCs. 58

Signal peptide cub epidermal growth factor domain containing protein 1 (SCUBE1) is an activated platelet surface expressed and secreted glycoprotein in early embryonic development stage, which can promote the interaction between platelets and support platelet matrix adhesion [9]. A study indicated that SCUBE1 was upregulated in renal tumor tissues, which could be a promising biomarker in renal cell cancer [10]. In aneurysmal subarachnoid hemorrhage (aSAH), SCUBE1 level are correlated with increasing severity and poor outcomes of aSAH patients [11]. Some foreign scholars have reported that SCUBE1 expression is high in acute pulmonary embolism patients and extremely low in healthy people, suggesting that SCUBE1 is promising as a biomarker for the early diagnosis of APE [12]. However, there are few studies on SCUBE1 in APE, and whether it is involved in PASMC proliferation and migration remains to be clarified. In the current study, we aim to decipher the role and regulator network of SCUBE1 in the proliferation, migration of PASMCs and provide a theoretical basis for the research of SCUBE1 on treatment of APE.

2 Methods and materials

2.1 Study subjects

Study subject acute pulmonary embolism (APE) patients who visited the The Second Affiliated Hospital of Xiamen Medical College were selected as the case group, and those who had no previous history of allergy and were in good health were selected as the control group. There were no significant differences in age and gender comparisons between the two groups. All patients with APE were diagnosed by computed tomography pulmonary arteriography and without any treatment before the diagnosis was confirmed. And exclusion of patients with concomitant right ventricular dysfunction of other causes, and other causes of SCUBE1 gain, such as acute coronary syndrome, acute myocardial infarction, acute ischemic cerebrovascular disease, peripheral artery disease, or other ischemic diseases. Venous blood (3 mL) was drawn from the APE and healthy control groups, respectively, and the blood was centrifuged, and the upper plasma was stored in a -80°C freezer for further use. All samples obtained in this study were approved by the

- 88 ethics committee of the Xiamen Medical College and abided by the ethical guidelines of
- the Declaration of Helsinki, and have received written informed consent.

90 2.2 Cell culture and treatment

- 91 Human PASMCs purchased from ATCC (VA, USA) were seeded into 6-well plates and
- oultured in complete medium (DMEM/F12 medium + 10% FBS) at 37°C and 5% CO₂. For
- 93 proliferation induction, PASMCs were added with different concentrations of PDGF (10,
- 94 20, or 40 ng/mL). To grow the cells to 70% 80%, the cells were divided into control
- 95 group, PDGF group (PDGF (20 ng/mL) was added into PASMCs for 12 h of stimulation),
- 96 PDGF + sh-NC group (24 h after PASMCs were transfected with sh-NC, PASMCs were
- 97 stimulated with 20 ng/mL PDGF for 12 h) and PDGF + SCUBE1 group (24 h after
- 98 PASMCs were transfected with sh-SCUBE1, PASMCs were stimulated with 20 ng/mL
- 99 PDGF for 12 h). According to the Lipofectamine 2000 reagent instructions, sh-SCUBE1
- and sh-NC were transfected into PASMCs and then PASMCs was cultured for 48h.

101 **2.3 RT-qPCR**

- 102 MolPure® Cell/Tissue Total RNA Kit was used to Total RNA extraction (Yi Sheng
- Biotechnology, shanghai, China). A prime script RT-PCR Kit (Takara, Dalian, China) was
- preformed to reverse transcribed into cDNA. The cDNA synthesized in the previous step
- was used as the amplification template for real-time PCR, and the relevant reaction system
- was subsequently configured according to the SYBR Premix Ex TaqTM II kit and
- amplified using a fluorescence quantitative PCR machine. At the end of the reaction, the
- 108 CT value was read and recorded, using a $2^{-\Delta\Delta CT}$ method was used to analyze the
- 109 experimental results.

110 **2.4 Western blot assay**

- 111 After transfection treatment, PASMC were added to RIPA lysate containing enzyme
- inhibitors and left on ice for 15min. After the supernatant was collected by centrifugation,
- the concentration of each protein sample was calculated after establishing a curve based on
- 114 the absorbance of the standard. Protein lysates were diluted according to protein
- concentration to ensure that the same amount of sample (20ug) was loaded into each well,
- and then analyzed on a 10% SDS-PAGE gel. The separating glue was removed for wet

- membrane transfer. At this end, 5% skim milk powder blocking solution was incubated for
- 2h, followed by the addition of the corresponding primary antibody (SCUBE1, PANA,
- 119 GAPDH, BMP7) for overnight incubation at 4 °C. The next day, the primary antibody was
- recovered and the membrane was incubated with horseradish peroxidase-linked secondary
- antibody for 1h. Finally, the developer solution was added to the ChemiDoc Touch imaging
- system for exposure and photography.
- 123 **2.5 CCK-8**
- PASMC suspension was added to each well of a 96 well plate and allowed to seed 4×10^3
- cells. After 24h, discard the old medium and PASMCs were added to fresh medium with
- or without PDGF, and experiments were terminated after different stimulation time points
- 127 (24 h, 48 h, 72 h). Each well was subsequently treated with 10 μL of CCK8 solution for 2
- h and the absorbance of each well was measured at a dual wavelength of 450 nm by a
- 129 microplate reader.
- 130 **2.6 EDU assay**
- 131 PASMCs were seeded into 24 well plates and cultured overnight, followed by the addition
- of a final concentration of 10 μ M of EDU working solution and incubation at 37°C for 2h.
- 133 Upon completion of EDU labelling of cells, PASMCs were fixed by adding 4%
- paraformaldehyde for 15 min. After PASMCs were washed 3 times with 3% BSA,
- permeabilization solution of 0.3% Triton X-100 in PBS was added to each well and
- incubated for 15 min. Then, 100µl of Click reaction solution was added to each well and
- incubated in a wet box at room temperature for 30 min under light. Finally, a 1:10 dilution
- of DAPI staining solution was added to each well, and PASMCs were observed and
- 139 photographed under a fluorescence microscope.
- 140 **2.7 Wound healing assay**
- 141 PASMCs were seeded into 6 cm dishes at the appropriate density after digestion and
- centrifugation, and medium was changed once in 2-3 days to observe cell growth to 80-
- 143 90% confluence. A scratch was formed by scratching the bottom of the dish with a 200 μ L
- sterile pipette tip. Detached cells were rinsed with PBS. Medium with or without PDGF
- was added into culture dish. Images were taken with an inverted microscope within 24 h

- after scratching. The relative distance of cell migration into the scratched area was
- measured, and the percentage of healing was calculated.
- 148 **2.8 Transwell assay**
- 149 PASMC suspensions were made by digesting the cells to a final concentration of 5 \times
- 150 10⁵/mL. Pipetting 200 μL of the above cell suspension was added to the upper chamber of
- the well and 650 μL of the medium containing 10% FBS was added to the lower chamber
- of the chamber. After that, the chambers were put into a 5%CO₂ incubator at 37°C and
- incubated for 24 h. Subsequently, the remaining cells on the upper chamber surface were
- gently wiped away with a disposable cotton swab, 1 mL of 4% paraformaldehyde was
- added, fixed for 20 min, and the chambers were stained with 0.5% crystal violet dye
- solution for 20 min. Five fields were selected for pictures under an inverted microscope,
- and the stained cells were counted.
- 158 **2.9 Statistical analysis**
- The raw data obtained from experiments on this subject were represented as mean \pm
- standard (SD). The statistical method for data comparison between the two groups was
- unpaired t-test by using SPSS 20.0. When P value < 0.05, we considered that the difference
- was statistically significant.

164 **3. Results**

- 165 3.1. SCUBE1 was highly expressed in patients with pulmonary embolism and in
- 166 PDGF-induced PASMCs
- To verify the expression status of SCUBE1 in the plasma of patients with acute pulmonary
- embolism (APE), we collected total RNA from SCUBE1, and applied real time-PCR to
- detect the expression levels of SCUBE1 mRNA in the corresponding plasma. The results
- showed that the mRNA levels of SCUBE1 were all highly expressed in the plasma of
- patients with APE compared with healthy controls (Figure 1A). Furthermore, pulmonary
- artery smooth muscle cells (PASMCs) play an important role in the process of APE. We
- stimulated cells with different concentrations of PDGF (10, 20 or 40 ng/mL) to study the
- expression of SCUBE1 in PASMCs. Western blotting indicated that PDGF intervention

- could promote SCUBE1expression in PASMCs, and the strongest effect was seen on
- 176 SCUBE1 expression at 20 ng/mL PDGF (Figure 1A).

177 3.2 Interference of SCUBE1 restrained PDGF-induced proliferation of PASMCs

- 178 To investigate whether SCUBE1 is involved in ape by regulating PASMC proliferation,
- we applied shRNA to interfere with the expression of SCUBE1 for proliferation
- experiments. The results of Western blotting indicated that sh-SCUBE1 transfection
- showed better interference ability in PASMCs (Figure 2A). CCK-8 assays uncovered that
- interference of SCUBE1 prominently reduced PASMC proliferation (Figure 2B). Besides,
- we further applied EDU assay to assess cell proliferation. We can clearly observe that cell
- proliferation was higher in the PDGF group than in the control group and lower in the
- PDGF + sh-SCUBE1 group than in the PDGF + sh-NC group (Figure 2C). As an important
- protein regulating cell proliferation, the expression of PCNA was evaluated by Western
- blotting. The results demonstrated that PDGF could promote the expression of PCNA,
- while the level of PCNA in the PDGF + sh-SCUBE1 group after inhibition of SCUBE1
- was lower than that in the PDGF + sh-NC group (Figure 2D).

190 3.3 Interference of SCUBE1 restrained PASMC migration

- 191 After PASMCs were transfected with SCUBE1 shRNA, Transwell assay and Wound-
- 192 healing assay were applied to detect the migration ability of PASMCs in each group.
- 193 Though Transwell assay, we found that SCUBE1 silencing leads to the decrease of
- 194 PASMC migration ability, and triggered a decline in the number of cells passing through
- the chamber (Figure 3A). Meanwhile, wound-healing assay results further demonstrated
- 196 that SCUBE1 interference prominently suppressed the migration ability of PASMCs
- 197 (Figure 3B).

198 **3.4 BMP7 was targeted by SCUBE1**

- 199 We further want to study the biological mechanism of SCUBE1 in APE progression. A
- 200 previous study reported that BMP7 was a potential downstream target of SCUBE1. Western
- 201 blotting assays demonstrated that compared to the control, PDGF treatment caused an
- 202 obvious increased of BMP7 in PASMCs (Figure 3A). Through co-IP assay analysis, we
- 203 found that BMP7 existed in complexes precipitated with antibody against SCUBE1 and

- 204 SCUBE1 existed in complexes precipitated with antibody against BMP7 in comparison
- with control IgG (Figure 3B and C). Furthermore, the results of RT-qPCR uncovered that
- elevated of SCUBE1 enhanced BMP7 expression level and interference of SCUBE1
- reduced BMP7 expression level in PASMCs (Figure 3D).
- 208 3.5 SCUBE1 contributed to PASMC proliferation and migration by regulating BMP7
- 209 expression
- 210 To study whether BMP7 participate in SCUBE1-mediated biological behavior in
- 211 PASMCs, sh-SCUBE1 was transfected alone or together with BMP7 into PASMCs. As
- expected, western blotting indicated that inhibition of SCUBE1 conspicuously inhibited
- 213 BMP7 expression, which was restored by transfection with BMP7 (Figure 5A). Though
- 214 CCK-8 and EDU assays, we observed that introduction of BMP7 reversed the impact of
- SCUBE1 silencing on cell proliferation in PASMCs (Figure 4B and C). Surprisingly, the
- decreased PCAN expression was observed in PASMCs after SCUBE1 silencing, whereas
- 217 BMP7 elevated could inverted these change (Figure 4D). In addition, the migration ability
- of SCUBE1-depleted PASMCs was enhanced, which was abrogate by BMP7 upregulation
- 219 (Figure 5E and F)

- 4 Discussion
- APE is a common complex cardiovascular disease caused by multiple pathogenic factors,
- with pulmonary vascular remodeling as the main feature. In recent years, some drugs have
- been confirmed to improve clinical outcomes, but the overall prognosis of this disease
- 225 remains poor, and the underlying pathogenesis is not fully understood. Vascular
- 226 remodeling occurs locally in the pulmonary arteries of the embolized segment after the
- occurrence of APE, and the hyperproliferation and apoptosis inhibition of PASMCs is one
- of the important mechanisms of pulmonary vascular remodeling. For how to inhibit
- 229 PASMC proliferation and promote their apoptosis is the research hotspot of ape therapy at
- 230 present.
- 231 An increasing number of scholars have focused their eyes on the aberrant proliferation of
- 232 PASMCs. It has been shown that miR-106b-5p expression was downregulated in PDGF-

induced PASMCs and APE mouse models and that targeting NOR1 inhibited cell 233 proliferation and migration [13]. DUSP1 level was enhanced by miR-34a-3p silencing to 234 further promote APE development, manifested by accelerating mPAP elevation and 235 pulmonary artery wall thickening in vivo, and promoting PASMC proliferation and 236 migration in vitro [14]. A recent study uncovered that let-7b-5p was a key regulator of 237 proliferation and migration in PASMCs, which could suppress IGF-1 expression to impede 238 PASMC proliferation and migration [15]. Janus kinase 3 inhibition by JANEX-1 helped to 239 ameliorate the proliferation of PASMCs induced by **PDGF** through 240 STAT3/VEGF/FAK signaling pathway in APE [16]. In the present study, our data 241 indicated that elevation of SCUBE1 in patient plasma may be used for the early diagnosis 242 243 of APE. Cellular functional studies revealed that SCUBE1 interference remarkably abrogated the promoting effect of PDGF on proliferation and migration of PASMCs. 244 Recently, a large body of evidence has implicated SCUBE1 in cardiovascular disease, such 245 as acute ischemia stroke, APE, deep vein thrombosis and acute coronary syndrome [12, 17, 246 247 18]. Importantly, SCUBE1 acts as a key adhesion protein through its EGF like domain to form cross homophilic bridges on activated platelets during thrombus formation, thereby 248 249 contributing to the progression of acute thromboembolic disease [9, 12, 19]. In addition, SCUBE1 was highly expressed in peritubular capillaries after renal I/R injury and 250 251 enhanced proliferation of epithelial cells through BMP7 signaling [20, 21]. Earlier studies suggested that bone morphogenetic proteins (BMPs) are involved in vascular progenitor 252 cells during angiogenesis, acting by regulating the growth, differentiation, and turnover of 253 vascular cell populations [22, 23]. There was evidence strongly suggested that 254 dysregulation of bone forming protein signaling was associated with abnormal 255 proliferation and migration of PASMCs. For instance, BMP2 was found to be selectively 256 upregulated in pulmonary arteries exposed to hypoxia, and it could inhibit PASMC 257 proliferation and promote apoptosis [24]. BMP4 contributes to chronic hypoxic pulmonary 258 hypertension by promoting the proliferation, migration and vascular remodeling of 259 PASMCs [25, 26]. Importantly, in PASMCs after monocrotaline pyrrole (MCTP) 260 stimulation, upregulation of BMP7 was found in PASMCs, which enhanced proliferation 261

- 262 and PCAN expression by inhibiting BMPR2 and elevating ActIIα levels [27]. Herr, we
- 263 demonstrate that BMP7 was a target of SCUBE1, silencing of SCUBE1 contributed to
- 264 enhance BMP7 expression. SCUBE1 knockdown suppressed the impact of PDGF on
- proliferation and migration of PASMCs through silencing of BMP7.

267

5 Conclusions

- 268 PDGF treatment resulted in increased expression of SCUBE1, which in turn promoted
- 269 BMP7 expression. SCUBE1 might contribute to the PDGF-induced proliferation of
- 270 PASMCs by positively regulating BMP7, which in turn promoted the occurrence and
- development of APE. The above results provide novel targets and molecular markers for
- 272 ape therapy, thereby favoring the prevention and treatment of malignant pulmonary
- 273 vascular disease-APE.

274

275

Acknowledgements

- I would like to express my gratitude to all those helped me during the writing of this thesis.
- I acknowledge the help of my colleagues, Huaxin Liu and Chun Wu They have offered me
- 278 suggestion in academic studies.

279

280

Funding Statement

- 281 This study was supported by the Science and Technology Project of Education Department
- of Fujian Province (No. JAT200718).

283

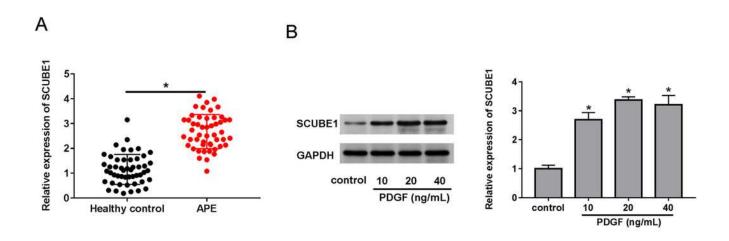
284

References

- [1] I.M. Lang, R. Pesavento, D. Bonderman, J.X. Yuan, Risk factors and basic mechanisms
- of chronic thromboembolic pulmonary hypertension: a current understanding, The
- 287 European respiratory journal 41(2) (2013) 462-8.
- 288 [2] A.S. Raja, J.O. Greenberg, A. Qaseem, T.D. Denberg, N. Fitterman, J.D. Schuur,
- 289 Evaluation of Patients With Suspected Acute Pulmonary Embolism: Best Practice Advice
- 290 From the Clinical Guidelines Committee of the American College of Physicians, Annals

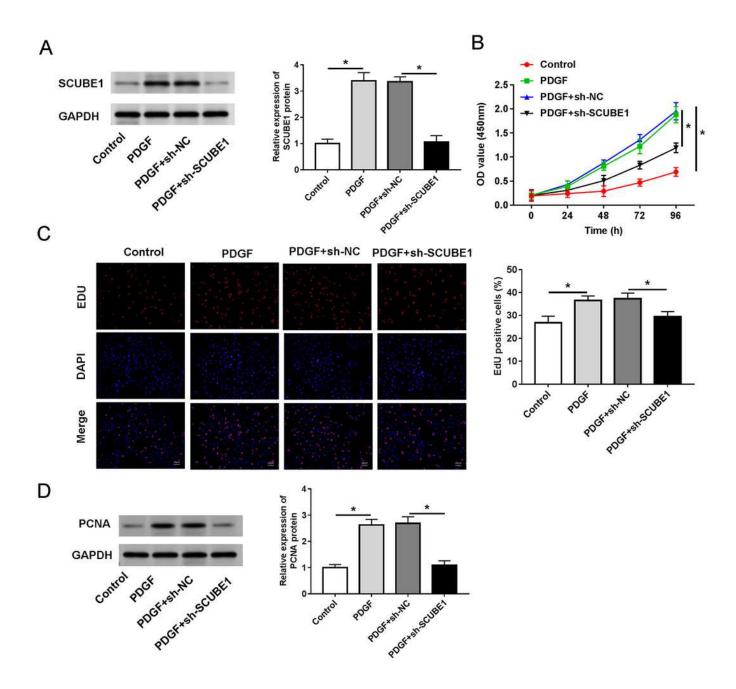
- 291 of internal medicine 163(9) (2015) 701-11.
- 292 [3] Global burden of 369 diseases and injuries in 204 countries and territories, 1990-2019:
- a systematic analysis for the Global Burden of Disease Study 2019, Lancet (London,
- 294 England) 396(10258) (2020) 1204-1222.
- 295 [4] J. Van Galen, L. Pava, C. Wright, A. Elbadawi, A. Hamer, A. Chaturvedi, S.J. Cameron,
- 296 Effect of platelet inhibitors on thrombus burden in patients with acute pulmonary
- 297 embolism, Platelets 32(1) (2021) 138-140.
- 298 [5] U.M. Nagamalesh, V.S. Prakash, K.C.K. Naidu, S. Sarthak, A.V. Hegde, T. Abhinay,
- 299 Acute pulmonary thromboembolism: Epidemiology, predictors, and long-term outcome -
- A single center experience, Indian heart journal 69(2) (2017) 160-164.
- 301 [6] B. Zhou, G. Sun, F. Mei, H. Xu, The effects of low-molecular-weight heparin on lung
- and pulmonary artery injuries in acute pulmonary embolism rat model via platelet-derived
- 303 growth factor-β, Saudi pharmaceutical journal : SPJ : the official publication of the Saudi
- 304 Pharmaceutical Society 25(4) (2017) 564-569.
- 305 [7] X. Xu, L. Shi, X. Ma, H. Su, G. Ma, X. Wu, K. Ying, R. Zhang, RhoA-Rho associated
- 306 kinase signaling leads to renin-angiotensin system imbalance and angiotensin converting
- enzyme 2 has a protective role in acute pulmonary embolism, Thrombosis research 176
- 308 (2019) 85-94.
- 309 [8] L. Farkas, M. Kolb, Pulmonary microcirculation in interstitial lung disease,
- Proceedings of the American Thoracic Society 8(6) (2011) 516-21.
- 311 [9] C.F. Tu, Y.H. Su, Y.N. Huang, M.T. Tsai, L.T. Li, Y.L. Chen, C.J. Cheng, D.F. Dai,
- 312 R.B. Yang, Localization and characterization of a novel secreted protein SCUBE1 in
- human platelets, Cardiovascular research 71(3) (2006) 486-95.
- 114 [10] E. Karagüzel, A. Menteşe, O. Kazaz İ, S. Demir, A. Örem, A.E. Okatan, D.U. Altay,
- 315 S. Yaman, SCUBE1: a promising biomarker in renal cell cancer, International braz j urol:
- official journal of the Brazilian Society of Urology 43(4) (2017) 638-643.
- 317 [11] Y.S. Ding, B. Sun, J.X. Jiang, Q. Zhang, J. Lu, G.Z. Gao, Increased serum
- 318 concentrations of signal peptide-Cub-Egf domain-containing protein-1 in patients with
- aneurysmal subarachnoid hemorrhage, Clinica chimica acta; international journal of

- 320 clinical chemistry 459 (2016) 117-122.
- 321 [12] M.Y. Wu, Y.C. Lin, W.J. Liao, C.F. Tu, M.H. Chen, S.R. Roffler, R.B. Yang,
- Inhibition of the plasma SCUBE1, a novel platelet adhesive protein, protects mice against
- thrombosis, Arteriosclerosis, thrombosis, and vascular biology 34(7) (2014) 1390-8.
- 1324 [13] H. Chen, Q. Ma, J. Zhang, Y. Meng, L. Pan, H. Tian, miR-106b-5p modulates acute
- pulmonary embolism via NOR1 in pulmonary artery smooth muscle cells, International
- 326 journal of molecular medicine 45(5) (2020) 1525-1533.
- 327 [14] Y. Li, J. Shao, J. Song, S. Yu, J. Wang, K. Sun, MiR-34a-3p suppresses pulmonary
- vascular proliferation in acute pulmonary embolism rat by targeting DUSP1, Bioscience
- 329 reports 42(1) (2022).
- 330 [15] Y. Zhang, S. Tang, W. Yang, F. Du, let-7b-5p suppresses the proliferation and
- migration of pulmonary artery smooth muscle cells via down-regulating IGF1, Clinics (Sao
- 332 Paulo, Brazil) 77 (2022) 100051.
- [16] L. Pan, Z. Peng, R. Zhang, R. Zhang, D. Liang, H. Chen, H. Tian, JANEX-1 improves
- acute pulmonary embolism through VEGF and FAK in pulmonary artery smooth muscle
- cells, Experimental biology and medicine (Maywood, N.J.) 245(15) (2020) 1395-1403.
- 136 [17] D.F. Dai, P. Thajeb, C.F. Tu, F.T. Chiang, C.H. Chen, R.B. Yang, J.J. Chen, Plasma
- 337 concentration of SCUBE1, a novel platelet protein, is elevated in patients with acute
- coronary syndrome and ischemic stroke, Journal of the American College of Cardiology
- 339 51(22) (2008) 2173-80.
- 340 [18] S. Turkmen, A. Sahin, M. Gunaydin, S. Sahin, A. Mentese, S. Turedi, S.C. Karahan,
- S. Ozsu, A. Gunduz, The value of signal peptide-CUB-EGF domain-containing protein-1
- 342 (SCUBE1) in the diagnosis of pulmonary embolism: a preliminary study, Academic
- emergency medicine : official journal of the Society for Academic Emergency Medicine
- 344 22(8) (2015) 922-6.
- 145 [19] C.F. Tu, Y.T. Yan, S.Y. Wu, B. Djoko, M.T. Tsai, C.J. Cheng, R.B. Yang, Domain
- and functional analysis of a novel platelet-endothelial cell surface protein, SCUBE1, The
- 347 Journal of biological chemistry 283(18) (2008) 12478-88.
- 348 [20] J. Zhuang, J.A. Deane, R.B. Yang, J. Li, S.D. Ricardo, SCUBE1, a novel

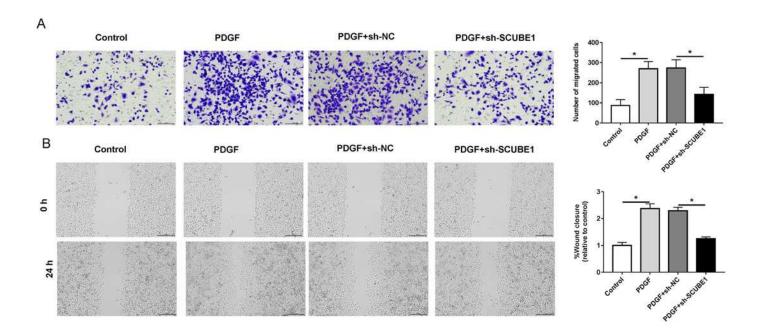


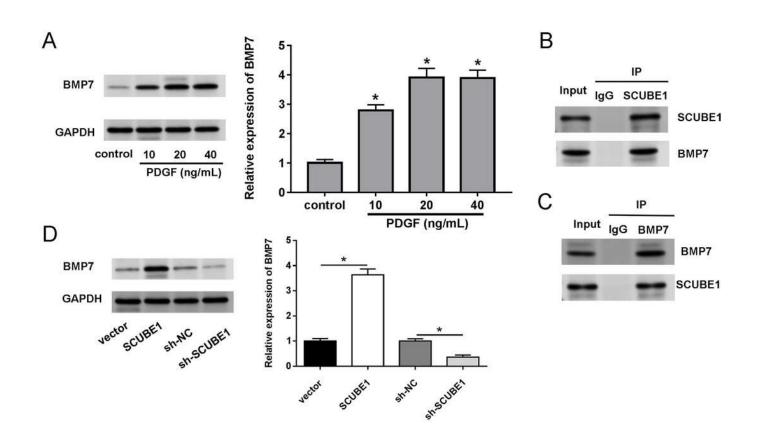
- 349 developmental gene involved in renal regeneration and repair, Nephrology, dialysis,
- transplantation : official publication of the European Dialysis and Transplant Association
- 351 European Renal Association 25(5) (2010) 1421-8.
- 352 [21] W.J. Liao, H. Lin, C.F. Cheng, S.M. Ka, A. Chen, R.B. Yang, SCUBE1-enhanced
- bone morphogenetic protein signaling protects against renal ischemia-reperfusion injury,
- Biochimica et biophysica acta. Molecular basis of disease 1865(2) (2019) 329-338.
- 355 [22] N.W. Morrell, Pulmonary hypertension due to BMPR2 mutation: a new paradigm for
- tissue remodeling?, Proceedings of the American Thoracic Society 3(8) (2006) 680-6.
- 357 [23] M. Moser, C. Patterson, Bone morphogenetic proteins and vascular differentiation:
- BMPing up vasculogenesis, Thrombosis and haemostasis 94(4) (2005) 713-8.
- 359 [24] H. Takahashi, N. Goto, Y. Kojima, Y. Tsuda, Y. Morio, M. Muramatsu, Y. Fukuchi,
- 360 Downregulation of type II bone morphogenetic protein receptor in hypoxic pulmonary
- 361 hypertension, American journal of physiology. Lung cellular and molecular physiology
- 362 290(3) (2006) L450-8.
- 363 [25] Y. Zhang, W. Lu, K. Yang, L. Xu, N. Lai, L. Tian, Q. Jiang, X. Duan, M. Chen, J.
- Wang, Bone morphogenetic protein 2 decreases TRPC expression, store-operated Ca(2+)
- entry, and basal [Ca(2+)]i in rat distal pulmonary arterial smooth muscle cells, American
- journal of physiology. Cell physiology 304(9) (2013) C833-43.
- [26] L. Anderson, J.W. Lowery, D.B. Frank, T. Novitskaya, M. Jones, D.P. Mortlock, R.L.
- 368 Chandler, M.P. de Caestecker, Bmp2 and Bmp4 exert opposing effects in hypoxic
- 369 pulmonary hypertension, American journal of physiology. Regulatory, integrative and
- 370 comparative physiology 298(3) (2010) R833-42.
- 371 [27] N. Sun, Y. Chen, F. Yu, F. Zhixin, J. Lin, B. Sun, B. Yu, X. Cheng, X. Zheng, B. Wu,
- 372 Monocrotaline pyrrole enhanced bone morphogenetic protein 7 signaling transduced by
- alternative activin A receptor type 2A in pulmonary arterial smooth muscle cells, European
- 374 journal of pharmacology 863 (2019) 172679.

SCUBE1 was overexpressed in in-the plasma of patients with APE and PASMCs after PDGF stimulation.


A: RT-qPCR was used to analyze the relative expression of SCUBE1 in SCUBE1 (n = 50). B: Western blotting was used to analyze relative expression of SCUBE1 in PASMCs after different concentration of PDGF (10, 20 or 40 ng/mL). *P < 0.05.

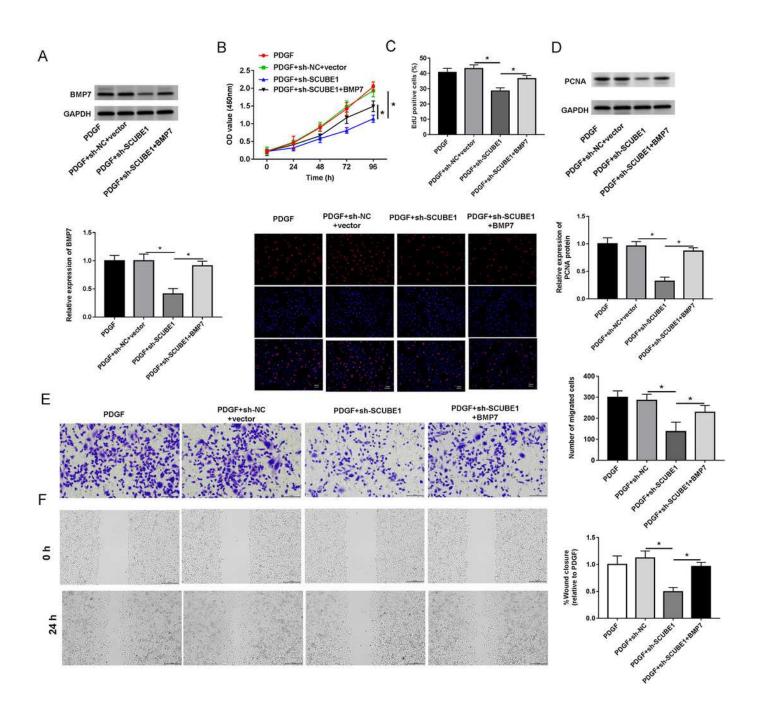
PDGF-induced proliferation of PASMCs was decreased by SCUBE1 silencing.


sh- SCUBE1 or sh-NC was transfected into PASMCs. A: Western blotting detection of SCUBE1 level in PASMCs after treatment. B: CCK-8 assay detection of PASMC proliferation after treatment. C: EDU assay detection of PASMC proliferation after treatment. D: Western blotting detection of PCNA level in PASMCs after treatment. *P < 0.05.


PDGF-induced migration of PASMCs was decreased by SCUBE1 silencing.

sh- SCUBE1 or sh-NC was transfected into PASMCs. A: Transwell migration assay detection of PASMCs migration. Scale bar: 100 μ m. B: wound-healing assay detection of PASMCs migration. Scale bar: 100 μ m. *P < 0.05.

SCUBE1 bound with BMP7.


A: Western blotting detection of BMP7 level in PASMCs after PDGF treatment. B and C: CoIP validation of the relationship of SCUBE1 and BMP7. D: Western blotting detection of BMP7 level in PASMCs after SCUBE1 overexpression or knockdown. *P < 0.05.

SCUBE1 interference accelerated proliferation and migration in PDGF-induced PASMCs by reducing BMP7.

A: Western blotting detection of BMP7 level in PASMCs. B: CCK-8 and EDU detection of PASMCs proliferation. D: Western blotting detection of PCAN level in PASMCs. E and F: Transwell and Wound-healing assay detection of PASMCs migration *P < 0.05.

