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Abstract 10 

Background. Antipredator behaviors are theoretically subjected to a balance by which their 11 

display should be minimized when their benefits do not outweigh their costs. Such costs may be 12 

not only energetic, but also entail a reduction in the time available for other fitness-enhancing 13 

behaviors. However, these behaviors are only beneficial under predation risk. Therefore, 14 

antipredator behaviors are predicted to be maximized under strong predation risk. Moreover, 15 

predation pressure can differ among individuals according to traits such as sex or body size, if 16 

these traits increase vulnerability. Antipredator behaviors are expected to be maximized in 17 

individuals whose traits make them more conspicuous to predators. However, how these factors 18 

interact is not always understood.  19 

Methods. In this work, I tested these hypotheses in the common pill woodlouse (Armadillidium 20 

vulgare), which conglobate (i.e., they roll up their bodies almost conforming a sphere that 21 

conceals their appendages) in response to predator attacks. Specifically, I tested whether latency 22 

to unroll after a standardized mechanical induction was greater in animals exposed to predator 23 
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chemical cues (toad feces) than in conspecifics exposed to cues of non-predatory animals 24 

(rabbits) or no chemical cues whatsoever (distilled water), incorporating sex and body mass in 25 

the analyses.  26 

Results. In agreement with my prediction, latency to unroll was greater in individuals exposed to 27 

predator chemical cues. In other words, these animals engage in conglobation for longer under 28 

perceived predator vicinity. However, this result was only true for males. This sexual 29 

dimorphism in antipredator behavior could result from males being under greater predation risk 30 

than females, thus having evolved more refined antipredator strategies. Indeed, males of this 31 

species are known to actively search for females, which makes them more prone to superficial 32 

ground mobility, and likely to being detected by predators. Body size was unrelated to latency to 33 

unroll. As a whole, these results support the hypothesis that antipredator behavior is tuned to 34 

predator cues in a way consistent with a balance between costs and benefits. 35 

 36 

Introduction 37 

Predators erode their prey’s fitness in various ways, thus embodying a potent selective pressure 38 

on them (Abrams, 2000; Lima, 2002). First and foremost, successful predatory events involve 39 

the annihilation of the prey’s life, and consequently of any potential future fitness it might have 40 

had (Barbosa and Castellanos, 2005; Beauchamp et al., 2007). However, predators also exert 41 

non-lethal effects on their prey that are also pivotal in multifarious ways (Lima, 1998; Preisser et 42 

al., 2005; Wirsing et al., 2021). After consumption, the second gravest damage predators inflict 43 

on their prey is probably represented by physical injury following failed attacks (Laha and 44 

Mattingly, 2007; Bowerman et al., 2010), which frequently entail infections (Aeby and Santavy, 45 

2006) as well as impaired locomotion, growth, and ultimately fitness (Archie, 2013; Zamora-46 

Camacho and Aragón, 2019; Zamora-Camacho and Calsbeek, 2022). Even in the absence of an 47 
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actual attack, preys are bound to face the harmful effects of predators. Some animal species 48 

innately possess physical (Mukherjee and Heithaus, 2013) or chemical defenses (Glendinning, 49 

2007), occasionally remarkably sophisticated (Zamora-Camacho, 2023), which can dissuade 50 

predators (Brown et al., 2016). Moreover, most prey are equipped with sensory systems capable 51 

of detecting predator vicinity (Leavell and Bernal, 2019). Such perceived predator proximity 52 

oftentimes elicits the expression of inducible morphological or chemical defenses of different 53 

types (Kishida et al., 2010; Yamamichi et al., 2019). In either case, whether innate or inducible, 54 

these defenses can be costly, given the energy diverted to their production (Hamill et al., 2008; 55 

Gilbert, 2013; Hermann et al., 2014, Zvereva et al., 2017), and the fact that the metabolic 56 

processes involved in these responses may even trigger oxidative stress (Janssens and Stoks, 57 

2013).  58 

On a different note, prey can also tune their behavior to the threat represented by potential 59 

predators (Lima and Dill, 1990; McGhee et al., 2013) and the level of risk involved (Kavaliers 60 

and Choleris, 2001). The most immediate antipredator behavior is oftentimes spatial 61 

circumvention, which prevents an actual encounter (Palmer et al., 2022; Suraci et al., 2022). 62 

Also, prey typically respond to predator proximity by diminishing the conspicuousness of their 63 

activities (Moll et al., 2020; Balaban-Feld et al., 2022). When the encounter is imminent, 64 

however, prey can decide whether to face or avoid the predator depending on the chances of 65 

success of each strategy (Reichmuth et al., 2011; Zhang et al., 2020). A particularly common 66 

reaction of prey to such encounters is flight (Møller and Erritzøe, 2014; Basille et al., 2015). In 67 

addition, more refined behaviors against predation are likewise common, such as postural 68 

strategies that facilitate the deflection of the attack towards a non-vital (Myette et al., 2019) or 69 

well protected body region (Crofts and Stankowich, 2021), that make it difficult for the predator 70 



to handle and subdue the prey (Kowalski et al., 2018), or that invoke death feigning or thanatosis 71 

(Humphreys and Ruxton, 2018). This wide array of antipredator behaviors can coexist in the 72 

same individual and be subjected to complex interactions (Lind and Cresswell, 2005). 73 

 In any case, antipredator behavior is not devoid of costs. Besides the energy demands of 74 

strategies such as flight, which involves a frequently intense muscular exertion (Biewener and 75 

Patek, 2018), a cost in terms of fitness is expected given that antipredator behaviors are time-76 

consuming (Lima and Dill, 1990) and thus reduce the time devoted to foraging, mating and 77 

reproducing (Langerhans, 2007; Gulsby et al., 2018). The final decision of a prey regarding 78 

whether and to which extent to engage in antipredator behaviors should be made considering a 79 

balance between their costs and benefits (Herberholz and Marquart, 2012). Indeed, antipredator 80 

defenses are expected to be selected against in the absence of predators (Reznick et al., 2008; 81 

Palkovacs et al., 2011), at least to a certain extent (Blumstein, 2006), which could release the 82 

bearer from the costs associated to such behaviors if they are no longer beneficial. In fact, the 83 

success of a given antipredator behavior depends on diverse circumstances, and can vary 84 

according tosuch as the actual predatory pressure and the qualitative and quantitative expressions 85 

of the antipredator behaviors adopted by other potential preys (Menezes, 2021).  86 

Indeed, prey are predicted to adjust their antipredator behavior to the actual intensity of 87 

predator pressure, responding strongly when predators are an actual threat, but mildly when that 88 

threat is lesser (Sih et al., 2000; Ferrari et al., 2009). Also, even at the intraspecific level, some 89 

individuals can be at higher risk than others, depending on differences in morphology (Zamora-90 

Camacho, 2022) and personality (Sommer and Schmitz, 2020) that can make some individuals 91 

more or less prone to succumb to predator attacks. Given that, probably as a part of their mating 92 

strategies, males are often morphologically (Williams and Carroll, 2009) or behaviorally 93 



(Schuett et al., 2010) more conspicuous than females, males can be subjected to a stronger 94 

predation pressure than females (Husak et al., 2006; Kojima et al., 2014), thus responding with 95 

stronger antipredator strategies (Husak and Fox, 2008; Zamora-Camacho, 2022). 96 

 In this context, this work aims to contextualize the display of an unusual antipredator 97 

behavior, conglobation in common pill woodlice (Armadillidium vulgare), as a function of 98 

extrinsic factors, such as predator cues, and intrinsic traits, such as body mass and sex, which 99 

relationships are poorly understood. Conglobation is a particular behavior by which these 100 

animals coil up into a ball when disturbed, concealing their appendages within their dark grey 101 

cuticle (Cazzolla Gatti et al., 2020). This position makes them not only difficult to handle, but 102 

also resemble a pebble rather than edible animals (Tuf and Ďurajková, 2022), which has been 103 

interpreted as tonic immobility or even as thanatosis (Horvátz et al., 2019; Cazzolla Gatti et al., 104 

2020). Therefore, this behavior can be particularly efficient against non-gape limited predators, 105 

especially those which detect their prey through their movements, such as amphibians. 106 

Specifically, I studied the time spent by male and female A. vulgare in the conglobated position 107 

in the presence and the absence of olfactory predator (toads) cues after conglobation was 108 

mechanically induced in a standardized way (poking the animals with a stick), using chemical 109 

cues of non-predatory animals (rabbits) as a control. In line with the aforementioned rationale 110 

that antipredator behavior is costly, I predict that the conglobated position will be abandoned 111 

earlier in the absence of predator cues, when its potential benefits are lower. Also, I expect that, 112 

if one of the sexes is under greater predation pressure (which might be the case of males, which 113 

seem to be more active according to certain evidence [Dangerfield and Hassall, 1994]), this risk 114 

will have selected for a stronger reaction to predator cues.  115 

 116 

Materials & Methods 117 



Study species 118 

The common pill woodlouse (A. vulgare) is a terrestrial isopod, native to the Mediterranean 119 

region but introduced worldwide (Schmalfuss, 2003), that occupies a variety of temperate 120 

habitats. It shows a preference for a certain degree of moisture (Bonuti et al., 2021), which can 121 

determine some extent of small-scale seasonal migration in search of sufficient yet not excessive 122 

humidity (Paris, 1963). Reproduction takes place in the summer in cold regions (Dangerfield and 123 

Hassall, 1992), but in spring in more temperate areas (Sorensen and Burkett, 1977). Females 124 

possess a ventral pouch marsupium where eggs are deposited until hatching (Suzuki, 2001; 125 

Suzuki and Futami, 2018). As a macrodecomposer, it feeds on a variety of dead organic matter 126 

sources (Paris, 1963) which it selects according to its quality (Tuck and Hassall, 2005). In turn, a 127 

wide array of invertebrates, amphibians and reptiles have been cited as predators of this species 128 

(Paris, 1963). Against these predators, A. vulgare can resort to a wide array of morphological and 129 

behavioral defenses, such as crypsis, immobility, escape or sheltering, among which 130 

conglobations is particularly common (Horváth et al., 2019). However, males and females could 131 

differ in their activity rates (Dangerfield and Hassall, 1994), which might lead to different 132 

predation pressure between the sexes, with the concomitant divergence in antipredator responses. 133 

Also, larger individuals tend to take greater risks in this species (Horváth et al., 2019). 134 

 135 

Animal capture and management 136 

Fieldwork took place in Pinares de Cartaya (SW Spain; 37º 21’N, 7º 11’O), an 11,000-ha Pinus 137 

pinea grove with an undergrowth dominated by Rosmarinus officinalis, Pistacia lentiscus and 138 

Cistus ladanifer. In this forest, I collected 43 adult A. vulgare (19 females and 24 males) by 139 

hand, searching under rocks, decaying logs, and other potential refugia at appropriate sites. 140 
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However, to diminish the chances of capturing genetically related individuals, only one specimen 141 

was caught at a given site, and at least 50 m were left among sites (Horváth et al., 2019; 142 

Beveridge et al., 2022). Sampling took place in February 2022, immediately before the onset of 143 

the mating season (which beings in the early spring in this area, pers. obs.), because parental care 144 

can affect antipredator behavior in females, involving a difficulty in the adoption of the 145 

conglobated position, which could affect the results (Suzuki and Futami, 2018). 146 

 The animals captured were transferred to the laboratory, where they were assigned an ID 147 

number, weighed to the nearest 0.01 g with a CDS-100 scale, and individually housed in 148 

cylindric plastic terraria (6 cm diameter x 15 cm height) with wet peat as a substrate, a piece of 149 

fresh carrot as nourishment, and a wet cotton disk (4 cm diameter x 1 mm thick) above it as a 150 

shelter. The terraria were randomly set in a shelve in the laboratory, and their position was 151 

changed every 24 hours. A window let daylight in, which permitted the adjustment of circadian 152 

rhythms. Room temperature was not manipulated, and fluctuated naturally between 10 ºC at 153 

night and 20ºC during the day.  154 

 The behavioral tests began 24 hours after capture. These tests were conducted in 155 

individual cylindric plastic terraria (4 cm diameter x 10 cm height) with a cotton disk lining (4 156 

cm diameter x 1 mm thick) at the bottom. Because Tthis species interprets chemical cues to 157 

identify dead conspecifics (Yao et al., 2009), potential mates (Beauché and Richard, 2013) and 158 

predators (Pniewski, 2014), and tunes its conglobation behavior can to diverse environmental 159 

factors (Horváth et al., 2019)., Therefore, I used different chemical cues (or the absence thereof) 160 

in three separate tests. In the experimental tests, the cotton disk at the bottom of the terrarium 161 

was soaked with a 1-mL aliquot extracted from a preparation of 0.5L of distilled water where 162 

50g of a mix of fresh feces from 2 male and 2 female adult common toads (Bufo spinosus), 163 
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captured in the same habitat as the woodlice, had been diluted. These toads are abundant and 164 

widespread generalist predators of invertebrates, including isopods (Ortiz-Santaliestra, 2014). In 165 

the control tests, the cotton disk at the bottom of the terrarium was soaked with a 1-mL aliquot 166 

extracted from a preparation of 0.5L of distilled water where 50g of a mix of fresh feces from 4 167 

different European rabbit (Oryctolagus cuniculus) latrines (separated by at least 600 m) from the 168 

same habitat as the woodlice, had been diluted. These rabbits are abundant and widespread 169 

generalist herbivores (Gálvez-Bravo, 2017). Feces of both toads and rabbits, these originated 170 

from natural, uncontrolled diets, thus representing what the isopods are likely to find in nature. In 171 

the manipulation control tests, the cotton disk at the bottom of the terrarium was soaked with 1 172 

mL of distilled water. In this way, humidity was constant across tests, which avoided a potential 173 

effect of moisture on conglobation behavior, as conglobation can also be a behavioral strategy 174 

against water loss in these animals (Smigel and Gibbs, 2008).  175 

 For these tests, each individual was placed alone in one arena as described above. After 5 176 

minutes for habituation, I gently poked the animal with a wooden stick until it adopted the fully 177 

conglobated position. The test ended when the individual abandoned this position. All 178 

individuals underwent all three tests, with a 24-h resting period in between. Every time, the 179 

cotton disks were replaced and the arenas were rinsed thoroughly. Conglobation behavior in 180 

these animals is affected by previous experience (Matsuno and Moriyama, 2012). For that 181 

reason, the sequence in which the tests involving the different stimuli were conducted was 182 

random for each individual (partial results involving solely the first trial can be found as 183 

Supplementary Material).  184 

All tests were recorded with a Canon EOS 550D video camera. The resulting footages 185 

were then studied using the software Tracker v 6.0.8, which allows frame-by-frame analyses. 186 



Specifically, I measured latency to unroll as the time each individual spent in the conglobated 187 

position, by recording the time elapsed since the frame in which this position was adopted until it 188 

was abandoned. After the tests, the woodlice were sexed, based on the presence of the abdominal 189 

pouch marsupium in the ventral side of the pereion in females after the parturial mold prior to 190 

reproduction (Surbida and Wright, 2001; Suzuki, 2002), and released in the same habitat where 191 

they had been captured. 192 

  193 

Statistics 194 

Latency to unroll needed to be ln-transformed in order to meet the assumptions of 195 

homoscedasticity and residual normality needed for parametric statistics (Quinn and Keough, 196 

2002). After that, a mixed model was conducted where latency to unroll (ln-transformed) was the 197 

response variable, sex, treatment and their interactions were included as factors, body mass was 198 

included as a covariate, and ID was a random factor. Sum of squares was type III. A Tukey post-199 

hoc test was applied on the interaction term. These tests were conducted with the package 200 

lmerTest (Kuznetsova et al., 2017) in the software R v. 4.1.2 (R Core Team, 2021). A similar test 201 

but excluding sex can be found as Supplementary Material.  202 

 203 

Results 204 

Body mass had no significant effect on latency to unroll (F1, 122 = 0.698; β = -2.843; P = 0.409). 205 

The effect of sex on latency to unroll was non-significant (F1, 122 = 0.073; P = 0.789), but that of 206 

treatment was significant (F2, 122 = 5.823; P = 0.004). According to the Tukey post-hoc test 207 

applied on the marginally non-significant Sex×Treatment interaction (F2, 122 = 2.786; P = 0.068), 208 

males exposed to toad scent had greater latency to unroll than males exposed to rabbit scent and 209 

to water, and than females exposed to water, with every other pairwise comparison being non-210 
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significant (Table 1; Fig. 1). When sex was excluded from the model, treatment had a significant 211 

effect on latency to unroll, where the only significant pairwise comparison was between the 212 

treatments with water and toad cues according to the Tukey post-hoc test (Supplementary 213 

Material).  214 

 215 

Discussion 216 

Some of these results were in agreement with my predictions. In the first place, latency to unroll 217 

was greater in the presence of predator chemical cues than in the absence of it. According to 218 

theory, predator vicinity can trigger a fear response on the prey, which is not devoid of costs 219 

(Wang and Zou, 2018; Qiao et al., 2019; Tripathi et al., 2022). Previous research supports that, in 220 

behavioral terms, most prey reduce their susceptibility to predators by diminishing their activity 221 

rates when threatened (Brodin and Johansson, 2004; Laurila et al., 2006), even resorting to total 222 

immobility (Brooks et al., 2009) and death feigning (Konishi et al., 2020). However, by engaging 223 

in such antipredator behavior, prey inevitably reduce the amount of time available for other 224 

fitness-enhancing activities, such as mating, feeding, and territory defense (Persons et al., 2002; 225 

Lind and Cresswell, 2005), which may entail negative effects, for example on growth (Brodin 226 

and Johansson, 2004; Laurila et al., 2006) and reproduction (Persons et al., 2002; Kempraj et al., 227 

2020). These costs can be assumed to affect A. vulgare when remaining in a conglobated 228 

position, although little is known in this regard about this particular species. Thus, such 229 

antipredator behaviors are allegedly subjected to a balance between these costs and their benefits, 230 

namely predator avoidance. In this context, prey are expected to minimize antipredator behaviors 231 

when their benefits are scarce, i.e. under low predation risk (Ferrari et al. 2008; Supekar and 232 

Gramapurohit, 2020; Batabyal et al., 2022). This prediction is supported by these results, as 233 
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latency to unroll was greater in the presence of predator chemical cues presented in the short 234 

term. Such a result contrasts with a previous study on this species, according to which long-term 235 

contact with predatory ants relates to a shift in flight behavior, which does not happen after 236 

short-term exposure (Hegarty and Kight, 2014).Similarly, the marine isopod Idotea balthica 237 

lowers its activity in the presence of chemical cues from a native predatory fish (Yli-Renko et al., 238 

2022).  However, a different study reports that A. vulgare remains unresponsive to chemical cues 239 

of an arachnid predator (Zimmerman and Kight, 2016). 240 

 Nonetheless, this greater latency to unroll in the presence of predator chemical cues was 241 

only observed in males, whereas females did not respond to these cues with an increase in time 242 

to unroll. This observation is based on an interaction between sex and treatment that was 243 

marginally non-significant, but it provides a hint of sex differences in responses to treatments. 244 

While the possibility that females lack the ability to recognize predator chemical cues cannot be 245 

discarded, a greater response of males as a result of a male-biased predation risk could be a more 246 

plausible explanation. In circumstances where both sexes are under equivalent risk, their 247 

response to predator cues might not differ (David et al., 2014; Kempraj et al., 2020; Saavedra et 248 

al., 2022). However, whenever one sex is under greater risk than the other, it is expected to 249 

evolve more efficient antipredator responses (Curio et al., 1983). Although in some species 250 

females have been found to face greater predation risk (Post and Götmark, 2006) and to respond 251 

with greater intensity to predator pressure (Pärssinen et al., 2021; Woodrow et al., 2021), in most 252 

cases males are more conspicuous to predators as a result of more active behaviors (Tobler et al., 253 

2008), such as territory defense (Gwynne and O’Neill, 1980), female pursuit (Fišer et al., 2019) 254 

and courtship (Whitaker et al., 2021). Accordingly, males display a stronger behavioral response 255 

to predation risk in taxa as disparate as mammals (Grignolio et al., 2019), birds (van den Bemt et 256 



al., 2021), reptiles (Bohórquez Alonso et al., 2010), snails (Donelan and Trussell, 2020), insects 257 

(Schultz, 1981), spiders (Krupa and Sih, 1998) or crabs (Jennions et al., 2003).  258 

In the specific case of A. vulgare, different lines of evidence suggest that males could be 259 

more active, and thus more detectable by predators, which could favor a greater investment in 260 

antipredator behavior. In the first place, genetic analyses have revealed that females are 261 

philopatric whereas males are not, which is compatible with males being more prone to dispersal 262 

and, allegedly, to be intercepted by predators (Durand et al., 2019). Moreover, males are known 263 

to actively search for females based on chemical cues (Beauché and Richard, 2013) and to 264 

compete for access to them given their multiple paternity scheme (Verne, 2007; Valette et al., 265 

2016). Also, male presence can stimulate female receptiveness (Lefebvre and Caubet, 1999). 266 

These features could be accompanied by behavioral displays that might increase male 267 

conspicuousness to predators. Indeed, males are could be more active in the ground surface, 268 

whereas females tend to make a greater use of underground shelters, which is a probable 269 

consequence of the former actively competing and searching for the latter (Dangerfield and 270 

Hassall, 1994). Nonetheless, until all of these facts are properly studied, this assumption can be 271 

considered plausible, but speculative.  272 

 In correspondence with previous studies on this species (Beveridge et al., 2022), body 273 

mass was uncorrelated with latency to unroll, as well as with other antipredator behaviors 274 

(Cazzolla Gatti et al., 2020). This finding contrasts with research that indicates that antipredator 275 

behavior depends on body size on other taxa, both vertebrates (Hoare et al., 2000; Roth and 276 

Johnson, 2004) and invertebrates (Johnson et al., 2017; Gavini et al., 2020), including larger 277 

crustaceans (Wahle, 1992). In this case, the relatively small size of the focal species might make 278 

variation in body size irrelevant for most potential predators, thus not selecting for differential 279 
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antipredator strategies at varying sizes. In any case, conglobation behavior is known to be 280 

repeatable in this species (Cornwell et al., 2023), which advocates for consistency in the patterns 281 

described herein. 282 

 283 

Conclusions 284 

To conclude, latency to unroll was greater in individuals exposed to predator chemical cues, 285 

which supports the prediction that A. vulgare can detect these cues and react accordingly, 286 

although these differences were led by males. Moreover, this finding concurs with the theoretical 287 

assumption that antipredator behaviors are subjected to a cost-benefit balance, by which they 288 

should be minimized when their benefits do not outweigh their costs. Antipredator behaviors are 289 

only beneficial under predation risk, which could be the reason why these animals engage in 290 

conglobation for longer under perceived predator vicinity. However, this result was only true for 291 

males. This sexual dimorphism in antipredator behavior could indicate that males are under 292 

greater predation risk than females, thus having evolved more refined antipredator strategies. 293 

Indeed, males of this species are known to actively search for females, which makes them more 294 

prone to superficial ground mobility, and likely to being detected by predators.  295 

 296 
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