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Background. Arvicoline rodents are one of the most speciose and rapidly evolving mammal lineages.
Fossils arvicolines are also among the most common vertebrate fossils found in sites of Pliocene and
Pleistocene age in Eurasia and North America. However, there is no taxonomically robust, well-supported,
time-calibrated phylogeny for the group.

Methods. Here we present well-supported hypotheses of arvicoline rodent systematics using maximum
likelihood and Bayesian inference of DNA sequences of three nuclear genes and two mitochondrial genes
representing 132 (89% coverage) species of arvicolines. We elucidate well-supported major clades, and
reviewed the relationships and taxonomy of many species and genera and critically compared our
resulting molecular phylogenetic hypotheses to previously published hypotheses. We also used five fossil
calibrations to generate a time-calibrated phylogeny of Arvicolinae that permitted some reconciliation
between paleontological and neontological data.

Results. Our results are largely congruent with most previous molecular phylogenies, but we increased
the confidence in many regions of the arvicoline tree that were previously poorly-sampled. Our approach
allowed us to support the paraphyly of Clethrionomys, the basal position and close relationship of true
lemmings (Lemmus and Myopus) and bog lemmings (Synaptomys, Mictomys), the monophyly of Alticola,
and the need for a large-scale revision of Microtus. Our results indicate an evolutionary origin of ~8 Ma
for crown arvicoline rodents with four primary radiations. These results have major implications for our
confidence in the fossil record of arvicolines and their utility as biochronological tools in Eurasia and
North America during the Quaternary.
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21 Abstract
22 Background. Arvicoline rodents are one of the most speciose and rapidly evolving mammal 
23 lineages. Fossils arvicolines are also among the most common vertebrate fossils found in sites 
24 of Pliocene and Pleistocene age in Eurasia and North America. However, there is no 
25 taxonomically robust, well-supported, time-calibrated phylogeny for the group.
26 Methods. Here we present well-supported hypotheses of arvicoline rodent systematics using 
27 maximum likelihood and Bayesian inference of DNA sequences of three nuclear genes and two 
28 mitochondrial genes representing 132 (89% coverage) species of arvicolines. We elucidate well-
29 supported major clades, and reviewed the relationships and taxonomy of many species and 
30 genera and critically compared our resulting molecular phylogenetic hypotheses to previously 
31 published hypotheses. We also used five fossil calibrations to generate a time-calibrated 
32 phylogeny of Arvicolinae that permitted some reconciliation between paleontological and 
33 neontological data.
34 Results. Our results are largely congruent with most previous molecular phylogenies, but
35 we increased the confidence in many regions of the arvicoline tree that were previously 
36 poorly-sampled. Our approach allowed us to support the paraphyly of Clethrionomys, the basal 
37 position and close relationship of true lemmings (Lemmus and Myopus) and bog lemmings 
38 (Synaptomys, Mictomys), the monophyly of Alticola, and the need for a large-scale revision of 
39 Microtus. Our results indicate an evolutionary origin of ~8 Ma for crown arvicoline rodents with 
40 four primary radiations. These results have major implications for our confidence in the fossil 
41 record of arvicolines and their utility as biochronological tools in Eurasia and North America 
42 during the Quaternary. 
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43 Introduction

44 Arvicoline rodents (voles, lemmings, muskrats, and their extinct relatives) are the 
45 subject of a complex history of taxonomic and phylogenetic research (Conroy and Cook, 
46 1999, 2000; Galewski et al., 2006; Buzan et al., 2008; Robovský et al., 2008; Fabre et 
47 al., 2012; Martínková and Moravec, 2012; Steppan and Schenk, 2017; Upham et al., 
48 2019; Abramson et al., 2021). Previous phylogenetic studies focused on subsets of 
49 Arvicolinae (i.e., North American Microtus; Conroy and Cook, 1999; Martínková and 
50 Moravec, 2012), used only one or two genes (Buzan et al., 2008), included arvicolines 
51 in larger studies investigating the phylogeny of all rodents (Fabre et al., 2012; Steppan 
52 and Schenk, 2017), or focused on mitochondrial genomes (Abramson et al., 2021). A
53 comprehensive combined-evidence molecular and morphological dataset was 
54 generated by Robovský et al. (2008). Although a great deal of molecular data is 
55 available for arvicoline rodents, no study has synthesized available molecular data to 
56 examine phylogenetic relationships across the group at both the generic and species 
57 levels�a new phylogeny has been warranted. We compiled the most taxonomically 
58 complete molecular dataset of global Arvicolinae to date (July, 2022), using both 
59 nuclear genes and mitochondrial markers, to provide a well-sampled molecular 
60 hypothesis of extant Arvicolinae. Additionally, we assess the rich fossil record of 
61 arvicolines to establish several node calibrations for divergence time analyses, and 
62 present the largest such analyses of Arvicolinae to date. Finally, we discuss the 
63 implications of our results on arvicoline taxonomy and systematics.
64

65 Arvicoline Taxonomy and Systematics Through Time 
66 Bog lemmings of the genera Synaptomys (and/or Mictomys) have many 
67 morphological and molecular characters thought to associate the group with the �true 
68 lemmings� (Myopus and Lemmus) (Abramson, 1993; Carleton, 1981; Chaline and Graf, 
69 1988). Bog lemmings are a strictly North American clade in the modern biota, but based 
70 on the fossil record were hypothesized to have originated c. 4 Ma in Europe, with 
71 subsequent dispersal through Beringia into North America (Repenning and Grady, 
72 1988). Some paleontologists posited that the northern bog lemming (Synaptomys 

73 borealis) should be placed in its own genus, Mictomys, based on dental morphology 
74 (Repenning and Grady, 1988). Neontologists (Hall, 1981; Musser and Carleton, 2005) 
75 argued that, at best, Mictomys is a subgenus of Synaptomys based on morphology and 
76 ecology. 
77 The �true lemmings� Myopus and Lemmus are early diverging arvicolines 
78 (Carleton, 1981; Chaline and Graf, 1988; Abramson, 1993). The monophyly of the �true 
79 lemmings� + Synaptomys (excluding Dicrostonyx) was supported by cladistic analysis of 
80 allozyme data (Mezhzherin et al., 1995), nuclear DNA (Modi, 1996), and mitochondrial 
81 DNA (Conroy and Cook, 1999). The taxonomic treatment of Myopus has been 
82 complicated. Originally, Chaline (1972) treated Myopus schisticolor as a species of 
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83 Lemmus. Subsequently, Chaline et al. (1989) and von Koenigswald and Martin (1984) 
84 cited molar similarity between Myopus and Lemmus and placed Myopus as a subgenus 
85 within Lemmus. Karyotype, body size, fur coloration, other morphologies (skull, feet, 
86 and eyes), habitat, and behavior were later invoked to demonstrate that Myopus is 
87 readily distinguishable from Lemmus (Jarrell and Fredga, 1993). Therefore, Musser and 
88 Carleton (2005) treated it as a separate genus.    
89 Collared lemmings (Dicrostonyx) were historically thought to be close to true 
90 lemmings (Miller, 1896). Early molecular and morphological analyses indicated that 
91 Dicrostonyx was part of one of the earliest radiations of arvicolines (e.g., Carleton, 
92 1981; Chaline and Graf, 1988; Conroy and Cook, 1999; Gromov and Polyakov, 1992). 
93 For decades, the dominant viewpoint was that there was a single circumpolar species of 
94 collared lemming, Dicrostonyx torquatus, but evidence from morphology, genetics, 
95 ecology, and karyology indicates multiple species (Borowik and Engstrom, 1993; Eger, 
96 1995; Musser and Carleton, 2005).
97 Phenacomys and Arborimus have a complicated taxonomic history. Similarities in 
98 dental morphology led some researchers to classify Arborimus as a subgenus of 
99 Phenacomys (Repenning and Grady, 1988), but others treated Arborimus as a separate 

100 genus (Musser and Carleton, 1993). Another study placed them together in the tribe 
101 Phenacomyini (Zagorodnyuk, 1990). Others placed Phenacomys with Phaiomys and 
102 other extinct genera (Repenning et al. 1990) or with the tribe Myodini (McKenna and 
103 Bell, 1997). Both Phenacomys and Arborimus have primitive molars that retain the 
104 plesiomorphic condition of retaining roots on molars, and they lack cementum in the 
105 reentrant angles on those molars; therefore some paleontologists argued that 
106 Phenacomys is an early relict lineage (Repenning, 1987).
107 Ellobius, the mole voles, is a morphologically specialized group (Corbet, 1978; 
108 Pavlinov et al., 1995; Tesakov, 2008; Tesakov, 2016). The genus is remarkable in that 
109 its Pleistocene range included parts of Israel and North Africa, areas that no other 
110 arvicoline has ever inhabited (or they did not leave a known fossil record; Jaeger, 1988). 
111 Arvicola is a European, fossil-rich genus that was previously hypothesized to be closely 
112 related to Microtus (Chaline and Graf, 1988; Mezhzherin et al., 1993). The number of 
113 recognized species in Arvicola has varied from one to seven (Miller, 1912; Ellerman and 
114 Morrison-Scott, 1951). Lemmiscus is a monotypic genus that was long considered a 
115 subgenus of Lagurus in order to segregate New World sagebrush voles from Old World 
116 steppe voles (Carroll and Genoways, 1980). Morphological and molecular data, 
117 however, indicate that Lemmiscus may be closely related to Microtus (Carleton, 1981; 
118 Modi, 1987; Abramson et al., 2021). Lagurus was hypothesized to be closely related to 
119 Eolagurus and was placed in the tribe Lagurini (Gromov and Polyakov, 1992). 
120 The systematic relationships of the snow voles, Chionomys, are historically 
121 controversial (Gromov and Polyakov, 1992; Yannic et al., 2012). Some researchers 
122 posited that Chionomys is a member of Myodini (Mezhzherin et al., 1995), just outside 
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123 of Microtus (Yannic et al., 2012), and others argued based on known fossils that 
124 Chionomys is closely related to Clethrionomys (=Myodes) (Kretzoi, 1969; Chaline, 
125 1987). Using morphological characters, Proedromys was hypothesized to be closely 
126 related to Microtus, but its diagnostic traits (massive cranium with wide, heavy, and 
127 grooved upper incisors and odd molars) were also used to support the hypothesis of a 
128 close relationship with extinct genera such as Allophaiomys (Gromov and Polyakov, 
129 1992; Repenning, 1992). Molecular phylogenies also suggest that Proedromys is 
130 outside and thus separate from Microtus, although with low support (Chen et al., 2012). 
131 Volemys consists of two high-altitude alpine species native to western Sichuan, China. 
132 Species of Volemys were previously placed in Microtus or were found to be closely 
133 related to Microtus, and previously published phylogenetic analyses of molecular data 
134 hinted that the distribution of Volemys may be relictual due to geographic (and 
135 correspondingly, genetic) isolation during the Late Pleistocene (Lawrence, 1982; 
136 Zagorodnyuk, 1990). Voles of the genus Neodon are found throughout the mountainous 
137 regions of southern Asia. They have a long and complicated taxonomic history, but their 
138 close relationship to Microtus has been established, although systematic relationships 
139 of the genus relative to other arvicolines are still debated (Musser and Carleton, 2005; 
140 Pradhan et al., 2019). Recent taxonomic revision has seen the number of species 
141 belonging to Neodon grow (Pradhan et al., 2019).
142 The taxonomy and systematics of Microtus are complicated and historically difficult 
143 to disentangle. Little consensus exists in the literature on how to treat generic-level 
144 identification of fossil Microtus, partially because many hypotheses of Microtus 
145 relationships were based on teeth that have limited systematic potential and have 
146 undergone rapid evolutionary change (Guthrie and Matthews, 1971; von Koenigswald, 
147 1980). Combined with the broad Holarctic distribution of the group, poor genetic 
148 sampling, and hypothesized recent origination and diversification, and the result has 
149 been taxonomic and systematic chaos. 
150 Members of Lasiopodomys were considered by paleontologists to be the remnants 
151 of a group that was previously more speciose and widespread (Gromov and Polyakov, 
152 1992; Repenning, 1992). We note that the fossil Lasiopodomys referred to by 
153 Repenning (1992) in North America is not the same as the extant Eurasian taxa, further 
154 adding to the taxonomic confusion of the genus (Repenning and Grady, 1988). 
155 Neontologists and paleontologists have recognized the morphological uniqueness of 
156 Lasiopodomys, but in one allozyme analysis, Lasiopodomys brandtii was grouped with 
157 Microtis fortis and Microtus gregalis, thus questioning the generic affinity of these 
158 species (Mezhzherin et al., 1990). Musser and Carleton (2005) retained Lasiopodomys 

159 at the generic level, but recognized that there was a need for phylogenetic work to 
160 clarify the taxonomy of the genus. Blanfordimys is a geographically isolated group of 
161 voles found in south-central Asia (e.g., Afghanistan). They have retained dental 
162 characters that have been interpreted as pleisiomorphic, but they have inflated auditory 
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163 bullae and a mastoid region that is so enlarged that it almost projects beyond the 
164 occipital condyle, both of which have been interpreted as highly apomorphic (Gromov 
165 and Polayakov, 1992). This led some researchers to place them as a subgenus of 
166 Microtus (Gromov and Polyakov, 1992) while others gave them full generic distinction 
167 (Musser and Carleton, 1993). Allozyme analysis by Mezhzherin et al. (1993) nested B. 
168 afghanus with ten species of Microtus and led Musser and Carleton (2005) to stress 
169 caution with the taxonomy of the group. 
170 Ondatra and Neofiber are monotypic genera that have the largest body sizes of 
171 all arvicolines (both extant and extinct). Historically, they were placed together in the 
172 tribe Ondatrini (Chaline and Mein, 1979; Repenning et al., 1990) or subtribe Ondatrina 
173 (Pavlinov et al., 1995). Based on allozymic analysis, Mezhzherin et al. (1995) concluded 
174 that Ondatrina was one of the first groups of arvicolines to diverge from the ancestral 
175 arvicoline population during the late Miocene. Dental morphology however led some 
176 paleontologists to consider Ondatra and Neofiber as more distantly related. Although 
177 the most obvious similarity is that they are both large (Carleton, 1981; von Koenigswald, 
178 1980; Martin, 1974; Martin 1996), Ondatra has rooted molars, and Neofiber has rootless 
179 molars. Molecular phylogenies support a sister taxon relationship between the genera 
180 (Modi, 1996; Fabre et al., 2012).  
181  The Eurasian genera Dinaromys and Prometheomys are both monotypic in the 
182 extant biota. The plesiomorphic characteristics (e.g., rooted dentition) of Dinaromys 

183 caused it to be placed in many different groups: subfamily Dolomyinae (Chaline, 1975), 
184 Tribe Ondatrini (Corbet, 1978), Tribe Clethrionomyini (Gromov and Polyakov, 1992), or 
185 Tribe Prometheomyini (Pavlinov et al., 1995). To further complicate their systematic 
186 status, von Koenigswald (1980) found that the lone extant species of the genus, 
187 Dinaromys bogdanovi, has an enamel microstructure that is unlike any other known 
188 extant species. The �long clawed mole vole�, Prometheomys schaposchnikowi, is a 
189 monotypic species with plesiomorphic characters usually classified in its own tribe 
190 (Gromov and Polyakov, 1992). This led Repenning et al. (1990) to align Prometheomys 
191 with Ellobius in Prometheomyinae while other researchers place Prometheomys into 
192 Prometheomyini (Pavlinov et al., 1995; Pavlinov and Rossolimo, 1998). Whole 
193 mitochondrial genomes indicated that Prometheomys is a likely a basal arvicoline (Ibis 
194 et al., 2020).
195 The clade that includes the genera Clethrionomys (=Myodes), Eothenomys, and 
196 Alticola also has a long and complicated history of taxonomic revision (e.g., Hinton, 
197 1926; Miller, 1896; Kretzoi, 1969; von Koenigswald, 1980; Kohli et al., 2014; Kry�tufek 
198 et al., 2020). The priority of Clethrionomys as the valid genus name for red-backed 
199 voles was recently recognized (Kry�tufek et al., 2020); therefore, we have abandoned 
200 the taxonomy used by Musser and Carleton (2005) that used the genus name Myodes. 
201 Traditionally, species with rooted molars were lumped into Clethrionomyini (Gromov and 
202 Polyakov, 1992) or the subtribe Myodina (Pavlinov and Rossolimo, 1998). Appendicular 
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203 myological and osteological data support the monophyly of Alticola and its close 
204 relationship to Clethrionomys and Eothenomys (Stein, 1987). Dental morphology (i.e., 
205 small, rooted teeth) alone may indicate that Clethrionomys and Alticola are early 
206 diverging members of Arvicolinae, if rooted teeth are the ancestral condition. Suzuki et 
207 al. (1999) and Musser and Carleton (2005) argued that members of Clethrionomys may 
208 have independently evolved rooted molar conditions. More recent work using multilocus 
209 datasets provided some support for that hypothesis (Kohli et al., 2014).

210

211 Materials & Methods

212 Taxon Sampling

213 Complete sampling of Arvicolinae has been challenging historically due to the high 
214 species diversity and global distribution of the clade, and the relative rarity of some 
215 species in museum collections. We attempted to sample all genera (n=28) and species 
216 (n=149) recognized by Musser and Carleton (2005) and Shenbrot and Krasnov (2005). 
217 We sampled all of the genera recognized by Musser and Carleton (2005). We included 
218 a species placed in Phaiomys by Musser and Carleton (2005) in Neodon. Species 
219 historically placed in Caromys (Musser and Carleton, 2005) were included here, but we 
220 follow Luo et al. (2004) in placing those species in the genera Eothenomys. The 
221 resulting dataset included 132 species of extant arvicolines, and is the most 
222 taxonomically complete dataset to date (July, 2022) for Arvicolinae (89% species 
223 coverage). 
224

225 Concatenated dataset

226 Molecular data were obtained from GenBank (NCBI Resource Coordinators, 
227 2016) (GenBank accession numbers are in Appendix A and deposited in Dryad). Three 
228 rodents outside of crown Arvicolinae were used as outgroups (Fabre et al., 2012), 
229 including Cricetus cricetus, Mesocricetus auratus, and Neotoma fuscipes. Five loci were 
230 chosen that previously were demonstrated to be useful for rodent phylogenetics 
231 (Galewski et al., 2006; Robovský et al., 2008; Fabre et al., 2012; Martinkova and 
232 Moravec, 2012; D�Elía et al., 2019; Upham et al., 2019; Abramson et al., 2021). We 
233 used two mitochondrial markers, Cytochrome b (Cytb) and Cytochrome c oxidase 
234 subunit 1 (COI), as well as the three nuclear genes, growth hormone receptor (Ghr) 
235 exon 10, iron responsive element binding protein/retinol binding protein 3 (IRBP/RBP3) 
236 exon 1, and the Breast Cancer gene 1 (BRCA1) exon 11. These genes were chosen 
237 because they had at least 40% coverage across all of the taxa included in this analysis. 
238 Other genes, such as ACP5, have been used in some phylogenetic analyses of 
239 arvicoline rodents (Bondareva et al., 2021a,b), but we chose not to include them 
240 because their coverage across all of the taxa included in these analyses was relatively 
241 low. Sequences selected for this project were compared to other sequences within 
242 GenBank by using BLAST. This allows us to increase our confidence in the taxonomic 
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243 identification of sequences before phylogenetic analysis was completed. In total there 
244 were 5220 base pairs, and each gene had the following coverage across the 135 taxa 
245 (132 arvicolines + outgroups): Cytb (100%), COI (43.0%), Ghr (64.4%), IRBP/RBP3 
246 (74.4%), and BRCA1 (48.1%). Across the entire dataset there was 36.5% missing data. 
247 The degree of missing data for COI and BRCA1 led us to exclude these two markers 
248 from some of the analyses discussed below.
249 Sequences were aligned using the iterative refinement algorithm L-INS-I of 
250 MAFFT (Katoh and Standley, 2013). Aligned nexus files were imported into AliView 
251 (Larsson, 2014) and nuclear protein coding genes were checked for stop codons and 
252 trimmed where needed to ensure that they were in the proper reading frame for the first 
253 and third codon positions. PartitionFinder 2 (Lanfear et al., 2017) was used to partition 
254 the dataset (by codon position for the nuclear protein-coding genes) using the Akaike 
255 Information Criterion (AIC) (Burnham and Anderson, 2004). 
256

257 Phylogenetic analyses 

258 We conducted Maximum Likelihood (ML) and Bayesian Inference (BI) analyses 
259 of the concatenated datasets, including combined analyses of nuclear and 
260 mitochondrial loci of all five markers, nuclear markers with coverage >50% (Ghr and 
261 IRBP/RBP3), mitochondrial marker only with coverage >50% (Cytb), and a combined 
262 analysis of nuclear and mitochondrial markers >50% (Ghr, IRBP/RBP3, and Cytb), for a 
263 total of 12 phylogenetic analyses. Four analyses were conducted using ML: (1) all five 
264 markers (2) Cytb only (3) higher coverage nuclear markers (Ghr and IRBP) (4) all higher 
265 coverage markers (Ghr, IRBP, and Cytb). Four analyses using BI include analyses of 
266 (1) all five markers (2) Cytb only (3) Ghr and IRBP, and (4) Ghr, IRBP, and Cytb. 
267 Finally, four time-calibrated BI analyses were performed on (1) all five markers (2) Cytb 
268 only (3) Ghr and IRBP, and (4) Ghr, IRBP, and Cytb. The ML trees were estimated 
269 using RAxML v8.2.12 (Stamatakis, 2014) on the CIPRES cluster (Miller et al., 2010). 
270 We used GTR+  or GTR +  + I molecular substitution models as suggested by 
271 PartitionFinder 2 (Lanfear et al., 2017). For ML analyses support values were estimated 
272 using 1000 nonparametric bootstrap pseudoreplicates. Bayesian inference of the 
273 partitioned and concatenated dataset was conducted using the Markov Chain Monte 
274 Carlo (MCMC) method in MrBayes 3.2.6 (Ronquist et al., 2012). The analysis ran for 3.0 
275 x 107 generations sampled every 1000 generations and for two separate and 
276 independent runs. Beagle was used for high-performance phylogenetic statistical 
277 inference (Ayres et al., 2012). Results were examined in Tracer 1.7 (Rambaut et al., 
278 2018) to ensure that the independent runs reached stationarity and that the effective 
279 sample size (ESS) values were >200 for all model parameters. Trees were summarized 
280 with majority-rule consensus trees and the first 30% of the samples were discarded as 
281 burn-in. All input files for the RAxML and MrBayes analyses are deposited on Dryad. 
282
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283 Node Calibration Selection

284 We used five internal node calibrations and a root calibration in divergence time 
285 analyses. These nodes were selected after non-calibrated phylogenies were produced. 
286 For all nodes, there were no suitable fossils available to help establish calibration 
287 maxima, so we used exponential calibration priors for each node. For each calibration, 
288 the fossil age was used as the offset. R scripts for calculating a suitable mean are in 
289 Appendix B. 
290

291 Calibration 1: Cricetidae (Outgroup) Node  

292 We chose as outgroups three muroid rodents previously found to be closely 
293 related to Arvicolinae (Fabre et al., 2012; D�Elía et al., 2019). These three species 
294 belong to the subfamilies Cricetinae (Cricetus cricetus, Mesocricetus auratus) and 
295 Neotominae (Neotoma fuscipes). The split between Arvicolinae and Cricetinae is 
296 reported to have occurred during the middle Miocene (Fabre et al., 2012). The split 
297 between (Arvicolinae, Cricetinae) and Neotominae was hypothesized to be during the 
298 early-Miocene (Fabre et al., 2012; Steppan and Schenk, 2017). We used a secondary 
299 calibration based on those divergence times (Fabre et al. 2012; Steppan and Schenk 
300 2017) to constrain the root age. We used an offset exponential distribution with a 
301 minimum age of 7 Ma and a mean of 8.44 Ma. A minimum age of 7 Ma was chosen as 
302 the root of our tree based on the fossil record and divergence times estimated by Fabre 
303 et al. (2012) and Steppan and Schenk (2017). 
304

305 Calibration 2: Lemmini (Lemmus + Myopus + Synaptomys + Mictomys) Node

306 There is a substantial fossil record of North American bog lemmings 
307 (Synaptomys), the earliest of which date to 3.95 Ma from the Hagerman Fossil Beds 
308 National Monument, Idaho (Mictomys = Synaptomys vetus; Ruez and Gensler, 2008). 
309 The offset for this node is anchored by a right m1 (lower first molar) housed at the Idaho 
310 Museum of Natural History (IMNH 67002/39517) that has radiometric age control (Ar-

311 Ar) of a basaltic tephra located 30 m above the site and dated at 3.79  0.03 Ma (Hart 

312 and Brueseke, 1999). Interpolation of depositional rates indicates that the age of the 
313 fossil from IMNH locality 67002 is ~3.95 Ma (Hart and Brueseke, 1999). IMNH 
314 67002/39517 was identified as Mictomys vetus by having evergrowing molars with 
315 cementum in the reentrant angles. The m1 also has a posterior loop with three triangles, 
316 and an anterior loop (Ruez and Gensler, 2008). Triangles 1 and 2 are broadly confluent 
317 with the anterior loop and triangle three is joined by the anterior loop near the midline. 
318 Triangles 1 and 3 are nearly twice the width of triangle 2. Because Synaptomys was 
319 paraphyletic in some of our uncalibrated analyses, we used this fossil to calibrate the 
320 crown lemming node instead. We used an offset exponential distribution with a 
321 minimum age of 3.95 Ma and a mean of 4.74 Ma. 
322
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323 Calibration 3: Ondatrini (Ondatra + Neofiber) Node 

324 Fossils of this clade of relatively large-bodied extant arvicoline rodent appeared 
325 during the Pliocene. The oldest known species, Ondatra minor, is found in the 
326 Hagerman Formation in Hagerman, Idaho at ~3.6 Ma (Hibbard, 1959). All of the fossils 
327 at Hagerman are constrained between two lava flows and ash units that have yielded 
328 ages of 4.0 Ma to 3.2 Ma using Ar-Ar dating methods (McDonald et al., 1996). We 
329 anchored the Ondatra + Neofiber node using a left m1 tooth of Ondatra minor (USNM 
330 21830) from Hagerman. This m1 was identified as Ondatra minor by its relatively large 
331 size as well as being rooted and having a posterior loop, five alternating triangles, with a 
332 fifth triangle opening broadly into the anterior loop (Hibbard, 1959). We used an offset 
333 exponential distribution with a minimum age of 3.2 Ma and a mean of 4.9 Ma. The age 
334 of 3.2 Ma was chosen because it is the most conservative estimate of the age of the two 
335 ash layers described from Hagerman Idaho and deposition interpolation information 
336 were not available for the locality. 
337

338 Calibration 4: Phenacomyini (Phenacomys + Arborimus) Node

339 Extant voles of the genera Phenacomys and Arborimus are today restricted to 
340 North America. Eurasian specimens of Phenacomys were identified from Krestovka, 
341 Kolyma Lowland Russia (Sher et al., 1979; Zazhigin, 1997) and Romanovo 1c, Western 
342 Siberia, Russia (Smirnov et al., 1986; Borodin, 2012). Recently, a new species 
343 (Phenacomys europaeus) was described from Europe in Zuurland, the Netherlands, 
344 and dated at 2.1 Ma via biochronology (van Kolfschoten et al., 2018). The oldest known 
345 record of Phenacomys, P. gryci, (type locality in the Gubik Formation) is from the Fish 
346 Creek fauna of Alaska. The Fish Creek Fauna is in the Gubik Formation, which is an 
347 alternating marine and coastal plain sedimentary unit. The Fish Creek Fauna is dated at 
348 ~2.4 Ma using amino acid racemization ratios, a reversed polarity zone, and the 
349 presence of the ancestral sea otter Enhydrion and the arvicoline rodent Plioctomys 

350 mimomiformis (Carter et al., 1986; Repenning et al., 1987; Repenning and Brouwers, 
351 1992). We calibrated the (Phenacomys + Arboriumus) node based on the type 
352 specimen of Phenacomys gryci (a left m1 housed at the United States National Museum 
353 USNM 26495). This fossil was assigned to Phenacomys gryci by having a rooted m1 
354 that lacked cementum in the reentrant angles. It also possesses a posterior loop, five 
355 asymmetrical alternating triangles with a �Mimomys Kante� on triangle four, and a 
356 complex anterior loop (Repenning et al., 1987). This node was calibrated using an offset 
357 exponential distribution with a minimum age 2.4 Ma and a mean of 3.27 Ma. 
358

359 Calibration 5: Ellobiusini + Arvicolini + Arvicola + Lemmiscus + Lagurini Node: 

360 Includes the genera: Ellobius + Neodon + Arvicola + Lemmiscus + Lagurus + 

361 Eolagurus + Chionomys + Proedromys + Volemys + Microtus + Lasiopodomys + 

362 Blanfordimys 
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363 The timing of the origination and diversification of Microtus and its close relatives 
364 has been repeatedly contested among paleontologists (e.g., Repenning, 1992; Martin 
365 and Tesakov, 1998). It was argued that the genus Allophaiomys gave rise via 
366 anagenetic evolution to what is recognized today as Microtus (Martin and Tesakov, 
367 1998), but that hypothesis is controversial (e.g., Bell et al., 2004; Bell and Bever, 2006). 
368 The oldest Allophaiomys with external age control is from Hansen Bluff (Colorado) and 
369 dated at 1.9 Ma (Rogers et al., 1992). The earliest occurrence of Microtus, as defined 
370 by Repenning (1992), was long thought to be from the Anza-Borrego Desert of 
371 California (Zakrzewski, 1972) from possibly 1.4 to 1.6 Ma (lacking firm age control). 
372 Unfortunately, the specimens from Anza-Borrego had questionable field data; one 
373 specimen was found in a fault block and from a different area in the park than originally 
374 reported, and a second specimen could not definitively be assigned to Microtus (Bell 
375 and Bever, 2006; Murray et al., 2011). The oldest known Microtus is, therefore, found in 
376 the type Irvington Fauna from California dated to 1.21 Ma based on paleomagnetic data 
377 (Bell and Bever, 2006). 
378 Fossil evidence from Ellobius, the sister taxon to other members of this clade, 
379 was used here to calibrate the node. The oldest fossils of Ellobius are from the Late 
380 Pliocene of Kazakhstan and Tajikistan (Lytchev and Savinov, 1974; Zazhigin, 1988) and 
381 the Northern Caucasus (Tesakov, 2004). We chose to use a fossil mandible with m1-m3 
382 (Paleontological Institute, Russian Academy of Sciences M-2049/58-KB) of Ellobius 

383 primigenius from Central Asia (Lytchev and Savinov, 1974). This fossil possesses 
384 rooted teeth with relatively high crowns, a posterior loop, five alternating triangles, and 
385 an anterior loop consistent with Ellobius (Lytchev and Savinov, 1974). This mandible is 
386 part of the Kiikbai fauna of Kazakhstan dated using biochronology (the occurrence of 
387 Hypolagus brachygnathus, Ochotonoides complicidens, and Mimomys pliocaenicus) to 
388 the Pliocene at ~2.4 Ma in the Matuyama Chron (Sotnikova et al., 1997). The Kiikbai 
389 fauna is described from the southern flank of the Ilian depression in the Alatau mountain 
390 and placed in the European middle Villafranchian land mammal age (Sotnikova et al, 
391 1997). We used an offset exponential distribution with a minimum age of 2.4 Ma and a 
392 mean of 3.27 Ma.
393

394 Time-Calibrated Analyses

395 Microtus is one of the most diverse and rapidly evolving mammalian genera 
396 (Triant and DeWoody, 2006). Many phenotypic characters are convergent among 
397 distantly related species, and high genetic variation has been attributed to karyotypic 
398 differentiation, with diploid chromosomal numbers ranging from 17 to 64 (Triant and 
399 DeWoody, 2006). A previous study by Triant and DeWoody (2006) documented that 
400 Microtus sensu stricto has a time-corrected rate of nucleotide substitution of 0.08 
401 substitutions per site. That is substantially higher than many if not most other mammals 
402 (i.e., Pan, Bos, Ursus) (Triant and DeWoody, 2006). We chose to use the substitution 
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403 rate of 0.08 substitutions per site as the mean clock rate prior for our time-calibrated 
404 analysis. We used the MrBayes command �prset clockratepr� with a mean of -2.5 
405 (natural log of 0.08) and a standard deviation of 0.005.
406 Calibrated nodes were constrained as monophyletic. We used MrBayes 3.2.6 for 
407 divergence time analyses. We used a birth-death model and an independent gamma 
408 rate relaxed-clock (igr), where each branch has an independent rate drawn from a 
409 gamma distribution that was empirically derived in MrBayes. The MCMC chain was run 
410 for 3.0 x 107 generations (sampled every 1000 generations) for two runs each with four 
411 chains. The time-calibrated analysis, completed using all five genes, required a longer 
412 run to reach stationarity, so 5.0 x 107 generations sampled every 1000 generations and 
413 for two separate and independent runs was used for that analysis only. A temperature 
414 of 0.05 was implemented for all analyses except for the analysis with all five genes that 
415 utilized a temperature of 0.1, and the first 30% of the data were discarded as burn-in. 
416 Results of the analyses were visualized in Tracer v1.7 (Rambaut et al., 2018) to ensure 
417 runs had reached stationarity and that the effective sample size (ESS) was >200 for all 
418 model parameters. 

419

420 Results

421 Non-clock Analyses 
422 Eight phylogenetic analyses were conducted on the concatenated dataset that 
423 included either all or a subset of the 135 sequences from Cytb; 58 from COI; 87 from 
424 Ghr; 100 from IRBP/RBP3; and 65 from BRCA1. 104 species (77%) included both 
425 mitochondrial and nuclear data. 31 species (23%) had only mitochondrial data. 
426 GenBank accession numbers are in Appendix A. Results from Maximum Likelihood, 
427 and Bayesian analyses were similar or identical, except where discussed below. For the 
428 ML and BI non-time calibrated analyses as well as the BI time-calibrated analyses we 
429 will describe the results of the combined analysis of all five genes and the nuclear loci 
430 >50% coverage (Ghr and IRBP/RBP3). The rest of the results are reported in Appendix 
431 C.
432

433 Maximum Likelihood (ML) Results

434 A summary of the ML tree including all five loci with rapid-bootstrapping values 
435 from RAxML v7.0.4 (lnL = -68877.47) is presented in Figure 1. Low support values (<70 
436 nonparametric bootstrap (BS)) were inferred for 50 (37%) of the nodes. Moderate 
437 support (71-90 BS) was inferred for 12 (9%) of the nodes. High support (>90 BS) was 
438 found for 73 (54%) of the nodes. Most nodes with low support are near the base of 
439 major clades.  A summary of the ML tree including the nuclear loci Ghr and IRBP with 
440 rapid-bootstrapping values from RAxML v7.0.4 (lnL = -14281.47) is presented in Figure 
441 2. Low support values (<70 nonparametric bootstrap (BS)) were inferred for 41 (40%) of 
442 the nodes. Moderate support (71-90 BS) was inferred for 18 (17%) of the nodes. High 
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443 support (>90 BS) was found for 45 (43%) of the nodes. Most nodes with low support are 
444 near the base of major clades and the tree.
445

446 Bayesian Inference (BI) Results

447 Most nodes (85, or 64%) in the non-clock BI analysis that included all five genes 
448 were highly supported (>0.95 posterior probability values (PP)). The majority rule 
449 consensus tree for this analysis is presented in Figure 3. In the analysis of the two high 
450 coverage nuclear markers Ghr and IRBP/RBP3, 59 nodes (57%) were highly supported 
451 (>0.95 posterior probability values (PP)). The majority rule consensus tree for this 
452 analysis is presented in Figure 4.  
453

454 Major Clade Systematic Results

455 Prometheomys was consistently placed as the most basal, or nearly most basal 
456 arvicoline (see Figures 1-4). The two species of bog lemming (Synaptomys, Mictomys) 
457 were paraphyletic in the ML and BI analyses of all five genes (100 BS, 1.00 PP), and 
458 monophyletic (92 BS) in the ML and BI (0.83 PP) Ghr and IRBP only analyses. All 
459 analyses inferred a relatively basal position for the �true lemmings� (see Figures 1-4). 
460 Myopus was inferred as the sister taxon to Lemmus in both ML analyses (100-98 BS) 
461 and BI (1.00 PP) analyses. Lemmus was monophyletic, with relationships among the 
462 species of Lemmus identical for both ML and BI analyses and with high support (ML: 
463 97-100 BS; BI: 1.00 PP. Ondatra and Neofiber were inferred as sister genera in all 
464 analyses with high support (ML: 100 BS: BI: 1.00 PP) and placed near the base of the 
465 arvicoline tree. 
466 Interspecies relationships among Dicrostonyx were highly supported but different 
467 between analyses (see Figures 1-4). Dicrostonyx was consistently placed as sister to 
468 the clade (Phenacomys,  Arborimus) with moderate to strong support. We found generic 
469 resolution between Phenacomys and Arborimus similar to Robovský et al. (2008) and 
470 Fabre et al. (2012). In the ML analysis (see Figures 1-2) we found a (Phenacomys, 
471 Arborimus) clade (100 BS) that had high bootstrap values throughout (100 BS). The BI 
472 analysis also had high posterior probabilities (1.00) for all relationships within 
473 (Phenacomys, Arborimus) (see Figure 3-4).
474 All of our ML and BI analyses inferred a large clade that includes the genera 
475 Ellobius, Lagurus, Eolagurus, Neodon, Dinaromys, Lemmiscus, Arvicola, Chionomys, 
476 Proedromys, Volemys, Microtus (including both North American and Eurasian species), 
477 Lasiopodomys, and Blanfordimys (see Figures 1-4). The overall topology among the 
478 genera varies little between the analyses, but some species level relationships did vary 
479 with poor interspecies resolution throughout. Arvicola was placed towards the base of 
480 this large clade and as monophyletic (with identical species level topology) and with 
481 high support (ML: 100 BS; BI: 1.00 PP). However, the interspecies relationships within 
482 Arvicola were not well supported in all analyses. Neodon was found to be monophyletic 
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483 with high support (ML: 99 BS; BI: 1.00 PP) and near the base of the large clade. 
484 Chionomys is well supported (98-100 BS; 1.00 PP) as a clade that, in the ML analysis of 
485 all five genes, is sister to the clade including Volemys, Proedromys, Microtus, 
486 Blanfordimys, and Lasiopodomys. In all analyses, Proedromys bedfordi is the sister to 
487 Volemys musseri with high support in the ML (99-100 BS) and the BI (1.00 PP) 
488 analyses. Volemys millicens is inferred to be the sister to Neodon (ML: 98-100 BS; BI: 
489 1.00 PP). All analyses indicate that Volemys is polyphyletic. Lasiopodomys is inferred 
490 as monophyletic in all analyses with moderate to high support (71-100 BS and 1.00 PP). 
491 In the BI analysis of Ghr and IRBP, Lasiopodomys is inferred to be nested within North 
492 American Microtus (1.00 PP) (see Figure 4). Blanfordimys is found to be monophyletic 
493 in all analyses with high support (100 BS and 1.00 PP). North American Microtus is 
494 inferred as monophyletic in half the analyses (BI Ghr, IRBP, cytb; ML and BI of all five 
495 genes), however, this clade is weakly supported (ML: 40 BS; BI: 0.31-0.73 PP). Alticola 

496 was weakly to moderately supported as monophyletic (ML: 68-90 BS; BI: 0.82 PP), with 
497 similar but not identical species level topology, and nested within Clethrionomys in all 
498 analyses. Clethrionomys is thus rendered paraphyletic by Alticola. 
499

500 Time-Calibrated Analysis

501 In the analysis that included Ghr and IRBP, 57 nodes (55%) had posterior 
502 probability values >0.95. The time-calibrated majority rule consensus tree is presented 
503 in Figure 5. In the analysis that included all five genes, 94 nodes (71%) had posterior 
504 probability values >0.95. The time-calibrated majority rule consensus tree is presented 
505 in Figure 6. 
506

507 Divergence-Time Results

508 Crown arvicoline rodents were inferred to have diverged ~8 Ma. For a list of all 
509 the major clades and their divergence estimates see Table 1. 
510

511 Discussion

512 Systematic Position of Genera and Discussion of Intrageneric Relationships 

513 The overall topology of our ML and BI analyses are largely congruent with 
514 previously published molecular phylogenies (e.g., Conroy and Cook, 1999, 2000; 
515 Galewski et al., 2006; Buzan et al., 2008; Fabre et al., 2012; Martínková and Moravec, 
516 2012; Steppan and Schenk, 2017; Upham et al., 2019; Abramson et al., 2021) with the 
517 main exception being Robovský et al. (2008). This exception is likely tied to the fact that 
518 this is the only study that included morphological characters in the analysis. With our 
519 increased sample size we did find some differences, especially in relatively earlier 
520 divergences, but few of those nodes were well-supported. There are some topological 
521 differences based on which genes are included in the analysis (e.g., nuclear, 
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522 mitochondrial, or combined). Below we outline the implications of our results for the 
523 taxonomy and evolutionary understanding of Arvicolinae. 
524

525 Basal position of Prometheomys

526 Prometheomys was placed as the most basal arvicoline with weak support in 
527 several studies (Galewski et al., 2006; Fabre et al., 2012; Steppan and Schenk, 2017; 
528 Upham et al., 2019; Ibis et al., 2020). In other studies, it was placed close to the base of 
529 Arvicolinae but not as the first diverging arvicoline (Buzan et al., 2008; Robovský et al., 
530 2008; Abramson et al., 2021). Our results provide conflicting results depending on 
531 which markers and method was used to reconstruct the phylogeny. Our ML and BI 
532 analyses that included only nuclear markers placed Prometheomys, as the most basal 
533 arvicoline with strong support (100 BS and 1.00 PP). However, when mitochondrial 
534 markers were included, Prometheomys is placed near the base, but not as the most 
535 basal arvicoline (weak support). Therefore, we stress caution in assigning 
536 Prometheomys the title of the �most basal arvicoline�.
537    
538 Monophyly of Bog Lemmings? 

539 Bog lemmings (Synaptomys and Mictomys) and �true lemmings� (Myopus, 
540 Lemmus) are consistently placed in a clade at or near the base of the arvicoline tree. 
541 One study placed lemmings as sister to all other arvicolines (Abramson et al., 2021), 
542 while most have found lemmings to be near but not at the base of the tree (Galewski et 
543 al., 2006; Buzan et al., 2008; Robovský et al., 2008; Fabre et al., 2012; Steppan and 
544 Schenk, 2017; Upham et al., 2019). Studies that sampled both species of extant bog 
545 lemmings found that Synaptomys (as defined by Musser and Carleton, 2005) is 
546 paraphyletic with respect to �true lemmings� (Buzan et al., 2008; Fabre et al., 2012; 
547 Steppan and Schenk, 2017; Upham et al., 2019). Our results unfortunately do not add 
548 any clarity on whether bog lemmings should be one or two genera, with 50% of our 
549 trees recovering a weakly supported clade. However, it should be noted that analyses 
550 based either entirely or predominantly on nuclear markers recovered a weakly 
551 supported clade, while those that included mitochondrial data tended not to. Based on 
552 dental morphology, many paleontologists have considered the northern bog lemming, 
553 Synaptomys borealis (following Musser and Carleton, 2005), to be a member of a 
554 distinct genus known as Mictomys (Fejfar and Repenning, 1998; Repenning and Grady, 
555 1988). Musser and Carleton (2005) argued that there may be enough evidence to place 
556 Mictomys and Synaptomys as distinct genera, but they tentatively kept them in the 
557 same genus. Along with other studies (e.g., Buzan et al., 2008; Fabre et al., 2012; 
558 Steppan and Schenk, 2017), our analyses do not support the monophyly of bog 
559 lemmings and so Mictomys and Synaptomys are likely distinct genera that are united 
560 with Myopus and Lemmus in Lemmini.
561
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562 Systematic Status of Dicrostonychini (Phenacomys, Arborimus, and Dicrostonyx)

563 Voles belonging to Phenacomys and Arborimus are consistently found to be 
564 sister genera (Robovský et al., 2008; Fabre et al., 2012; Steppan and Schenk, 2017; 
565 Upham et al., 2019). Recently, the clade (Phenacomys, Arborimus) was found to be 
566 sister to Dicrostonyx (Galewski et al., 2006; Buzan et al., 2008; Robovský et al., 2008; 
567 Fabre et al., 2012; Steppan and Schenk, 2017; Abramson et al., 2021). Historically 
568 Dicrostonyx was thought to be closely related to the other lemmings, but that was not 
569 viewed as valid in recent studies (Galewski et al., 2006; Buzan et al., 2008; Robovský et 
570 al., 2008; Fabre et al., 2012; Steppan and Schenk, 2017; Abramson et al., 2021). Our 
571 study uses robust sampling of Dicrostonyx and Phenacomys (and to a lesser extent 
572 Arborimus) to further substantiate the hypothesis that they are not closely related to 
573 other lemmings as hypothesized based on morphology alone. All of our data are also in 
574 agreement with Abramson et al. (2021) that Dicrostonyx, Phenacomys, and Arborimus, 
575 are united into a clade that Abramson et al. (2021) called Dicrostonychini. Lemmings 
576 and ((Phenacomys, Arborimus), Dicrostonyx) were consistently placed in a clade at or 
577 near the base of Arvicolinae in our analyses. More complete taxonomic sampling is 
578 needed, especially within Phenacomys and Arborimus (e.g., Arborimus albipes, which 
579 was not included here) to further parse these relationships and provide further support 
580 for the close affinity of Dicrostonychini and Lemmini.     
581

582 Systematic Status of Myodini (Clethrionomys, Alticola, and Eothenomys)

583 Using molecular data (and to a lesser extent morphology), Clethrionomys, 
584 Alticola, and Eothenomys were consistently found to be closely related and united in the 
585 tribe Myodini (Luo et al., 2004; Galewski et al., 2006; Lebedev et al., 2007; Buzan et al., 
586 2008; Robovský et al., 2008; Fabre et al., 2012; Liu et al., 2012; Jin et al., 2013; 
587 Steppan and Schenk, 2017; Upham et al., 2019; Abramson et al., 2021). Dental 
588 morphology alone suggests that Clethrionomys (rooted molars) would likely be more 
589 distantly related to voles of the genera Eothenomys and Alticola (rootless molars) (Luo 
590 et al., 2004; Lebedev et al., 2007; Liu et al., 2012; Zeng et al., 2013). We consistently 
591 recovered Eothenomys in a clade closely related to Clethrionomys, which is similar to 
592 previous studies (Luo et al., 2004; Buzan et al., 2008; Robovský et al., 2008; Fabre et 
593 al., 2012; Liu et al., 2012; Zeng et al., 2013; Steppan and Schenk, 2017; Abramson et 
594 al., 2021). We found that Clethrionomys is paraphyletic with respect to Alticola. Species 
595 currently placed in Clethrionomys and Alticola form the sister clade of Eothenomys. 
596 Clearly the taxonomy of species assigned to Clethrionomys is problematic, but we 
597 suggest that phylogenomic analyses should be performed to establish a stable 
598 taxonomy.
599 Alticola has been under-sampled in many previous studies. Depending on what 
600 taxa of Alticola are included, studies have found it to be monophyletic (Fabre et al., 
601 2012; this study) or paraphyletic (Lebedev et al., 2007; Steppan and Schenk, 2017; 
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602 Upham et al., 2019; Abramson et al., 2021). Our study includes a nearly complete 
603 sampling of currently recognized species of Alticola (n=11). Our well-supported results 
604 indicate that species currently placed in Alticola compose a clade. This result is different 
605 than what was recovered by Upham and colleagues (2019), the only other study to 
606 include 11 species of Alticola. They recovered a paraphyletic Alticola with respect to 
607 Clethrionomys. This suggests that more work needs to be done on these two genera to 
608 further clarify there systematic status.
609

610 Systematic Status of Hyperacrius and Proedromys

611 The systematic positions of the Subalpine Kashmir Vole (Hyperacrius fertilis) and 
612 the Duke of Bedford�s Vole (Proedromys bedfordi) have been relatively understudied. 
613 Using morphology alone, Hyperacrius was historically hypothesized to be closely 
614 related to Alticola (Hinton, 1926), or as a member of the tribe Clethrionomyini (=Myodini) 
615 (Gromov and Polyakov, 1977). Kohli et al. (2014) included Hyperacrius for the first time 
616 in a molecular analysis, and its relationship to Clethrionomyini was doubted. None of 
617 our analyses recovered Hyperacrius with strong support. Some placing it with Myodini 
618 and others placing it near Arvicolini. Recently, Hyperacrius was hypothesized to be the 
619 earliest diverging member of Arvicolini (Abramson et al., 2020; 2021). More robust 
620 sampling is needed to firmly establish Hyperacrius systematic position.
621 Proedromys has historically been thought to be closely related, or even included 
622 in, Microtus (Ellerman and Morrison-Scott, 1951; Gromov and Polyakov, 1977; Musser 
623 and Carleton, 2005). We concur with other phylogenetic studies that have included 
624 Proedromys (Fabre et al., 2012; Steppan and Schenk, 2017; Abramson et al., 2021) 
625 that it is likely a member of the tribe Arvicolini and closely related to but outside of 
626 Microtus. We consistently recovered Volemys musseri as the sister to Proedromys. 
627 Given the geographical overlap of the two this is not suprising and others have 
628 recovered this as well (Steppan and Schenk, 2017; Upham et al., 2019). 
629    
630 Systematic Status of Ellobius, Arvicola, Neodon and Chionomys 

631 Over the past decade, Ellobius, Arvicola, Neodon, and Chionomys have been the 
632 subject of several phylogenetic studies (Yannic et al., 2012; Pradhan et al., 2019; 
633 Bondareva et al., 2020; Mahmoudi et al., 2020). Ellobius has been placed as an early 
634 diverging arvicoline (Bondareva et al., 2020; Robovský et al., 2008), or as an early 
635 diverging member of the radiation that includes Lagurus, Eolagurus, Lemmiscus, 
636 Neodon, Arvicola, Chionomys, Proedromys, Volemys, Lasiopodomys, Blanfordimys, 
637 and Microtus (Fabre et al., 2012; Steppan and Schenk, 2017; Upham et al., 2019; 
638 Abramson et al., 2021). We found here that Ellobius is an early diverging member of the 
639 large, nested radiation that includes Microtus, and not an early diverging arvicoline (see 
640 Figures 1-4), but this relationship was not strongly supported in any analysis that 
641 included mitochondrial data. In the calibrated and uncalibrated nuclear trees, Ellobius is 
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642 the earliest diverging member of the large clade with strong support (Figures 2, 4, and 
643 6). 
644 Arvicola is frequently inferred to be a basal member of Arvicolini, and our results 
645 further support this hypothesis (Galewski et al., 2006; Robovský et al., 2008; Fabre et 
646 al., 2012; Steppan and Schenk, 2017; Upham et al., 2019; Mahmoudi et al., 2020). We 
647 inferred a monophyletic Arvicola with most commonly a weak sister taxon relationship to 
648 Lemmiscus curtatus (in analyses that included mitochondrial data with the exception 
649 being the ML 5 gene analysis), similar to the results of Steppan and Schenk (2017). 
650 That is an interesting biogeographic result given the large distance between the extant 
651 members of these genera.
652 Neodon has been recognized as a genus or as a subgenus of Microtus (see 
653 Musser and Carleton, 2005) or placed in Pitymys (Ellerman and Scott, 1951). Recent 
654 systematic and taxonomic work has altered our understanding of the clade (Bannikova 
655 et al., 2010; Liu et al., 2012; Liu et al., 2017; Pradhan et al., 2019). As more molecular 
656 data have been added across Arvicolinae, it is now apparent that, historically, Microtus 

657 has been used as a taxonomic garbage bin. With the recent recognition of M. leucurus 

658 as Neodon leucurus, M. clarkei as N. clarkei, M. fuscus as N. fuscus, and N. juldaschi 

659 as Blanfordimys juldaschi, we have achieved some taxonomic clarity for Neodon 

660 (Pradhan et al., 2019; Abramson et al., 2021). With these taxonomic revisions in mind, 
661 our analyses inferred, with high support, a monophyletic Neodon, that is an early 
662 diverging member of Arvicolini. We also found a strongly supported sister relationship 
663 between Volemys millicens and Neodon, which suggest a need for further exploration of 
664 the relationships between these two and possibly a need for taxonomic revision for V. 
665 millicens. 
666 Historically, Chionomys was placed in Arvicola, in Microtus, its own genus, or as 
667 a subgenus of Microtus (Yannic et al., 2012). This complicated history can be attributed 
668 in part to a highly fragmented geographic distribution and isolation in high alpine 
669 environments. Jaarola et al. (2004) used cytb to solidify Chionomys as a valid genus 
670 separate from Microtus, and several other studies placed Chionomys as a nested 
671 member of Arvicolini outside of Microtus (Galewski et al., 2006; Robovský et al., 2008; 
672 Fabre et al., 2012; Abramson et al., 2021). Our results further support that hypothesis 
673 and further substantiate the claim that Chionomys is a valid genus.
674

675 Systematic Status of Lemmiscus curtatus

676 Lemmiscus curtatus has been poorly sampled in phylogenetic analyses. Until 
677 recently, the sagebrush vole, Lemmiscus curtatus, was not included in phylogenetic 
678 analyses based on molecular data (Steppan and Schenk, 2017; Abramson et al., 2021). 
679 Those two analyses produced conflicting results for the systematic position of 
680 Lemmiscus. Both studies found that Lemmiscus and Microtus are not sister taxa. 
681 Steppan and Schenk (2017) placed Lemmiscus as sister to Arvicola, whereas 
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682 Abramson et al. (2021) placed it as sister to Chionomys. Some of our results, though 
683 weakly supported, are similar to Steppan and Schenk (2017), probably because we 
684 used the same genetic data for Lemmiscus for our phylogeny, whereas Abramson et al. 
685 (2021) used an entire mitochondrial genome of Lemmiscus. Our ML analyses placed 
686 Lemmiscus as the most basal arvicoline whereas our BI analyses placed it weakly as 
687 the sister to Arvicola. We reject the most basal arvicoline hypothesis, because it is likely 
688 the product of only using a single mitochondrial marker. More data from transcriptomes 
689 or nuclear genes will likely help to refine the systematic position of this species so we do 
690 not make any recommendations on the systematic position of Lemmiscus.
691

692 Systematic Status of Blanfordimys, Volemys, and Lasiopodomys

693 Blanfordimys has been variably considered a distinct genus, a subgenus of 
694 Microtus, or as a member of Neodon (see Musser and Carleton, 2005). Bannikova et al. 
695 (2009) showed with high support that B. bucharensis was sister to what was then called 
696 Microtus (Neodon) juldaschi, and the two of them were considered sister to B. 
697 afghanus. That work laid the framework for Liu et al. (2012) to propose abandoning M. 
698 (Neodon) juldaschi for B. juldaschi to resolve the paraphyly of Blanfordimys (Fabre et al. 
699 2012). Our results support this taxonomic decision, which would make Blanfordimys 

700 monophyletic (although the genus and several others still make Microtus paraphyletic; 
701 see below). Blanfordimys is sister to Microtus agrestis in our analyses. The taxonomy of 
702 that species is unclear, and M. agrestis could defensibly be assigned to Blanfordimys or 
703 Microtus depending on the taxonomic future of the latter genus.
704 Historically, Volemys has been considered a distinct genus or a subgenus of 
705 Microtus, with Musser and Carleton (2005) recognizing two species, V. musseri and V. 
706 millicens. That classification is based on morphology alone, and the monophyly of 
707 Volemys has not been supported using molecular data (Jaarola et al., 2004; Steppan 
708 and Schenk, 2017; Upham et al., 2019). We also did not infer a monophyletic Volemys, 
709 so we suggest further systematic study of voles currently placed within Volemys, 
710 because the molecular evidence points to the two species belonging to separate 
711 genera. Further examination should be undertaken to understand potential 
712 morphological homoplasy between V. millicens and V. musseri, which would explain 
713 their historical placement in the genus Volemys.
714 In the past, four species of voles have been included in Lasiopodomys; Microtus 

715 gregalis, L. brandtii, L. mandarinus, and L. fuscus. However, a combined evidence 
716 phylogeny suggested that L. fuscus should be removed from Lasiopodomys and placed 
717 in Neodon (Liu et al., 2012). This conclusion is supported in both our ML and BI 
718 analysis, and we support this taxonomic realignment. There is also disagreement on the 
719 generic allocation of Lasiopodomys gregalis to that genus or Microtus (see Abramson 
720 and Lissovsky, 2012; Petrova et al., 2015; Musser and Carleton, 2005). Our 
721 phylogenetic analysis supports the placement of the species in Lasiopodomys. 
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722

723 Systematic Status of Microtus 

724 Voles of the genus Microtus are frequently studied but have presented a long-
725 term systematic enigma (e.g., Conroy and Cook, 2000; Fabre et al. 2004; Abramson et 
726 al., 2021). Microtus is one of the most rapidly evolving lineages of rodents and contains 
727 over sixty extant species (Musser and Carleton, 2005). The species of Microtus that are 
728 endemic to North America have in the past been recovered as a clade (Conroy and 
729 Cook, 1999, 2000; Upham et al., 2019; Abramson et al., 2021). Our results fail to 
730 definitively support this hypothesis, with half of our analyses recovering a paraphyletic 
731 endemic North American Microtus. To attempt to clarify the taxonomy of Microtus, 
732 researchers have used subgenera such as Pedomys, Alexandromys, Terricola, 
733 Iberomys, Agricola, and Neodon, but these subgenera are variably considered genera 
734 by different authors. Thus, the genus Microtus needs to be redefined (Barbosa et al., 
735 2018; Abramson et al., 2021), because without a redefinition, Microtus is a large 
736 paraphyletic genus, with genera such as Lasiopodomys, Blanfordimys, Arvicola, and 
737 Neodon nested within it (Conroy and Cook, 1999, 2000; Jaarola et al., 2004; Galewski 
738 et al., 2006; Buzan et al., 2008; Robovský et al., 2008; Fabre et al., 2012; Martínková 
739 and Moravec, 2012; Steppan and Schenk, 2017; Barbosa et al., 2018; Abramson et al., 
740 2021). We therefore recommend phylogenomic data be collected to stabilize this 
741 taxonomy. Until then we do not suggest sweeping taxonomic changes within Microtus 

742 but again emphasize the probable and widespread paraphyly of the genus. 
743

744 Diversification of arvicolines 

745 Our results are largely congruent with the published fossil record and the 
746 divergence time estimates of Steppan and Schenk (2017), Upham et al. (2019), and 
747 Abramson et al. (2021). We estimated a mean age of crown Arvicolinae at ~8 Ma, which 
748 is only slightly older than the age (7.4 Ma) inferred by Abramson et al. (2021). These 
749 ages are older than the earliest possible arvicoline rodent fossils, which are probably 
750 Pliocene in age (e.g., Pannonicola, Microtoscoptes, or Goniodontomys). Abramson et 
751 al. (2021) included a calibration at the crown Arvicolinae node whereas we did not, 
752 potentially accounting for the slight discrepancy in our results. We did not use a 
753 calibration because of the uncertain phylogenetic placement of putative early arvicoline 
754 fossils (Repenning, 1987; Fejfar et al., 2011). Abramson et al (2021) also ran an 
755 analysis without that calibration, and they found an age close to their fully calibrated tree 
756 and the result of our study. This gives us confidence in an origin of arvicolines ~7-8 Ma, 
757 with dentally distinct arvicoline rodents evolving later (~6-5 Ma). For ages of major tribes 
758 and clades of arvicolines found in our study, see Table 1. Of note is the discrepancy in 
759 the age of clades between analyses that included only nuclear markers, mitochondrial 
760 markers only, or a combined analysis. Node ages did not vary by more than ~2 Ma 
761 across our analyses.
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762 Abramson et al. (2021) documented three radiations of arvicoline rodents, 
763 whereas we establish four radiations. The �first radiation� of Abramson et al. (2021) 
764 consists of the tribes Lemmini, Prometheomyini, Ondatraini, and Dicrostonychini (see 
765 Table 1 and Figure 5-6 for ages). This �first radiation� of Abramson et al. (2021) is 
766 taxonomically equivalent to our first three radiations. Our �first radiation� consists only of 
767 the tribe Prometheomyini with ancestors of the modern long-clawed mole vole (P. 
768 schaposchnikowi), diverging from all other arvicolines between 8-7 Ma. Our �second 
769 radiation� consists of the tribes Ondatraini, Lemmini, and Dicrostonychini. Between 7-6 
770 Ma we see a divergence between these three tribes, and the rest of the arvicoline 
771 rodents (e.g., Myodini, Arvicolini). Our �third radiation� consists of Myodini and 
772 Hyperacrius. This radiation diverged from the MRCA with Arvicolini, Lagurini, and 
773 Ellobiusini between 6-5 Ma. Finally our �fourth radiation� consists of all of the other 
774 arvicolines, including Arvicolini, Lemmiscus, Chionoys, Proedromys, Ellobiusini and 
775 Lagurini. These arvicolines diverged from the MRCA with the rest of the arvicolines 
776 mentioned previously between 5-4 Ma.  
777

778 Conclusions

779 A better understanding of the phylogeny of arvicoline rodents has been 
780 warranted given their remarkable evolutionary history and abundance across high 
781 latitudes. We provide new systematic hypotheses across Arvicolinae and some direction 
782 for future systematic and taxonomic work. We show that the first �wave� of arvicolines 
783 (our first �two radiations�) likely includes the genera Ondatra, Neofiber, Lemmus, 
784 Myopus, Synaptomys, Mictomys, Dicrostonyx, Prometheomys, Phenacomys, and 
785 Arborimus. The earliest diverging arvicoline clade is likely Prometheomys, but work still 
786 needs to be done to solidify this hypothesis. The monophyly of bog lemmings 
787 (Synaptomys and Mictomys) is doubted, however their close relationship to the �true 
788 lemmings� (Myopus and Lemmus) is clear. Similar to Abramson et al. (2021) we also 
789 recovered evidence to support the inclusion of Phenacomys and Arborimus with 
790 Dicrostonyx in Dicrostonychini. The second �wave� (our �third� and �fourth� radiations) 
791 include Alticola, Clethrionomys, Eotheonomys, Ellobius, Lagurus, Arvicola, Lemmiscus, 
792 Chionomys, Neodon, Proedromys, Volemys, Lasiopodomys, Blanfordimys, and 
793 Microtus. Clethrionomys, Eothenomys, and Alticola clearly form a large monophyletic 
794 clade, however the paraphyly of Clethrionomys relative to Alticola needs to be explored. 
795 Our study made progress in clarifying the taxonomy and systematics for this large 
796 clade, however we recommend more robust sampling (particularly within Microtus), 
797 before any large scale taxonomic revisions are made. We founds some evidence for a 
798 monophyletic endemic North American Microtus, however this was not recovered in all 
799 analyses, and could benefit from larger scale sampling across the genome.  Finally, we 
800 estimated divergence times among the major clades, which were concordant with the 
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801 published fossil record. This will provide valuable insight into the evolutionary and 
802 paleobiogeographical history of this clade. 
803
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Figure 1
Figure 1: Maximum Likelihood (ML) tree of concatenated molecular dataset of all five
genes representing 132 arvicolines and 3 members of Cricetidae.

Tree was rooted with Neotoma fuscipes. Abbreviations: On = Ondatrini; Di = Dicrostonychini;
El = Ellobiusini. La = Lagurini. Symbols at nodes represent bootstrap values.
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Figure 2
Figure 2: Maximum Likelihood (ML) tree of concatenated molecular dataset of the
nuclear genes Ghr and IRBP/RPB3, representing 101 arvicolines and 3 members of
Cricetidae.

Tree was rooted with Neotoma fuscipes. Abbreviations: On = Ondatrini; Di = Dicrostonychini;
El = Ellobiusini. La = Lagurini. Symbols at nodes represent bootstrap values.
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Figure 3
Figure 3: Majority-rule consensus tree produced using Bayesian Inference (BI) methods
of the concatenated molecular dataset of all five genes representing 132 arvicolines
and 3 members of Cricetidae.

Tree was rooted with Neotoma fuscipes. Abbreviations: On = Ondatrini; Di = Dicrostonychini;
El = Ellobiusini. La = Lagurini. Symbols at nodes represent posterior probability values.
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Figure 4
Figure 4: Majority-rule consensus tree produced using Bayesian Inference (BI) methods
of the concatenated molecular dataset of the nuclear genes Ghr and IRBP/RBP3
representing 101 arvicolines and 3 members of Cricetidae.

Tree was rooted with Neotoma fuscipes. Abbreviations: On = Ondatrini; Di = Dicrostonychini;
El = Ellobiusini. La = Lagurini. Symbols at nodes represent posterior probability values.
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Figure 5
Figure 5: Time-Calibrated Bayesian (BI) tree of concatenated molecular dataset of all
five genes representing 132 arvicolines and 3 members of Cricetidae.

Tree was rooted with Neotoma fuscipes. Abbreviations: On = Ondatrini; Di = Dicrostonychini;
El = Ellobiusini. La = Lagurini. Symbols at nodes represent places where fossil calibrations
were enforced. Red bars are the 95% confidence interval for the age of a node. Numbers 1-4
represent the four different radiation events.
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Figure 6
Figure 6: Time-Calibrated Bayesian (BI) tree of concatenated molecular dataset of the
nuclear genes Ghr and IRBP/RBP3 representing 101 arvicolines and 3 members of
Cricetidae.

Tree was rooted with Neotoma fuscipes. Abbreviations: On = Ondatrini; Di = Dicrostonychini;
El = Ellobiusini. La = Lagurini. Symbols at nodes represent places where fossil calibrations
were enforced. Red bars are the 95% confidence interval for the age of a node. Numbers 1-4
represent the four different radiation events.
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Table 1(on next page)

Table1: Chart comparing the ages reported in Abramson et al. (2021) and this study.

All ages represent mean ages in millions of years.
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Node

Abramson et 

al. (2021) 

(mean) 

Mean 

Age

Median 

Age

95% 

confidence 

interval

Arvicolinae + Cricetinae 11.31 13.39 13.33 (15.72-11.04)

Arvicolinae   7.36 6.66 6.62 (7.73-5.69)

Lemmini 4.81 4.36 4.29 (5-3.95)

Ondatraini 6 3.55 3.48 (4.14-3.2)

Dicrostonychini  

(Phenacomys, Arborimus, 

Dicrostnyx) 4.89 4.92 4.88 (5.85-4.04)

Prometheomyini 6.3 5.6 5.57 (6.58-4.73)

Clethrionomyini 

(Clethrionomys, Eothenomys, 

Alticola) = Myodini 4.02 3.66 3.64 (4.31-3.04)

Alticola 0.9 1.63 1.62 (2-1.28)

Eothenomys 3.6 3.15 3.13 (3.75-2.57)

Ellobiusini 4.97 4.17 4.15 (5.21-3.13)

Lagurini 3.1 5.22 5.19 (6.04-4.39)

Arvicolini s.str (excluding 

Hyperacrius) 4.9 4.47 4.44 (5.19-3.77)

Lemmiscus 4.04 4.51 4.49 (5.47-3.61)

Chionomys    3.29 2.82 2.81 (3.51-2.18)

Proedromys 4.32 3.42 3.4 (4.13-2.71)

North American Microtus 3.41 3.6 3.58 (4.17-3.04)

Paraphyletic Crown Microtus 3.8 3.76 3.74 (4.37-3.19)

Neodon   3.16 2.46 2.45 (3.1-1.87)

Lasiopodomys 3.09 3.11 3.1 (3.74-2.52)
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