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ABSTRACT
Background. PM2.5 is a well-known harmful air pollutant that can lead to acute
exacerbation and aggravation of respiratory diseases. Although ferroptosis is involves in
the pathological process of pulmonary disease, the potential mechanism of ferroptosis
in PM2.5-caused lung inflammation and fibrosis need to be further clarified. Quercetin
is a phenolic compound that can inhibit ferroptosis in various diseases. Hence, this
study explores the role of ferroptosis in lung injury induced by PM2.5 in order to further
elucidate the beneficial effect of quercetin and its underlying mechanism.
Methods. C57BL/6J mice were treated with either saline or PM2.5 by intratracheal
instillation 20 times (once every two days). Additionally, PM2.5-treated mice were
supplemented with two doses of quercetin. Lung injury, lipid peroxidation, iron
content and ferroptosis marker protein expression and the Nrf2 signaling pathway were
evaluated. In vitro, cell experiments were applied to verify the mechanisms underlying
the links between Nrf2 signaling pathway activation and ferroptosis as well as between
ferroptosis and inflammation.
Results. In vivo, PM2.5 increased lung inflammation and caused lung fibrosis and
increased lipid peroxidation contents, iron contents and ferroptosis markers in lung
tissues; these effects were significantly reversed by quercetin. Additionally, quercetin
upregulated the nuclear Nrf2 expression and downregulated Keap1 expression in lung
tissues of PM2.5-exposed mice. Quercetin decreased lipid peroxidation products, iron
contents and ferroptosis levels and increased the nuclear translocation of Nrf2 and
the degradation of Keap1 in PM2.5-exposed BEAS-2B cells. Moreover, we found that
quercetin and dimethyl fumarate markedly decreased lipid peroxidation production
and ferroptosis by activating the Nrf2-Keap1 pathway in PM2.5-exposed cells. Further-
more, quercetin reduced inflammatory cytokines and TGF-β1 in PM2.5-exposed cells.
Conclusion. Our data suggested that Nrf2 is involved in ferroptosis in PM2.5-induced
lung injury, and quercetin can alleviate these adverse effects via activating Nrf2-Keap1
signaling pathway.

Subjects Biochemistry, Molecular Biology, Respiratory Medicine, Environmental Health
Keywords Quercetin, PM2.5, Ferroptosis, Nrf2, Lung fibrosis

INTRODUCTION
Exposure to ambient PM2.5 is the most important environmental risk factor related
to public health worldwide. It has been reported that air pollution caused more than
onemillion premature deaths each year in China (Burnett et al., 2018; Lelieveld et al., 2015).
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PM2.5 is one of the most important air pollutants in most countries worldwide, especially
in developing countries. The major sources of ambient PM2.5 originate from vehicle
emissions, mineral dust, and biomass incineration (Manousakas et al., 2017). PM2.5 can be
directly inhaled into the alveoli and enter the circulatory system, systemically spreading
and impairing multiple systems (Laing et al., 2010; Yang et al., 2020). Considering that
PM2.5 has been confirmed the fifth important risk factor for mortality and is the greatest
contributor to human health burdens worldwide (Landrigan et al., 2018), it is important to
study effective strategies for reducing the health hazards associated with PM2.5 exposure.

Epidemiological evidence has confirmed that ambient PM2.5 exposure is highly
correlated with the morbidity of patients with respiratory diseases (Pope 3rd et al., 2019).
In addition, an increasing amount of evidence from rodent experiments showed that
PM2.5 exposure triggers an inflammation response in various types of respiratory cells
and induces lung fibrosis (He et al., 2017; Zhao et al., 2020; Zheng et al., 2018). The World
Health Organization (WHO) has stated that the daily limit of exposure to PM2.5 should not
exceed of 25 µg/m3 concentration, for the safety of human health. However, PM2.5 at low
concentrations also causes certain public health risks (Fann et al., 2012). Thus, in current
study, we want to study the effect of low concentrations of PM2.5 on the lung, which is the
target organ for air pollutants.

Iron-dependent ferroptosis involves lipid peroxidation and iron accumulation (Dixon
et al., 2012). Ferroptosis potentially serve a novel target for diagnosis and therapy of many
diseases, such as pulmonary diseases (Tao, Li & Liu, 2020), cancers (Nie et al., 2021) and
cardiovascular diseases (Wu et al., 2021). Interestingly, in in vivo studies, inhibition of
ferroptosis improved PM2.5-caused acute and chronic lung injury (Guo et al., 2022; Yan
et al., 2022). Thus, modulation of ferroptosis is considered a new method for reversing
respiratory system damage induced by PM2.5 exposure. Quercetin (Que) is a natural
flavonoidwith antioxidant effect, can exert suppression effect on ferroptosis in nonalcoholic
fatty liver disease and type 2 diabetes (Jiang et al., 2022; Li et al., 2020a). Previous studies
have reported that Que treatment could prevent the pathologic changes inmice with COPD
phenotype (Farazuddin et al., 2018) and alleviate radiation-induced lung injury (Verma et
al., 2022). Thus, we want to investigate whether Que could improve PM2.5 exposure-caused
lung injury through inhibiting ferroptosis.

In the current study, we aimed to explore the effect and potential mechanism of chronic
exposure to low-concentrations of ambient PM2.5 on lung injury. Moreover, we studied
the beneficial functions and possible molecular mechanisms of Que treatment on PM2.5

exposure-caused lung toxicology.

MATERIALS & METHODS
Materials
Que (99% purity) was obtained from Solarbio Biological Technology Co., Ltd. (Beijing,
China). Antibodies purchased from Sanying Bio, Inc. (Wuhan, China) included rabbit
anti-GPX4, rabbit anti-ACSL4, rabbit anti-Nrf2, rabbit anti-Keap1, rabbit anti-TGF-β1,
rabbit anti-Collagen-I, rabbit anti-GAPDH, and rabbit anti-PCNA primary antibodies and
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goat anti-rabbit antibody. FBS and DMEM were obtained from Corning (Corning, NY,
USA).

Animal care and PM2.5 exposure procedure
The 6–8 weeksMale C57BL/6J mice (18–22 g) were purchased from a commercial company
(Vital River Laboratory Animal Technology Co., Ltd., Beijing, China). Mice were housed
in the experimental animal room (20−24 ◦C, 40%–60% humidity) and maintained under
12-hour light/dark cycle. Threemicewere fed in each cage and allmicewere allowed to drink
and eat freely. Animal experimental protocols were approved by the Ethics Committee at
the Jiangsu Vocational College of Medicine (ethics number: LLSQ-202104160001).

Twenty-four mice were randomly (random number table method) assigned into four
groups (six mice in each group): (1) the control group; (2) the PM2.5 group; (3) the
PM2.5-Que50 group; and (4) the PM2.5-Que100 group. A previous study reported that
50 mg/kg·bw Que can protect against LPS caused lung injury in mice (Chen et al., 2022).
Thus, 50 mg/kg·bw and 100 mg/kg·bw Que were used for animal experiments. The mice
in the PM2.5-Que groups exposed to PM2.5 (5 mg/kg·bw, once every two days, total
20 times) by intratracheal instillation and simultaneous daily supplemented with Que
(50 and 100 mg/kg·bw) by oral gavage for 60 days. The animals in the control group
were given intratracheal instillation of saline and oral gavage with 0.1 mL of deionized
water daily. The dosage of PM2.5 used in this study was estimated based on the interim
target-1 for the annual mean PM2.5 concentration (35 µg/m3), which was suggested by
the WHO air quality guidelines (Jiang et al., 2021a). Moreover, mouse respiratory times
and the uncertainty factor were considered to calculate the dose of PM2.5 (Jiang et al.,
2021a). After PM2.5 exposure (20 times intratracheal instillation), the mice were sacrificed
using a 1%Pentobarbital Sodium for intraperitoneal anesthesia (Lv et al., 2020) and cervical
dislocation according to the American VeterinaryMedical Association (AVMA) Guidelines
on Euthanasia.

Sampling section
Blood samples were removed via heart puncture, and lung tissues were dissected and
weighed. The lung tissues of the mice were quickly isolated. The right lungs were used
for lung bronchoalveolar lavage. A part of left lungs was placed in 4% paraformaldehyde
solution for histological observation and the other lungs were at −80 ◦C for further study.

PM2.5 collection
Cumulative PM2.5 was collected with an air sampler (TE-6070C; Tisch Environmental,
Cleves, OH,USA). The filters weremaintained at−80 ◦C. To obtain PM2.5, the filters loaded
with PM2.5 were cut into many pieces (2 cm ×2 cm) and sonicated (Jiang et al., 2020).
PM2.5 samples were suspended in saline and sonicated before intratracheal instillation.

Lung bronchoalveolar lavage of the mice
After the last PM2.5 exposure, the right lungs were washed with 0.5 ml of PBS 5 times.
Collected bronchoalveolar lavage fluids (BALF) were centrifuged at 875× g/min for 10
min to pellet cells (Ding et al., 2019). The supernatant from the BALF was collected for
pro-inflammatory cytokine analysis.
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Cell culture
BEAS-2B cells were obtained from the KUNMING Cell Bank (Kunming, China). BEAS-2B
cells were cultured in a DMEM with 10% FBS and 100 units/mL penicillin-streptomycin
and maintained at 37 ◦C in an incubator with 5% CO2. Cell viability was determined by
CCK-8 (DOJINDO, Shanghai, China). BEAS-2B cells were exposed with PM2.5 or Que for
24 h to establish the treatment dose. In the previous study, 10 µmol/L Que was used in
the subsequent study (Lee & Yoo, 2013). Thus, BEAS-2B cells were treated with different
doses of Que (0, 5, 10, 20 and 40 µmol/L) to assess the cell viability. BEAS-2B cells were
simultaneously treated with Que, 10 µmol/L ferrostatin-1 or the Nrf2-specific agonist
dimethyl fumarate (DMF, 20 µmol/L; APEx Bio, Houston, TX, USA) in the presence of
PM2.5 for 24 h.

Determination of pro-inflammatory cytokines
The levels of interleukin-1β (IL-1β), TNF-α and interleukin-6 (IL-6) were determined by
commercial ELISA kits (MLBio, Inc., Shanghai, China). The detected methods as follows:
all kits were kept at room temperature (20−25 ◦C) for 30 min before use. Then samples
were measured according to protocol and optical density of each sample wall was measured
at 415 nm using the standard microplate reader (Enspire; PerkinElmer, Waltham, MA,
USA).

Histological assessment
Lung tissues were placed in 4% paraformaldehyde solution and subsequently paraffin
embedded. Then, lung sections were subjected to hematoxylin-eosin (H&E) and Masson’s
trichrome staining for the assessment of histological changes. The presence of collagen
deposition in lung sections was used to assess the degree of lung fibrosis as previously
described (Ashcroft, Simpson & Timbrell, 1988; Ding et al., 2019).

Determination of Iron
The iron content in lung tissues was measured by an IRON detection kit (MLBio, Inc.,
Shanghai, China). After adding samples and reagents to the 96-well plate, and measured
the optical density value of samples at a wavelength of 562 nm with a microplate reader
(Enspire, PerkinElmer, USA).

Assessment of oxidative stress in lung tissues and BEAS-2B cells
The concentrations of 4-hydroxynonenal (4-HNE) were measured with a 4-HNE ELISA
kit (MLBio, Inc., Shanghai, China) according to the protocol. Samples absorbance was
measured at 450 nm with a microplate reader (Enspire; PerkinElmer) and calculated
according to a standard curve. The GSH/GSSG ratio was determined by a commercial
detection kit (Nanjing Jiancheng Bio-engineering, Inc., Nanjing, China) according to
the manufacturer’s protocol. The optical density value of sample was determined at a
wavelength of 405 nm with a microplate reader (Enspire; PerkinElmer).

Determination of nuclear translocation of Nrf2 in BEAS-2B cells
Immunofluorescence staining of Nrf2 was performed to determine nuclear translocation
of Nrf2 in BEAS-2B cells. Cells were grown in 12-well plates and exposed to PM2.5 and
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Que for 24 hours. After washed twice with precooling PBS, cells were fixed with 4%
paraformaldehyde at room temperature. Next, cells were permeabilized with 0.1% Triton
X-100, and then incubated with Nrf2 (1:200, Proteintech Bio, Inc., Wuhan, China) primary
antibody overnight at 4 ◦C. Subsequently, the cellular nucleus was stained with DAPI. The
fluorescence images were visualized and photographed using the LSM 900 Meta laser
scanning confocal microscope (Carl Zeiss, Oberkochen, Germany).

Immunoblotting
We extracted total proteins of lung tissue and cells using RIPA lysis buffer protein extraction
reagent (Beyotime Biological Co., Ltd., Shanghai, China). Protein samples underwent 10%
SDS-PAGE gel electrophoresis under constant pressure of 220 V and then transferred to a
polyvinylidene difluoridemembrane under constant pressure of 110V for 120min. At room
temperature, the membranes were blocked with 5% notfat milk for 2 h and then incubated
with primary antibodies including anti-GPX4 (diluted 1:500), anti-ACSL4 (diluted 1:500),
anti-GAPDH (diluted 1:1000), anti-Nrf2 (diluted 1:500), anti-Keap1 (diluted 1:500), anti-
PCNA (diluted 1:500), anti-TGF-β1 (diluted 1:500) and anti-Collagen-I (diluted 1:500)
at 4 ◦C overnight. Then, the blots were incubated with the goat anti-rabbit secondary
antibody. The protein expression levels were visualized using a Tanon ECL detection
system (Shanghai, China).

Statistical analysis
The data are showed as the mean ± standard deviation (SD) and data analysis was carried
out using SPSS 25.0. One-way ANOVA followed by post hoc analysis was used to compare
two or more groups. P < 0.05 indicated a statistically significant difference.

RESULTS
Que attenuated PM2.5-induced lung fibrosis and the inflammatory re-
sponse in the lungs of mice
H&E staining of lung tissues showed obvious morphologic changes, including thickening
of the alveolar septum and increasing of inflammatory cell in the pulmonary interstitium
(Fig. 1A). Fig. 1B showed that lung collagen deposition was increased in the PM2.5-exposed
mice, but collagen deposition was suppressed by Que supplementation. Moreover, PM2.5

significantly increased lung fibrosis scores in mice (Fig. 1C, mean = 3.05, one-way
ANOVA, F = 26.522, p = 0.000, n= 5, df = 19). Moreover, lung fibrosis scores in the
PM 2.5-exposed mice were reduced by Que supplementation (Fig. 1C, mean = 3.05,
one-way ANOVA, F = 26.522, p = 0.009, n= 5, df = 19). No significant difference in
lung weight/body weight was observed among the four groups (Fig. 1D, mean = 4.00,
one-way ANOVA, F = 1.159, p = 0.350, n= 6, df = 23). Our results showed that the
contents of IL-1β, IL-6 and TNF-α in the BALF of PM2.5-exposed mice were obviously
higher than those in the BALF of control mice (Figs. 1E–1G, mean = 32.53/46.30/29.96,
one-way ANOVA, F = 107.511/128.133/47.439, p = 0.000, n= 6, df = 23). In addition,
Que supplementation markedly decreased the contents of IL-1β, IL-6 and TNF-α in the
BALF of mice challenged with PM2.5. Taken together, our data showed that Que exerts
antifibrotic and anti-inflammatory effects on the lungs of PM2.5-challenged mice.
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Figure 1 Que alleviated PM2.5-induced lung fibrosis and inflammation in mice. (A) H&E staining
of lung tissues (scale bars=100 µm). (B) Masson’s trichrome staining of lung tissues. (C) Lung fibrosis
scores (n= 6). (D) Lung weight/body weight (n= 6). (E) IL-1β in BALF (n= 6). (F) IL-6 in BALF (n= 6).
(G) TNF-α in BALF (n= 6). Data are expressed as the mean± SD. *, P < 0.05 and **, P < 0.01 compared
with the control group. #, P < 0.05 and ##, P < 0.01 compared with the PM2.5 group. 4, P < 0.05 com-
pared with the PM2.5-Que/L group.

Full-size DOI: 10.7717/peerj.16703/fig-1

Que reduced lipid peroxidation production and inhibited ferroptosis
in lung tissues of PM2.5-exposed mice
We measured the lipid peroxidation production 4-HNE and GSH/GSSG ratio in lung
tissues. As presented in Figs. 2A–2B, PM2.5 obviously increased 4-HNE content and
decreased GSH/GSSG ratio in the lung tissues, and Que markedly reversed these above
parameters in the lung tissues of PM2.5-challenged mice (mean = 7.02/3.13, one-way
ANOVA, F = 39.451/100.593, p = 0.000, n= 6, df = 23). To study the inhibitory effect of
Que on ferroptosis in lung, we measured the protein expression of ferroptosis markers and
the iron content in lung tissues. PM2.5 exposure significantly increased iron content in lung
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Figure 2 Que reduced lipid peroxidation and iron content and inhibited ferroptosis in the lung tissues
of PM2.5-exposed mice. (A–B) The levels of GSH/GSSG and 4-HNE in lung tissues (n= 6). (C) Iron con-
tent in lung tissues (n = 6). (D) Representative Western blot images of GPX4 and ACSL4 expression. (E–
F) The expression of ferroptosis-related proteins (GPX4 and ACSL4) in lung tissues (n = 3). Data are ex-
pressed as the mean± SD. *, P < 0.05 and **, P < 0.01 compared with the control group.#, P < 0.05 and
##, P < 0.01 compared with the PM2.5 group.

Full-size DOI: 10.7717/peerj.16703/fig-2

tissues, which was reduced by Que treatment (Fig. 2C, mean = 4.17, one-way ANOVA,
F = 302.453, p = 0.000, n= 6, df = 23). PM2.5 exposure decreased GPX4 and increased
ACSL4 in lung tissues, indicating that PM2.5 has been activated ferroptosis in the lung tissues
(Figs. 2D–2F, mean= 0.809/1.953, one-way ANOVA, F = 19.317/76.463, p= 0.001/0.000,
n= 3, df = 11). Furthermore, Que treatment reversed the downregulated GPX4 and the
upregulated ACSL4 in PM 2.5-challenged mice (Figs. 2D–2F). Our results demonstrated
that Que treatment could suppress ferroptosis in the lung of PM 2.5-challenged mice,
exerting strong anti-ferroptotic effects.

Que activated Nrf2 in lung tissues of PM2.5-exposed mice
To clarify themechanismbywhichQue inhibits ferroptosis in lung tissues in vivo, we further
determined the protein expression of nuclear Nrf2 and Keap1 in lung tissues. We found
PM 2.5 apparently downregulated the nuclear Nrf2 protein expression and upregulated
the Keap1 protein expression in lung tissues (Figs. 3A–3C, mean = 1.060/1.271, one-way
ANOVA, F = 47.922/27.542, p = 0.000/0.000, n= 3, df = 11). In addition, Que treatment
decreased the nuclear Nrf2 protein and decreased Keap1 protein expression in the lung
of PM2.5-treated mice (Figs. 3A–3C). Our data suggested that Que treatment apparently
activated Nrf2 in the lung tissues of PM 2.5-treated mice.

Que reduced the expression of TGF-β1 and Collagen-I in lung
To explore the beneficial function of Que on lung fibrosis, the protein expressions of
TGF-β1 and Collagen-I were measured. PM2.5 obviously increased the TGF-β1 protein
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Figure 3 Que activated Nrf2 and reduced the expression of TGF- β1 and Collagen-I in lung tissues
of PM2.5-exposed mice. (A) Representative Western blot images of Nrf2 and Keap1 expression. (B) The
protein expression of Nrf2 in the nucleus in lung tissues (n = 3). (C) The protein expression of Keap1 in
the cytoplasm in lung tissues (n= 3). (D) Representative Western blot images of TGF- β1 and Collagen-I
expression. (E) The protein expression of TGF-β1 in lung tissues (n = 3). (F) The protein expression
of TGF- β1 in lung tissues (n = 3). Data are expressed as the mean± SD. Data are expressed as the
mean± SD. *, P < 0.05 and **, P < 0.01 compared with the control group. #, P < 0.05 and ##, P < 0.01
compared with the PM2.5 group. 4, P < 0.05 compared with the PM2.5-Que50 group.

Full-size DOI: 10.7717/peerj.16703/fig-3

expression and Collagen-I protein expression in the lung tissues and two doses of Que
obviously reversed the increasing of TGF-β1 and Collagen-I caused by PM2.5 (Figs.
3D–3E, mean= 1.340/1.793, one-way ANOVA, F = 28.916/62.550, p= 0.000/0.000, n= 3,
df = 11). Taken together, Que may alleviate PM2.5-induced lung fibrosis by reducing the
expression of TGF-β1 and Collagen-I in the lung.

Que reduced inflammatory response and TGF-β1 by inhibiting
ferroptosis
BEAS-2B cells were exposed with Que (0, 5, 10, 20 and 40 µmol/L) and PM2.5 (0–100
µg/mL) for 24 h. As shown in Fig. 4A, our results presented that PM2.5 (50 µg/mL and
100 µg/mL) markedly decreased the viability of cells (mean = 0.965, one-way ANOVA,
F = 12.926, p= 0.000, n= 6, df = 29). Thus, PM2.5 (50 µg/mL) was used for in vitro study.
The viability of BEAS-2B cells treated with Que (40 µmol/L) showed a significant decrease
(Fig. 4B, mean = 0.963, one-way ANOVA, F = 5.257, p = 0.003, n= 6, df = 29), so Que
at a dose of 20 µmol/L was used in the cell experiments.

To clarify the role of ferroptosis in PM2.5-caused inflammation in vitro, we determined
the ratio of GSH/GSSG and 4-HNE content in cell supernatants, the iron content,
the expressions of ferroptosis markers and TGF-β1, and proinflammatory cytokines
in cells exposed to PM2.5. As presented in Figs. 4C–4E, PM2.5 treatment significantly
decreased the ratio of GSH/GSSG and increased the content of 4-HNE in cell culture
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Figure 4 Que suppressed ferroptosis and ferroptosis-mediated inflammation in PM2.5-treated BEAS-
2B cells. (A) The effect of PM2.5 on BEAS-2B cell viability (n = 3). (B) Effect of Que on BEAS-2B cell vi-
ability (n = 3). (C–D) The ratio of GSH/GSSG and 4-HNE content in cell culture supernatants (n = 3).
(E) Iron content in BEAS-2B cells (n = 3). (F) Representative Western blot images of ferroptosis-related
protein (GPX4 and ACSL4) expression. (G–H) The protein expression of GPX4 and ACSL4 in BEAS-2B
cells (n = 3). Data are expressed as the mean± SD from three independent experiments. *, P < 0.05 and
**, P < 0.01 compared with control cells. #, P < 0.05 and ##, P < 0.01 compared with the PM2.5 group. 44,
P < 0.01 compared with the corresponding control group.

Full-size DOI: 10.7717/peerj.16703/fig-4

supernatants and iron content in BEAS-2B cells, and these changes were reversed by Que
treatment (mean = 1.718/35.032/28.219, one-way ANOVA, F = 104.647/35.101/79.059,
p = 0.000/0.000/0.000, n= 3, df = 17). Moreover, PM2.5 treatment decreased GPX4
expression and increased ACSL4 expression in BEAS-2B cells (Figs. 4F–4H, mean =
0.886/1.106, one-way ANOVA, F = 37.774/24.820, p = 0.000/0.000, n= 3, df = 17).
In addition, both Que and Fer-1 significantly reversed the changes of the expressions of
GPX4 and ACSL4 in BEAS-2B cells (Figs. 4F–4H). Importantly, PM 2.5 treatment obviously
increased the contents of three proinflammatory cytokines in cell culture supernatants (Figs.
5A–5C, mean = 48.511/0.396/116.58, one-way ANOVA, F = 113.701/73.407/124.116, p
= 0.000/0.000/0.000, n= 3, df = 17) and TGF-β1 protein expression in BEAS-2B cells
(Figs. 5D–5E, mean = 1.206, one-way ANOVA, F = 24.636, p = 0.000, n= 3, df = 17).
Furthermore, both Que and Fer-1 obviously reduced the contents of proinflammatory
cytokines in cell culture supernatants and the TGF-β1 protein expression in PM2.5-treated
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Figure 5 Que reduced inflammatory cytokines in cell culture supernatants and TGF-β1 in PM2.5-
treated BEAS-2B cells. (A–C) The content of IL-1β, IL-6 and TNF-α in cell culture supernatants (n= 3).
(D) Representative Western blot images of TGF-β1 expression. (E) The protein expression of TGF-β1 in
BEAS-2B cells (n= 3). Data are expressed as the mean± SD from three independent experiments. *, P <
0.05 and **, P < 0.01 compared with the control cells. #, P < 0.05 and ##, P < 0.01 compared with the
PM2.5 group. 44, P < 0.01 compared with their corresponding control group.

Full-size DOI: 10.7717/peerj.16703/fig-5

cells (Fig. 5). These results suggested that PM2.5 increased the inflammatory response and
TGF-β1 by triggering ferroptosis in BEAS-2B cells and that Que supplementation rescued
these effects.

Que inhibited ferroptosis by activating Nrf2 in BEAS-2B cells
We assessed the effect of Que and DMF on ferroptosis in BEAS-2B cells. As shown in
Figs. 6A–6C, PM2.5 treatment notably downregulated the protein expression of GPX4 and
upregulated the protein expression of ACSL4 in BEAS-2B cells. Additionally, the decreased
protein expression of GPX4 and the increased protein expression of ACSL4 in BEAS-2B
cells were both rescued by Que treatment and DMF treatment (Figs. 6A–6C, mean =
0.961/1.538, one-way ANOVA, F = 12.535/48.760, p = 0.000/0.000, n= 3, df = 17). To
confirm the mechanism by which Que inhibited PM2.5-induced pulmonary ferroptosis,
we further assessed whether Que could activate Nrf2 by DMF to induce ferroptosis in
PM2.5-treated BEAS-2B cells. As shown in Figs. 6D–6E, PM2.5 significantly decreased
nuclear Nrf2 in BEAS-2B cells, which was rescued by Que treatment (mean = 0.821,
one-way ANOVA, F = 45.430, p = 0.000, n= 3, df = 8. Our results showed that the
protein expression of nuclear Nrf2 and Keap1 was apparently decreased in PM2.5-treated
BEAS-2B cells compared with the control group (Figs. 6F–6H, mean = 1.422/2.190,
one-way ANOVA, F = 33.875/67.313, p = 0.000/0.000, n= 3, df = 17). Moreover, the
decreased protein expression of nuclear Nrf2 and the increased protein expression of Keap1
in PM 2.5-treated BEAS-2B cells were reversed by Que treatment and DMF treatment (Figs.
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Figure 6 Que suppressed ferroptosis in PM2.5-treated BEAS-2B cells by activating Nrf2 in vitro. (A)
Representative Western blot images of GPX4 and ACSL4 expression. (B–C) The protein expression of
ferroptosis-related proteins (GPX4 and ACSL4) in BEAS-2B cells (n= 3). (D) Fluorescence images of Nrf2
in BEAS-2B cells (scale bars=10 µm). (E) Fluorescence intensities of nuclear Nrf2 in cells (n = 3). (F)
Representative Western blot images of nuclear Nrf2 and Keap1. (G) Protein level of nucleus Nrf2 (n =
3). (H) Protein expression of Keap1 in the cytoplasm (n= 3). Data are expressed as the mean± SD from
three independent experiments. **, P < 0.01 compared with control cells. #, P < 0.05 and ##, P < 0.01
compared with the PM2.5 group. 4, P < 0.05 and 44, P < 0.01 compared with their corresponding control
group.

Full-size DOI: 10.7717/peerj.16703/fig-6

6F–6H). Taken together, these data suggest that Que may inhibit ferroptosis by activating
the Keap1-Nrf2 signaling pathway in PM2.5-treated BEAS-2B cells.

DISCUSSION
In this study, we found that Que supplementation alleviated PM 2.5-induced murine lung
inflammation and fibrosis by decreasing ferroptosis. Mechanistically, we revealed that
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Que treatment decreased inflammatory cytokines and the profibrotic factor TGF-β1 by
activating Nrf2-Keap1 to suppress ferroptosis in lung epithelial cells. In summary, our
study demonstrated the beneficial function of Que supplementation on PM 2.5-induced
lung injury and the potential mechanism.

The toxicological effects of ambient PM2.5 on the lung have been widely studied;
however, the role of ferroptosis in PM 2.5-induced lung injury is still unclear. Ferroptosis
is a newly identified type of cell death (Jiang, Stockwell & Conrad, 2021b; Stockwell et al.,
2017). Recent studies have shown that the pathophysiological processes of many diseases
are driven by ferroptosis (Li et al., 2020b). A previous study indicated that ferroptosis was
increased in lung tissues of PM-exposed murine models and cell injury models (Wang et
al., 2022b). Moreover, Que has been reported to effectively inhibit ferroptosis via different
mechanisms to alleviate acute kidney injury and high-fat diet-caused hepatic lipotoxicity
(Jiang et al., 2022; Wang et al., 2021). Here, our data demonstrated that PM2.5 markedly
caused iron overload, triggered ferriptosis in lung and BEAS-2B cells, and these changes
were reversed by Que. Here, we demonstrated that Que treatment could inhibit ferroptosis
in the lung tissues of PM2.5-exposed mice and PM2.5-exposed BEAS-2B cells. Moreover, we
observed that chronic exposure to PM2.5 led to lung fibrosis. Therefore, we next investigated
the underlying mechanism by which ferroptosis occurs in PM2.5-induced lung injury and
the protective mechanism of Que on lung fibrosis in PM2.5-exposed mice.

TGF-β1 is one of the most notable and important profibrogenic factors that
accelerates epithelial-mesenchymal transition, promotes fibroblast proliferation, increases
extracellular matrix deposition, activates profibrotic pathways (Woodcock et al., 2019)
and causes lung fibrosis (Saito, Horie & Nagase, 2018). Chronic PM2.5 instillation could
induce lung inflammation and pulmonary fibrosis by activating TGF-β1 in mice (Xu et
al., 2021). In addition, ferroptosis inhibitors alleviate radiation-induced lung fibrosis by
downregulating TGF-β1 in mice (Li et al., 2019). In vivo and in vitro experiments showed
that PM2.5 increased the level of TGF-β1 and that inhibition of ferroptosis reduced the
level of TGF-β1, suggesting that PM2.5 could trigger ferroptosis to increase TGF-β1,
which further causes lung fibrosis. Notably, Que alleviated PM2.5-induced lung fibrosis via
inhibition of ferroptosis in mice.

Ferroptosis plays important roles in the regulation of inflammation and oxidative stress
in the pathogenesis of cardiovascular diseases (Yu et al., 2021). Li et al. (2021) reported
that ferroptosis could mediate inflammation in lipopolysaccharide-treated BEAS-2B cells.
A previous study reported that ferroptosis mediates inflammation in a lipopolysaccharide-
induced acute respiratory distress syndrome murine model (Wang et al., 2022a). Due
to the critical role of ferroptosis in mediating inflammation, the relationship between
inflammation and ferroptosis in PM2.5-induced lung injury was investigated. In an in vivo
study, we observed that chronic and low concentrations of PM2.5 exposure induced lung
inflammation. In vitro, we found that inhibition of ferroptosis by treatment with Que and
Fer-1 significantly decreased inflammatory in BEAS-2B cells treated with PM 2.5, indicating
that ferroptosis plays a vital role in the regulation of PM2.5-induced lung inflammation.

Nrf2-Keap1 signaling is recognized as an important endogenous antioxidative stress
pathway that defends against oxidative and electrophilic stresses (Yamamoto, Kensler &
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Motohashi, 2018). Nrf2 (amaster regulator of the cellular antioxidant response) translocates
to the nucleus and subsequently activates the transcription of antioxidant response genes
when cells challenged with stress conditions (Baird & Yamamoto, 2020). Some previous
studies proved that activation of the Keap1-Nrf2 pathway reduced ferroptosis in acute
lung injury (Li et al., 2021; Qiang et al., 2020). Nrf2 could mediate the expression of genes
involved in iron homeostasis and lipid peroxides in the ferroptotic process (Dodson,
Castro-Portuguez & Zhang, 2019; Kuang et al., 2020). Considering that Nrf2 plays a critical
role in mediating ferroptosis, we further investigated the role of Nrf2 in regulating lung
injury-associated ferroptosis induced by PM2.5 exposure and explored whether Que could
activate Nrf2 to suppress ferroptosis in lung tissues. In addition, PM2.5 could inhibit
the activity of the Nrf2 signaling pathway in lung tissues in an allergic rhinitis mouse
model (Piao et al., 2021). Our study found that PM2.5 exposure reduced Nrf2 and triggered
ferroptosis in the lung tissues of mice, which were rescued by Que treatment. Additionally,
both the Nrf2-specific agonist and Que treatment significantly exerted anti-ferroptotic
effects on PM 2.5-challenged BEAS-2B cells. Taken together, Que suppressed ferroptosis
through causing Nrf2 activation in the lungs of PM2.5-treated mice.

CONCLUSIONS
In summary, our study first provides evidence that low concentrations of ambient PM2.5

may induce lung inflammation and fibrosis through activating ferroptosis in mice. In
addition, Que treatment protected against PM2.5-caused lung injury by activating Nrf2-
Keap1 to suppress ferroptosis in epithelial cells. These findings confirmed anti-ferroptosis
by Que supplementation may be a novel therapeutic way to air pollution-caused lung
injury.
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