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ABSTRACT
Human activities in the oceans are increasing and can result in additional mortality on
many marine Protected, Endangered or Threatened Species (PETS). It is necessary
to implement ambitious measures that aim to restore biodiversity at all nodes of
marine food webs and to manage removals resulting from anthropogenic activities.
We developed a stochastic surplus production model (SPM) linking abundance and
removal processes under the assumption that variations in removals reflect variations
in abundance. We then consider several ‘harvest’ control rules, included two candidate
ones derived from this SPM (which we called ‘Anthropogenic Removals Threshold’, or
ART), to manage removals of PETS. The two candidate rules hinge on the estimation of
a stationary removal rate. We compared these candidate rules to other existing control
rules (e.g. potential biological removal or a fixed percentage rule) in three scenarios:
(i) a base scenario whereby unbiased but noisy data are available, (ii) scenario whereby
abundance estimates are overestimated and (iii) scenario whereby abundance estimates
are underestimated. The different rules were tested on a simulated set of data with life-
history parameters close to a small-sized cetacean species of conservation interest in the
North-East Atlantic, the harbour porpoise (Phocoena phocoena), and in a management
strategy evaluation framework. The effectiveness of the rules were assessed by looking
at performance metrics, such as time to reach the conservation objectives, the removal
limits obtained with the rules or temporal autocorrelation in removal limits. Most
control rules were robust against biases in data and allowed to reach conservation
objectives with removal limits of similarmagnitude when averaged over time. However,
one of the candidate rule (ART) displayed greater alignment with policy requirements
for PETS such as minimizing removals over time.
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INTRODUCTION
Anthropogenic activities in the oceans are expanding (Halpern et al., 2019; O’Hara, Frazier
& Halpern, 2021) and various stressors are responsible for pollution (from contaminants,
plastics or noise, among others) and biodiversity loss (Intergovernmental Science-Policy
Platform on Biodiversity and Ecosystem Services, 2018; European Commission, Directorate-
General for Maritime Affairs and Fisheries, 2023). Ambitious targets and measures are
needed to restore biodiversity at all nodes of marine foodwebs (e.g., OSPAR 2021),
including apex predators which are often so-called marine megafauna (Authier et al.,
2017): these species can integrate changes over large spatial and temporal scales, and can
reflect the state of the marine ecosystems. The charisma of sharks, sea turtles, seabirds or
marine mammals can capture the attention of citizens and policy-makers to highlight the
challenges of biodiversity conservation in the Anthropocene where human activities are
largely responsible for their decline (Lewison et al., 2004;Avila, Kaschner & Dormann, 2018;
Dias et al., 2019; Pacoureau et al., 2021). Many marine megafauna species are the target of
dedicated legislations, be they international, regional or national: these various conservation
instruments define them as Protected, Endangered, or Threatened Species (hereafter PETS)
depending on their conservation status. In practice, PETS demandmeasures to ensure their
long-term viability in the face of multiple and cumulative pressures (including maritime
transport, energy production, tourism, fisheries, aquaculture, and industry).

A major challenge lying at the science-policy interface is defining precisely ‘long-term
viability’. Pe’er et al. (2013) numbered some 20 different definitions used in scientific
publication to operationalize viability. This profusion can be bewildering to policy makers,
managers, or scientists themselves. At its core, viability is a statement about a future state of
a population, namely a conjecture that said population will remain in existence over a given
period of time, or, equivalently, that it will not go extinct (Ver Hoef, 2006). As such, it is (i)
a prediction about an yet-unobserved state of nature, and (ii) it can only be scientifically
assessed in the context of a mathematical model that can be unambiguously communicated
to decision-makers and specified in a series of unambiguous operations (i.e., an algorithm)
to a computer. The latter is necessary to quantify viability, but the former is most critical
since an agreement must be reached on what is the desired future state; and it needs to be
precisely defined in the form of time-bound conservation objectives (CO).

It cannot be avoided that stakeholders agree on a quantitative formulation of a CO,
in order to leverage the effectiveness of mathematics (Wigner, 1960; Hamming, 1980).
Mathematical models can be built to encapsulate all current knowledge (including
known uncertainties and biases) on a socio-ecosystem to manage (see e.g., European
Commission and Directorate-General for Research and Innovation, 2022). Such models are
called operating models, or digital twins (Cressie, 2022). An operating model incoporates
the best available knowledge and can be put to use for investigating the likely consequences
of management actions with numerical simulations. These simulations allow to explore
counterfactual scenarios in which different management actions would be carried out,
and their consequences are evaluated against a range of performance metrics. This whole
approach enables a pro-active approach to conservation: the likely consequences of
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management actions can be scrutinized ex ante and ranked according to pre-specified
requirements in a Management Strategy Evaluation (MSE; de la Mare, 1986; Rademeyer,
Plagányi & Butterworth, 2007; Bunnefeld, Hoshino & Milner-Gulland, 2011; Punt et al.,
2016; Kaplan et al., 2021). These simulations should not be mistaken for actual measures
(which can only be assessed ex post ), yet they provide a scientific roadmap for making
informed decisions despite considerable uncertainty (Kaplan et al., 2021; Walter III et al.,
2023).

For example, Hashimoto, Shirakihara & Shirakihara (2015) investigated the effects of
anthropogenic removals, and more precisely by-catch, on the population viability of a
marine mammal, the narrow-ridged finless porpoises (Neophocaena asiaeorientalis) in
coastal waters around Japan. This cetacean species is Endangered and red-listed by the
International Union for the Conservation of Nature (IUCN). By-catch, the unintentional
catch of other species during fishing operations targeting commercial species, is a major
threat to many marine PETS including cetaceans (Gray & Kennelly, 2018; Brownell et
al., 2019). Using population viability analysis (Ver Hoef, 2006) and matrix population
models (Caswell, 2006),Hashimoto, Shirakihara & Shirakihara (2015)predicted population
size reduction over 30% in half of their numerical simulation trials over the next 100 years.
This result was obtained while taking into account uncertainty in the actual magnitude
of current by-catch, and illustrates that uncertainty can be factored in and averaged over
through numerical simulations.

PETS, by definition, are excluded from direct exploitation, yet they may nevertheless
experience additional mortality due to human activities such as by-catch (e.g., small
cetaceans, seals, seabirds, turtles, sharks and rays), ship collisions (e.g., baleen whales),
collisions with marine renewable infrastructures (e.g., seals, seabirds), habitat destruction
and pollution among others. All these activities may lead to anthropogenic removals on
marine megafauna populations, that is additional mortality that would not have occurred
had human activities not taken place. Conserving marine megafauna and their populations
requires to cap these removals and set limits compatible with viability assessments. In
the European Union (EU), current legislation requires Member States (MS) to undertake
systematic monitoring programme for reliable data collection to estimate the magnitude
of removals of, as well as their impacts on PETS populations (European Commission,
Directorate-General for Environment, 2021). Despite high ambitions, current mortality
monitoring of PETS in the EU (and in North-East Atlantic more broadly) remains largely
inadequate to meet these expectations and assess the magnitude of PETS by-catch in
fisheries (ICES, 2022; Murphy, Borges & Tasker, 2022; Girard et al., 2022).

Taking stock of both the threats and the lack of legal teeth of several legislations,
the European Commission (EC) recently acknowledged ‘‘an urgent need to step-
up action at EU level to reverse the decline of marine ecosystems by tackling all
pressures’’ (European Commission, Directorate-General for Maritime Affairs and Fisheries,
2023). In particular, the EC calls on EU MS ‘‘to develop threshold values for
the maximum allowable mortality rate from incidental catches by end of 2023’’
(European Commission, Directorate-General for Maritime Affairs and Fisheries, 2023).
Setting limits to anthropogenic removals of PETS is clearly a salient policy issue
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1The following section draws heavily from
the first author’s master thesis (Ouzoulias,
2022).

(Taylor et al., 2022), as well as one fraught with hurdles. A major one stems from the simple
fact that, being non-commercial species, PETS are currently not the primary target of data
collection frameworks that can allow routine assessments of the intensity of anthropogenic
removals at an ecologically relevant scale. Removals, or even abundance, of PETS are
typically known with less precision than those of commercial species whose monitoring
is legally required and carried within the Data Collection Framework of the Common
Fisheries Policy in EU marine ecosystems for example (https://eur-lex.europa.eu/EN/legal-
content/summary/collecting-data-to-assist-in-fisheries-sector-management.html).

In this context of high stakes and low data availability, we carried out in-depth
investigations to assess the population viability of PETS in an MSE framework. We
focused on cetacean species with which we are most familiar, and for which a large
body of work exists. Our results and discussion are, however, not necessarily limited to
cetacean or marine mammal species as previous work on marine mammals have been
transfered on seabirds or turtles (Dillingham & Fletcher, 2008; Girard et al., 2022). We
start by providing a description of relevant international and EU legislations on PETS
(including cetaceans) conservation in the North-East Atlantic. We briefly described the
MSE framework for assessing the population viability of PETS with a focus on marine
mammals and so-called ’harvest’ control rules currently in use. The present paper will
not detail operating models for marine mammal population dynamics (Punt, 2016): the
interested reader is refered to Genu et al. (2021) for a full description of operating models.
We focus on the development of candidate control rules, which we called ‘‘Anthropogenic
Removals Threshold’’ (ART), based on a stochastic Surplus Production Model (SPM) that
explicitly links removals and abundance of PETS in a simple mathematical model. The
use of stochastic SPM models is standard in fisheries management (Polacheck, Hilborn
& Punt, 1993; Millar & Meyer, 2000; Bousquet, Duchesne & Rivest, 2008; Bordet & Rivest,
2014). This development section is detailed and primarily intended for mathematical-savvy
readers. We finally detailled a desk MSE (sensu Walter III et al. 2023) to benchmark the
current and candidate rules with a case study on a small cetacean species in the Northeast
Atlantic and discussed of the relevance of simulation testing results with respect to the
different control rules available to set removals limits.

METHODS
A list of abbreviations and acronyms is provided in Table 1.

Legislative framework1

The backbone of European legislation on the conservation of wildlife is the Directive
on the Conservation of Natural Habitats and of Wild Fauna and Flora, also known as
the Birds (BD, Directive 2009/147/EC) and Habitats Directive (HD, Council Directive
92/43/EEC (https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:31992L0043).
Several seabird species are covered by BD and all sea turtles and marine mammals are
listed on the HD Annex IV (‘‘Animal and Plant Species of Community Interest in Need of
Strict Protection’’) which requires they be monitored to assess and maintain a favourable
conservation status. The HD Annex II lists species for which core areas of their habitat are
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Table 1 Acronyms. List of acronyms used in the main text.

ACRONYM Meaning

ART Anthropogenic removals threshold
ASCOBANS Agreement on the conservation of small cetaceans of the

Baltic, North East Atlantic, Irish and North Seas
CO Conservation objective
DCF Data collection framework
EC European Commission
EU European Union
ICES International Council for the Exploration of the Sea
IPL Internal Protection Level
IWC Internation Whaling Commission
MCMC Markov Chain Monte Carlo
MMPA the United States’ Marine Mammal Protection Act
MNPL Maximum Net Productivity Level
MS Member States
MSE Management Strategy Evaluation
OMMEG OSPAR Marine Mammal Expert Group
OSPAR The (Oslo-Paris) Convention for the Protection of the

Marine Environment of the North-East Atlantic
PBR Potential Biological Removal
PETS Protected, Endangered or Threatened Species
RLA Removals Limit Algorithm
SPM Surplus Production Model

designated as Site of Community Importance and included in the Natura 2000 network.
The HD (Art. 12(1)) requires MS to take all the requisite specific measures to effectively
implement a regime of strict protection, measures that have to be taken before any decline
is observed (Mauerhofer, 2019). It prohibits the deliberate killing of PETS where deliberate
is to be understood, according to European Court of Justice rulings, not only as direct
intention but also acceptance of foreseeable consequences (Trouwborst & Somsen, 2019).
This interpretation has been confirmed in several rulings of the EU Court of Justice
(European Commission, Directorate-General for Environment, 2021).

According to theMarine Strategy Framework Directive (MSFD; Directive 2008/56/EC of
the EuropeanParliament andof theCouncil of 17 June 2008 (https://eur-lex.europa.eu/legal-
content/EN/TXT/?uri=CELEX:32008L0056)), priority ‘‘should be given to achieving or
maintaining good environmental status in the Community’s marine environment, to
continuing its protection and preservation, and to preventing subsequent deterioration’’.
The MSFD requires MS that they monitor the marine ecosystems (Art. 11), including
many PETS (as part of the Biodiversity descriptor D1). Reporting is mandatory at
the scale of marine sub-regions and, therefore, requires regional coordination. PETS
are to be assessed on 5 criteria, including the primary criterion D1C1: ‘‘The mortality
rate per species from incidental by-catch is below levels which threaten the species,
such that its longterm viability is ensured’’ (https://mcc.jrc.ec.europa.eu/main/index.py).
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One of the objectives of the Technical Measures Regulation (Regulation 2019/1241;
(https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32019R1241)) is to minimise
and, where possible, eliminate incidental catches of PETS.

The Oslo-Paris (OSPAR) convention aims at keeping the North-East Atlantic clean,
healthy and biologically diverse as well as making it a productive area, used sustainably and
resilient to both climate change and acidification (OSPAR, 2021). In particular, OSPAR
will work with relevant competent authorities and other stakeholders to minimise and
if possible eliminate incidental by-catch of marine mammals, birds, turtles and fish so
that it does not represent a threat to the protection and conservation of these species
(which are often PETS). The Agreement on the Conservation of Small Cetaceans of
the Baltic, North East Atlantic, Irish and North Seas (ASCOBANS) is a conservation
agreement under the aegis of the United Nations. The ASCOBANS Conservation and
Management Plan, under the heading ‘‘Habitat conservation and management’’ coined
the term ‘‘unacceptable interaction’’ (ASCOBANS, 2015). ASCOBANS (2015) defined,
according to the best available scientific evidence, ‘‘unacceptable interactions’’ as being, in
the short term, a total anthropogenic removal above 1.7% of the best available estimate of
abundance (Res.3.3) (https://www.ascobans.org/en/species/threats/bycatch). In practice, this
fixed percentage has been used by several EU Member States for setting removals limits on
small cetaceans despite well-known shortcomings with respect to the lack of robustness of
this method against uncertainty and biases in the data (Winship, 2009). A short description
of threshold setting methods can be found in Palialexis et al. (2021), and a more in-depth
discussion in the recent OSPAR assessment on cetacean by-catch (Taylor et al., 2022).

The quantitative operationalization of ‘‘long-term viability’’ is enacted in the definition
of conservation objectives (a.k.a. conceptual objectives Punt et al., 2016), or so-called
‘policy parameters’. For benchmarking purposes, two conservation objectives will be
examined in the remainder, without implying that these choices are prescriptive:
1. the OSPAR Marine Mammal Expert Group (OMMEG)’s interpretation of the

ASCOBANS conservation objective to restore or maintain population size to at least
80% of carrying capacity (hereafter denoted K ) over a time horizon of 100 years with
the probability of 0.8 (COOMMEG; Genu et al., 2021; Taylor et al., 2022);

2. to restore or maintain population size to at least 60% of carrying capacity (K ; see
below) over a time horizon of 50 years with the probability of 0.9 (COtMNPL).
COOMMEG enabled to carry out an assessment of anthropogenic removals of marine

mammals in the North-East Atlantic (Taylor et al., 2022); but has also been challenged on
several grounds (M Authier, pers. obs., 2021-2022) including

• a lack of ambition because the time horizon is too distant;
• too much ambition because 80% of K is too conservative;
• a lack of precaution because a risk of failing the conservation objective of 0.2 is too high;
• too much precaution because a probability of 0.8 is too high.

To partly address these challenges and knowledge gaps, we investigated also COtMNPL

where tMNPL stands for ‘theoretical Maximum Net Productivity Level’, defined as a
population experiencing density-dependence being above its Maximum Net Productivity
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Table 2 Notations.

Name Type Meaning

K Integer Carrying capacity (same unit as Nt , N obs
t or Rt )

Nt Integer True abundance (in number of individuals) at time t
N obs

t Integer Observed abundance (in number of individuals) at time t
cvt Positive real Coefficient of variation associated with N obs

t

Rt Integer Removals (in number of individuals) at time t
Dt Positive real Depletion at time t : ratio of Nt over K
ρt Positive real Removal rate at time t
r∗ Positive real Population growth rate at the MNPL
r Positive real Current population growth rate

Maximum Net Productivity:
MNP

Positive
real the maximum possible per capita rate of increase per year

MNPL Proportion Maximum Net Productivity Level
z Positive real Shape parameter of the Generalized Logistic Population

Growth model
rmax Positive real Maximum theoretical or estimated productivity rate; related

to MNP
FR Proportion Recovery factor
Nmin Integer Minimum population estimate
IPL Proportion Internal Protection Level; a fraction of K
wt Positive real weight for the likelihood (Eq. 9)
cvσ Positive real Coefficient of variation associated with environmental

stochasticity
εt , σ Positive real Environmental stochasticity

Level (MNPL), which is thought to be 60% of carrying capacity for marine mammals
(Taylor & Demaster, 1993; Zerbini et al., 2011; Guilherme et al., 2021). COtMNPL lowers
the target, time horizon and risk compared to COOMMEG. CO are best viewed as ‘policy
parameters’ emerging from a consensus on the appropriate level of ambition sought by
parties and informed by current scientific evidence and knowledge.

Notations
Notations are summarized in Table 2. Let logN (location,scale) denotes the log-normal
distribution of parameters location and scale. Let U

(
lower,upper

)
denotes the uniform

distribution bounded by parameters lower and upper. Thê notation flags an estimate
of a parameter, which can be the a posteriori mean or some quantile from a posterior
distribution.

Management strategy evaluation
Management procedures for cetaceans have been developed, in particular within the
work of the IWC (Punt et al., 2016; Punt, 2019). A management strategy is a set of rules
which aim at making agreed-upon objectives achievable (Punt, 2006; Rademeyer, Plagányi
& Butterworth, 2007; Bunnefeld, Hoshino & Milner-Gulland, 2011; Punt et al., 2016). This
strategy defines management objectives in the form of not-to-be exceeded thresholds
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that managers can track from available data. The process of evaluating a management
strategy (MSE) relies on modeling and computer simulations (de la Mare, 1986; Cooke,
1994;Hilborn & Mangel, 1997; Rademeyer, Plagányi & Butterworth, 2007; Punt et al., 2016).
In order to carry out these simulations,MSE heavily leans onmodels, especially on so-called
operating model.

MSE is commonly used to compute biological reference points or, in the context of
PETS, removals limits. Removals limits are determined for the use of so-called ’harvest’
control rule which is a mathematical formula or model taking available data as inputs.
Below we described two commonly used control rules for managing marine mammals.
However, a complication in the management of PETS stems from the fact that PETS
removals, unlike commercial species’ catch, are not usually monitored (no logbooks). For
example, data on PETS by-catch is not systematically collected by onboard observers: these
data, if not collected systematically and in a dedicated scheme, are usually of low quality
and biased (Basran & Sigursson, 2021). This is especially true in European waters where
there are no dedicated schemes to monitor by-catch at the relevant scales, especially marine
mammal by-catch (Murphy, Borges & Tasker, 2022).

Operating models
An operating model is a ‘‘digital twin’’ of the socio-ecosystem to be managed. It is a
mathematical (and hence idealized) representation of the phenomenon under study that
encapsulates important knowledge about the phenomenon (Punt et al., 2016), in this case
population dynamics of PETS. In the case of cetaceans, commonly used operating models
include a population dynamicsmodel that can be age-aggregated (Wade, 1998;Wade, 2002)
or age-disaggregated (Wade, 2002; Brandon et al., 2017). The interested reader is referred
to Punt (2016) for a review of operating models developed for cetaceans; to Tuck (2011)
and Tinker et al. (2022) for seabird operating models; and to Chaloupka & Balazs (2007)
and Snover (2008) for a discussion on a turtle operating model. These operating models
are variants of SPM. In the remainder, the operating model is age-disaggregated (that
is age-structured), it assumes a Pella-Tomlinson functional form for density-dependent
fecundity (see Algorithm 2 in Genu et al., 2021 for a full description of the model) and no
Allee effect (see e.g. Haider et al., 2017).

Control rules for managing removals
There are two main control rules currently used for managing marine mammal removals:
the Potential Biological Removal (PBR; Wade, 1998) and the Removals Limit Algorithm
(Cooke, 1995).

Potential Biological Removal
The calculation of the PBR is straightforward (Wade, 1998):

PBR=Nmin
1
2
rmaxFR,

Nmin being an estimate of minimum population size, 1
2 rmax one half of the maximum

theoretical productivity rate of the stock and FR a recovery factor chosen between 0.1
and 1. The computation of PBR does not require data on removals, although they are
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necessary to gauge the level of removals against the PBR limit (that is, to carry out an
assessment). PBR is extensively used in the United States where it is enshrined in the US
Marine Mammal Protection Act (MMPA). It has also been used in several cases, including
dolphins, for example in New Zealand (Slooten & Dawson, 2008) or in the EU (e.g., Baltic
harbour porpoise Berggren et al., 2002; grey seal Halichoerus grypus Taylor et al., 2022;
common dolphin Delphinus delphis ICES, 2020).

Removals limit algorithm
The other harvest control rule currently in use is known as the Removals Limit Algorithm
(RLA;Winship, 2009;Hammond, Paradinas & Smout, 2019). It also aims at setting an upper
limit to anthropogenic mortality of PETS, and was applied to the population of Harbour
porpoise in the North Sea (Hammond, Paradinas & Smout, 2019; Genu et al., 2021; Taylor
et al., 2022). The RLA requires both a time-series of abundance/biomass estimates (whereas
PBR only requires one such estimate) and a time-series of removals (whereas PBR requires
none for its computation). RLA is a variant of the Catch Limit Algorithm (CLA), formulated
by Cooke (1994) for baleen whales (Internation Whaling Commission, 2012). The RLA is
an ad hoc algorithm that uses historical series of captures and estimates of abundance
(Hammond, Paradinas & Smout, 2019):

Nt+1=Nt + rNt

(
1−

(
Nt

N0

)2
)
−Rt , (1)

where Nt and Rt are respectively the abundance/biomass and removals at time t . The
computation of the RLA control rule for setting a removals limit (as a fraction of the best
available abundance estimate) is:

removals limit= r×max(0,DT − IPL), (2)

where T stands for the current year, DT is the current depletion (that is, DT =
NT
K , K

being the carrying capacity) and IPL (Internal Protection Level) is the depletion threshold
below which the limit is set to 0 (Punt, 1993). Both r and DT are estimated from the model
defined by Eq. (1) in a Bayesian framework (Hammond, Paradinas & Smout, 2019; Genu et
al., 2021) and removals limit is computed from the joint posterior distribution of (r,DT ).
A point estimate is used in practice by selecting a quantile of the posterior distribution of
the removal limit to account for uncertainty.

Candidate control rules
The PBR control rule takes a value for rmax as an input while the RLA control rule uses
a posterior distribution of r (from Model 1). For most species, rmax or r are unknown
in practice, and a default value can be used for PBR, or r needs to be estimated from a
prior and data. This knowledge gap (unknown rmax or the choice of the prior for r) may
be exploited to argue against the use of either of these rules using uncertainty distortion
strategies (Schweder, 2000; Rayner, 2012). Devising a new rule to set a removals limit
that does not directly hinge on knowledge of this input is thus desirable to (i) avoid any
strategic mis-representation of uncertainty during the policy process (see more generally
Rayner 2012); and (ii) diversify options for discussions during the policy process. We
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developed candidate control rules based on the same data requirements as the RLA,
namely a time-series of removals and at least one estimate of abundance that are fed into
a statistical model (Hammond, Paradinas & Smout, 2019; Genu et al., 2021). The statistical
model is however different in how it incorporates the removals data. In Eq. (1), removals
are treated as a known covariate. Below, we developed a stochastic model for removals
directly.

Development of a stochastic SPM
Population models for PETS are often based on SPM (e.g., Snover, 2008; Punt, 2016) which
are standard models of population dynamics in situations of strong uncertainty and low
information. SPMs seek to encompass important population processes governing the
dynamics of abundance change over time (Hilborn & Walters, 1992; Ver Hoef, 2006):

next abundance= previous abundance+ recruitment+growth−natural mortality

−anthropogenic removals

In particular, density-dependence in paramount to take into account (Punt, 2016): a
convenient functional form is that described by Pella & Tomlinson (1969), assuming a
first-order Markovian process on abundance:

Nt+1=Nt + r∗
(
z+1
z

)
Nt

(
1−

(
Nt

K

)z)
−Rt . (3)

Setting z = 1 gives the well-known Schaefer model in fisheries (Schaefer, 1991), and
Nt and Rt are respectively the abundance/biomass and removals at time t , K being the
carrying capacity and r∗ the growth rate at the Maximum Net Productivity Level (MNPL;
r∗ is also known as the Maximum Sustainable Yield Rate).

Incorporating environmental variability (the so-called process noise εt ) in a
multiplicative way in Eq. (3) yields (Polacheck, Hilborn & Punt, 1993; Millar & Meyer,
2000):

Nt+1=

{
Nt + r∗

(
z+1
z

)
Nt

(
1−

(
Nt

K

)z)
−Rt

}
εt . (4)

This shift to a stochastic framework, assumed to be more realistic for describing changes
in abundance, implies that the {Nt } states are random variables, similar to εt . At time
t , the noise εt is classically assumed to be unbiased and homoskedastic (and therefore
independent on t and past random variables (removals, abundances, noises):

E[εt ] = 1,

V[εt ]= σ 2.

Assuming a simple relationship between removals Rt and abundance Nt :

Rt = ρNt (5)

where ρ ∈ ] 0,1[ is a time-invariant removal rate (Bousquet, Duchesne & Rivest, 2008;
Bordet & Rivest, 2014), the removal process becomes:

Rt+1=

{
Rt +

z+1
z

r∗Rt

(
1−

(
Rt

Kρ

)z)
−ρRt

}
εt . (6)
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The set of parameters in Eq. (6) is defined as θ ={K ,σ ,ρ,r∗}. Parameter z is usually fixed
rather than estimated (Fletcher, 1978; Best & Punt, 2020). For example, setting z = 2.39
corresponds to a MNPL of 60% of K that is customarily assumed for marine mammals
(Punt, 2016; Kanaji et al., 2021).

Equation (5) is a simplifying assumption that allows to link the abundance and removal
processes. Stochasticity is introduced in Eq. (6) which allows to write a likelihood function
(see below and Supplementary Information Appendix 1) for estimating a removal rate from
data. In particular, it allows a time-series of past removals to be analyzed as the response
variable where most current approaches treat these removal data as covariates (e.g., Kanaji
et al., 2021). In effect, this choice means that removals are used as an index of abundance.

Reparametrization
Following the reparametrization of Bordet & Rivest (2014), let

Zt =
Nt

K

(
r∗(z+1)

z−ρz+ r∗(z+1)

) 1
z

which is well defined for z−ρz+ r∗(1+z)> 0, that is

ρ < 1+ r∗
z+1
z
.

With z > 0 this assumption is not restrictive since 0< ρ < 1. Eqs. (4) and (6) can be
re-arranged:

Zt+1 =

(
1−ρ+ r∗

z+1
z

)
Zt
(
1−Z z

t
)
εt ,

Rt+1 =

(
1−ρ+ r∗

z+1
z

)
Rt
(
1−{D(θ)Rt }

z)εt
with Zt =D(θ)Rt and

D(θ)=
1
Kρ

(
r∗(z+1)

z−ρz+ r∗(z+1)

) 1
z

.

Note that positive removals imply Rt ≤
1

D(θ) . To simplify notations and to adopt a more
conventional Markovian writing, we rewrite:

Rt = g (Rt−1,θ)εt (7)

where

g (Rt−1,θ)=
(
1−ρ+ r∗

z+1
z

)
Rt−1

(
1−{D(θ)Rt−1}

z). (8)

Note that g is neither linear nor log-linear. Appendix 1 in the Supplementary Information
details the likelihoods for estimating θ from data. In the remainder, we denote `({Rt }|θ)
the likelihood associated with removals.
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3In other words, the outlook is not realist
but instrumentalist; see Sober (1999) for
a philosophical discussion on realism and
instrumentalism

Initial conditions
For practical reasons, the initial depletion D0 at the start of the time-series of removals,
instead of K , is estimated. This choice is convenient as D0=

N0
K . Initial abundance N0 is

typically unknown for PETS and the first abundance estimate available may not evenmatch
the start of the observed removals time-series. In that case, information on initial depletion
D0 may be elicited from expert knowledge (see e.g., Bockting, Radev & Brükner 2023) or
historical data, and given a prior distribution: it may be easier to elicit a prior on depletion
(a quantity expected to be bounded between 0 and 1) than on K directly. In practice, K
is deduced from D0 and the first observed abundance estimate that is available (e.g., Punt,
2019). The set of parameters to estimate is now: θ = {r∗,σ ,ρ,D0}. The stochastic SPM
defined above (Eqs. 6 & 8) was implemented in the probabilistic programming language
Stan (see Appendix 2; Carpenter et al., 2017).

Anthropogenic removals threshold (ART)
The stochastic SPMdeveloped abovemeshes removal and abundance processes by assuming
a crude proportionality between the two, which is simplistic but aligns with stakeholder
perceptions of variations in PETS by-catch for example (M Authier, pers. obs.). It is not a
realistic model as removals depends strongly on fishing effort, which in turn is influenced
by a myriad of factors. However, as Rademeyer, Plagányi & Butterworth (2007) noted,
‘‘[e]stimators based on simple population models have often been shown to perform as
well or better than those based on more complex ones’’. We are thus less interested in
biological realism than in the performance of this model for management.3 The stochastic
SPM assumes stationarity (that is time-invariance) in ρ, the removal rate, which is at odds
with the very purpose of managing removals. If management is meant to be effective, it
will take action to precisely change the level of removals. By definition, management aims
at changing ρ over time so the model is clearly wrong once management is implemented.
Before management is implemented, stationarity is an assumption as there is typically
little knowledge or data are too noisy to test it. To obviate this issue while retaining a
parsinomious model with four parameters, we used a statistical estimation paradigm
based on the notion of weighted (or local) likelihood (Tibshirani & Hastie, 1987; Wang,
2006; Agostinelli & Greco, 2013). This approach allows us to progressively down-weigh data
extending the furthest back in time (i.e., to consider that the policy relevance of statistical
information provided by each datum in a sample depends on how far back in time the
datum was collected). Applied only to the likelihood of removals, it is formalized as follows
(see Appendix 1): the likelihood `({Rt }|θ) is replaced by

`w(η)({Rt }|θ)=
T∏
t=1

(
f (Rt |Rt−1,θ)

)wt (η) (9)

where the weights wt (η) have the sense of kernels, i.e., they provide a kernel-based
representation of the score function

s(θ)= ∇θ `({Rt }|θ).

Ouzoulias et al. (2024), PeerJ, DOI 10.7717/peerj.16688 12/35

https://peerj.com
http://dx.doi.org/10.7717/peerj.16688#supp-13
http://dx.doi.org/10.7717/peerj.16688#supp-13
http://dx.doi.org/10.7717/peerj.16688


In choosing the weights wt (η), such that the above representation has good convergence
properties, the following properties must hold (Agostinelli & Greco, 2013): wt (.) should be
a bounded differentiable non-negative function of t that may depend on a parameter η
which can be consistently estimated by η̂, such that

sup
Rt

|w(t ,η̂)− c|
t→∞
−−−→

p
0

almost surely

where c is a positive constant. The following choice (Gaussian kernel):

wt (η)= exp
(
−
(T− t )2

2η2

)
obeys these requirements (with c = 1), provided the scale parameter η be estimated by
some rule that favors the information provided by the sample of most recent observations
in the estimation of θ , trading bias for precision (Hu & Zidek, 2002).

In this study, η was chosen so that data older than 50 years contribute less than 0.05
to the likelihood during estimation (wt = 0.05 for (t − 50)). This choice (η= 20.4) is
arbitrary but was found to work well in practice (see Results). In addition, a sample size of
50 appears adequate for our purposes (although smaller sample size could work but this
point requires additional simulations).

Capitalizing from the stochastic SPM (Eq. 9), we propose two candidate control rules (as
a fraction of the best available abundance estimate) which we call Anthropogenic Removals
Threshold (ART) to emphasize that the quantity derived from these control rules represents
a threshold beyond which conservation objectives run a high risk of not being met.

The first candidate is simply the posterior mean of the quantity:

candidate1= ρ×FR (10)

where FR is a recovery factor chosen between 0.1 and 1 (as in the PBR control rule). This
rule adapts the historical removal rate and does not directly rely on an estimate of carrying
capacity or population growth rate as the RLA control rule (although both a carrying
capacity and a population growth rate are in θ). The second candidate is an elaboration
that takes into account any trend in abundance, and more specifically any evidence of a
decline, to negatively feedback on the removals limit:

candidate2= ρ×FR×min
(
1,exp(β)

)
(11)

where β is a trend in abundance (on a logarithmic scale) estimated using the regularized
approach detailed in Authier et al. (2020). Briefly, β is the slope of a regression line through
the abundance estimates (scaled by the first estimate and then log-transformed) and
estimated using a weakly-informative prior (namely the ‘skeptical’ prior of Cook, Fúquene
& Pericchi, 2011) that favours the hypothesis of no trend over time (see Authier et al.,
2020 for an in-depth investigation of this choice in the context of trend estimation). This
candidate rule operationalizes the principle on non-deterioration whereby populations
or species in need of restoration (that is, that are depleted) should not be allowed to
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Figure 1 Simulation workflow. Schematic representation of the workflow for simulations. Population
dynamics (N denotes abundance) are simulated from biological parameters (life-history data, true re-
moval rate etc.). Monitoring allows to collect data but these data are noisy: they always include observation
noise and, depending on robustness trials, can be biased (see Genu et al. 2021 and R code provided in the
supplementary materials). Data are used as inputs in control rules for managing removals.

Full-size DOI: 10.7717/peerj.16688/fig-1

deteriorate further. If no trend or a positive trend in abundance is evidenced, candidate2
is equivalent to candidate1. Both candidate1 and candidate2 can be computed for the same
data necessary to compute RLA, and their posteriormean approximated by the average over
MCMC samples of the posterior distribution after estimating θ from data (see Appendices
2 and 3).

Simulations
The operating model used in population dynamics simulations was a stochastic and age-
disaggregated version of a generalized logistic model of population dynamics (Punt, 2016)
as implemented on the R package RLA v.0.2.0 (Genu et al., 2021). Given initial conditions,
biological parameters and removals, abundance data are generated at each time step. The
model aims to mimic the population dynamics of a small-sized cetacean (Fig. 1).

Life-history parameters were set to those of a small-sized cetacean species, the harbour
porpoise (Phocoena phocoena) in the North Sea (Hammond, Paradinas & Smout, 2019). A
hundred (100) simulations were carried out: for each a hypothetical population of harbour
porpoises was depleted with unmanaged anthropogenic removals for 50 years before
implementing management procedures and specific control rules (see below). A time-
series of removals as long as 50 years is unusual in general, but one is available for harbour
porpoise in the North Sea (Hammond, Paradinas & Smout, 2019). For benchmarking
purposes with previous similar MSE (Hammond, Paradinas & Smout, 2019; Genu et al.,
2021), we kept this assumption of a depth of 50 years for the removals time-series at the
beginning of management.

A distribution of initial depletion levels was induced between 30% and 60% (Fig. 2).
Important biological inputs include the Maximum Net Productivity (MNP) and MNPL,
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Figure 2 Inputs for the operating model. 100 weakly-correlated values for Maximum Net Productivity
(MNP), Maximum Net Productivity Level (MNPL), initial depletion, observation error (cvt ) and environ-
mental stochasticity (cvσ ) were drawn at random and used for MSE. Pearson correlation coefficients are
displayed above the diagonal.

Full-size DOI: 10.7717/peerj.16688/fig-2

which are usually unknown in most cases. To reflect that uncertainty, a range of plausible
values for small cetaceans (Taylor & Demaster, 1993;Wade, 1998) were considered (Fig. 2).

(‘Harvest’) control rules
We tested five control rules for managing anthropogenic removals of PETS:

• the fixed percentage rule of ASCOBANS (2000): ASCOBANS= 0.017×N obs
T ;

• the PBR rule of Wade (1998) with Nmin defined as the 20% quantile of a log-normally
distributed abundance estimate N obs

T : PBR=Nmin
1
2 rmaxFR;

• the RLA rule, with RLA=N obs
T × removals limit=N obs

T × r×max(0,DT − IPL);
• the candidate1 ART, with ART1=N obs

T ×candidate1=N obs
T ×ρ×FR; and

• the candidate2 ART, with ART2=N obs
T ×candidate2=N obs

T ×ρ×FR×min
(
1,exp(β)

)
.

To set a removals limit, the fixed percentage rule of ASCOBANS (2000) only requires
a point estimate of current abundance N obs

T .PBR requires a recent point estimate of
abundance and its associated coefficient of variation to compute an estimate of minimum
population sizeNmin. The rules RLA and ARTi∈[1:2] each require a time-series of abundance
estimates with their uncertainties as well as a time-series of removals’ estimates. All rules,
save for the fixed percentage one (which was included as a negative control), need tuning.
For PBR, ART1 and ART2, this process means the testing of different values of FR to
identify the minimum one that allows to reach a given CO. For RLA, tuning is achieved
by testing different quantiles of the posterior distribution of Eq. (2) (Genu et al., 2021).
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That quantile tuning was not carried out with ART1 or ART2 stemmed from the typically
tight posterior concentration observed when estimating ρ during the development of the
stochastic SPM (Ouzoulias, 2022). In contrast, posterior concentration does not occur
because the log-normal likelihood assumed for Eq. (1) when estimating removals limit is
down-weighted by a fixed factor 1

16 to limit the speed at which the management procedure
responds to feedback (Cooke, 1999).

Scenarios
We evaluated control rules on three scenarios: a base case scenario whereby unbiased but
noisy data are assumed to be available and collected; and two so-called robustness trials.
In the first robustness trial, estimates of abundance were assumed to be observed with
a systematic bias resulting in an overestimation by a factor 2. In the second, removals’
estimates were assumed to be biased downward, resulting in an underestimation of true
removals by a factor 2. The two robustness trials were found to be the most challenging
ones in a previous investigation (Genu et al., 2021).

Performance metrics
The effectiveness of control rules to meet requirements of management was gauged on 6
performance metrics. A period of 6 years was chosen to match the reporting cycle for the
MSFD. Accordingly, it was assumed during simulations that abundance estimates would
be updated every 6 years. The first performance metric allows tuning by selecting either a
value for FR or a quantile for each control rule in order to meet a CO. The second allowed
a comparison with the fixed percentage rule of ASCOBANS. The third and fourth metrics
informed on the variability in removals limits for a given control rule, with greater stability
with low cv and positive autocorrelation. The fifth indicated any systematic changes in
removals limits over time: it is the estimated slope of a linear regression of the computed
removals limit against time with time rescaled to the unit interval (the model was fitted
using the default settings of function stats::lm in R version 4.2.2) (R Core Team, 2022).
This performance metrics reveal how the removals limit is changing on average over time
(increasing, decreasing, no change) as it is updated every 6 years in light of monitoring
data. The sixth performance metric informed on the expected delay in population recovery,
where recovery was defined as the time at which a CO was sustained over 6 consecutive
years (to match the MSFD reporting cycle). The performance metrics were:
1. the level of population (true) depletion at the end of each simulation;
2. the average removals limit (average, as a percent of current abundance estimate)

across simulations;
3. the coefficient of variation (cv) of removals limits computed within each simulation

and averaged over simulations;
4. the 1-lagged autocorrelation (autocorrelation) in removals limits computed within

each simulation and averaged over simulations;
5. the temporal trend (trend, in %) in removals limits within a simulation and averaged

over simulations; and
6. the average delay in recovery (delay, in years) compared to a hypothetical complete

ban on removals.
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Table 3 Functions in package RLA to carry MSE with an age-disaggregated operating model. Associ-
ated Stanmodel code is stored as text data in the package (see Appendix 2). Dimensionality is the number
of unknown parameters in a model.

Control rule Data Model Function Stan
requirements dimensionality name model code

Fixed percentage at least one fixed_percentage

PBR abundance estimate
∅

pbr_nouveau
∅

RLA time-series of 2 forward_rla uniform

ART1 both removals and 4 sspm

ART2 abundance estimates 6
art_nouveau

sspm_trend

Implementation
To carry out a (desk) MSE, we used a cross-factorial design with two CO, five control rules,
three scenarios, 10 FR and 100 simulations. The total computational budget was 30,000
runs which were sent to the computing cluster Curta hosted at Bordeaux University,
France. Computer time for this study was provided by the computing facilities of the
MCIA (‘‘Mésocentre de Calcul Intensif Aquitain’’). All simulations were carried out using
the functionalities of the dedicated R package RLA v.0.2.0 (Genu et al., 2021) available
at https://gitlab.univ-lr.fr/pelaverse/RLA. The different functions used are mentioned in
Table 3. As simulations rely on random numbers, seeds were controlled for and recycled
across control rules within scenarios in order to match and compare results (Rademeyer,
Plagányi & Butterworth, 2007).

Computation of PBR does not require any model fitting in contrast to RLA and all
flavours of ART which have an estimation step for quantities of interest to compute
removals limits. With a time horizon of 100 years and an assumed frequency of 6 years
(as per MSFD cycle), d 1006 e = 17 model fittings are required within one run. Estimation
of θ (Appendices 2 and 4) was carried out in a Bayesian framework using programming
language Stan (Carpenter et al., 2017) called from R v.4.2.2 (R Core Team, 2022) with
library Rstan (Stan Development Team, 2023). Four chains were initialized and run for
a total of 2,000 iterations, discarding the first 1,000 as warm-up and retaining every 1
iterations (no thinning). Control parameters for the No-U-Turns algorithm were kept to
their default values. Parameter convergence was assessed using the R̂ statistics (Vehtari et
al., 2019) and assumed if R̂< 1.025.

RESULTS
The ASCOBANS rule of 1.7% of best available abundance estimate (a total anthropogenic
removal above 1.7% of the best available estimate of abundance) allowed depleted
populations to recover to either 60% or 80% of K with a probability above 0.5 in the
base scenario only (Table 4; Appendix 3). These probabilities did not rise to the nominal
levels set by either of the COs in any of the scenarios: this rule failed to meet CO and was
not robust against biases in either the abundance or removal data. For the medium to
small number of simulations in which COs were reached, the average delay in recovery was
between 5 and 25 years compared to a hypothetical complete ban on removals.
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Table 4 Performance of ASCOBANS fixed percentage rule. Recovery is defined as reaching the CO for
6 consecutive years. Delay is defined as the time lag in reaching the CO for 6 consecutive years compared
to a complete ban on removals, conditional on conservation success. COOMMEG is restoring or maintaining
population depletion level at or above 80% of K with probability 0.8 over 100 years. COtMNPL is restoring
or maintaining population depletion level at or above 60% of K with probability 0.9 over 100 years.

Conservation objective Scenario Recovery rate Delay (years)

Base case 0.60 14.1
Overestimated abundance 0.19 24.6COOMMEG

Underestimated removals 0.19 24.6
Base case 0.71 4.6
Overestimated abundance 0.38 9.1COtMNPL

Underestimated removals 0.38 9.1

The fixed percentage rule has no free parameter to tune, in contrast to other rules (Fig. 3).
Tuning these rules to COs is summarized on Fig. 3. As expected, lower tuning values were
selected in robustness trials compared to the base case scenario with no biased data. An
evaluation of the ART1 control rule could not be completed for the scenario in which
abundance was systematically over-estimated as simulations stopped due to numerical
issues in model fitting. As a result, this control rule was not robust against overestimated
abundance as it could not be used in this scenario. The difference in tuning parameters for
PBR, RLA and ART was modest between COs (compare Figs. 3A and 3B). In contrast, the
value for FR was halved when swapping COOMMEG for COtMNPL (compare Figs. 3A and
3B).

Looking at performance metrics (Table 5 and Fig. 4) (see also Appendix 4), average
removals limits were similar across the different control rules: they were, on average, never
larger than the ASCOBANS fixed percentage of 1.7%, and smaller than 1% in general. The
greatest variability (cv) in these limits was associated with RLA, and the smallest with PBR,
with ART in-between. The scenario in which removals were underestimated displayed the
largest volatility in removals limits, a result that held across the different rules. Delays in
recovery, relative to a complete banning of removals, were the longest with the use of ART1

or ART2, and the shortest with the use of RLA.
With respect to autocorrelation, there was a clear gradient across control rules, with

an increase from PBR to ART2 (Table 5 and Fig. 5). The largest positive autocorrelation
was evidenced from setting limits with the stochastic SPM: two successive limits were more
similar to each other when set with ART1 or ART2 compared to one set by either RLA or
PBR. In that latter case, autocorrelation was nil or tended to be negative. With respect
to trend in removals limit within a simulation, it was positive when using either RLA or
PBR: removals limits tended to increase over time. In contrast, the trend was negative
when using either ART1 or ART2: limits decreased on average over time in these cases.
Results from a single simulation (using the same seed for random number generation) is
depicted on Fig. 6 (see also Appendix 5).

A Shiny application (Chang et al., 2022) for visualizing results is available at https:
//pelabox.univ-lr.fr/pelagis/DART/.
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Figure 3 Tuning the control rules. (A) Tuning with respect to the OMMEG interpretation of the AS-
COBANS CO: to restore population to 80% of K with probability 0.8 in 100 years. (B) Tuning with re-
spect to a CO of restoring population to a theoretical MNPL of 60% of K with probability 0.9 in 50 years.
Labels in the upper left corner of each sub-panels correspond to tuning and display the largest value of Fr
(PBR, ART1, ART2) or the largest quantile (RLA) that achived a given CO.

Full-size DOI: 10.7717/peerj.16688/fig-3

Figure 4 Performance metrics. Boxplots summarizing the distribution of variability (cv, unitless), mean
(average, as a proportion of current abundance estimate; e.g., 0.01 = 1%), and delay in recovery (in
years). See Appendix 4 for the same plot with a logarithmic scale on the y-axis.

Full-size DOI: 10.7717/peerj.16688/fig-4
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Table 5 Performance metrics. Coefficient of variation (cv) of removals limits computed within each simulation and averaged over simulations; 1-
lagged autocorrelation (autocorrelation) in removals limits computed within each simulation and averaged over simulations; average removals
limit (average, as a proportion of current abundance estimate; e.g., 0.01 = 1%) across simulations; temporal trend (trend, in %) in removals lim-
its within a simulation and averaged over simulations; and average delay in recovery (delay, in years) compared to a hypothetical complete ban
on removals. COOMMEG is restoring or maintaining population depletion level at or above 80% of K with probability 0.8 over 100 years. COtMNPL is
restoring or maintaining population depletion level at or above 60% of K with probability 0.9 over 100 years.

Conservation
objective

Control
rule

Scenario Performance metrics

cv Autocorrelation Average Delay Trend

Base case 0.24 −0.13 0.014 16.5 3.6
Overestimated abundance 0.24 −0.10 0.006 14.3 3.7PBR

Underestimated removals 0.24 −0.07 0.006 12.9 3.6
Base case 0.65 0.34 0.008 5.1 8.1

RLA
Overestimated abundance 0.51 0.28 0.004 4.8 6.6
Underestimated removals 0.79 0.37 0.004 3.3 9.7
Base case 0.32 0.70 0.011 18.7 −4.2

ART1
Underestimated removals 0.44 0.69 0.008 29.4 −5.9
Base case 0.36 0.68 0.013 23.4 −3.3

ART2
Overestimated abundance 0.35 0.63 0.007 25.0 −1.7

COOMMEG

Underestimated removals 0.48 0.65 0.007 23.8 −5.5
Base case 0.24 −0.11 0.012 3.8 3.7
Overestimated abundance 0.24 −0.11 0.006 3.8 3.7PBR

Underestimated removals 0.24 −0.15 0.006 3.7 3.6
Base case 0.90 0.31 0.006 0.2 8.1
Overestimated abundance 0.65 0.32 0.003 0.3 6.6RLA

Underestimated removals 1.05 0.25 0.003 0.3 8.8
Base case 0.39 0.54 0.007 3.7 −6.4

ART1
Underestimated removals 0.56 0.51 0.004 4.7 −5.2
Base case 0.43 0.53 0.006 3.1 −5.7
Overestimated abundance 0.43 0.53 0.003 3.4 0.6

COtMNPL

ART2

Underestimated removals 0.59 0.50 0.003 4.1 −4.2

DISCUSSION
We successfully developed candidate control rules for managing anthropogenic removals
of PETS, a management imperative in a time of ever-expanding human activities in marine
ecosystems (Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem
Services, 2018). These rules were rigorously tested in a MSE and benchmarked against
other rules currently in use (e.g., Taylor et al. 2022) to investigate their properties and their
potential for use in management. The candidate control rules ART rely on estimation of
parameters from a newly developed stochastic SPM which are cornerstone of managing
fisheries. All the rules tested, save for the fixed percentage and a candidate one (ART1),
could be tuned to specific COs (Fig. 3).

The stochastic SPM herein developed abides by the ‘KISS’ principle (Zellner, 2002):
‘Keep It Sophistically Simple’. It does differ from the fixed percentage rule, which is
only simple and not robust (Table 4), but not from the models underlying PBR or RLA
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Figure 5 Performance metrics (continued). Boxplots summarizing the distribution of autocorrelation
(autocorrelation, unitless) and trend (trend, in % of previous limit). The red dashed line materializes
the value 0.

Full-size DOI: 10.7717/peerj.16688/fig-5

(Punt, 2016; Genu et al., 2021). Where it does differ from the latter is in the number of
parameters to estimate (Table 3) and in the explicit link made between the abundance
process and removals (Eq. 6). The stochastic SPM views removals as a stochastic process
whose variations reflect those of abundance. In contrast, the statistical models behind PBR
or RLA are conditional on removals, which are not treated as stochastic but as a known
covariate. The simplistic assumption of a time-invariant removal rate (that is, stationarity)
made in the stochastic SPM is clearly wrong, and must be violated if management is to be
effective: this rate is precisely the target of management, and measures should be taken to
decrease it over time to align with current environmental aspirations in the North-East
Atlantic. For instance, OSPAR endeavours with its North-East Atlantic Environment
Strategy 2030 (Strategic Objective 7) to ensure that uses of the marine environment are
sustainable, through the integrated management of current and emerging human activities.
In particular, it aims at ‘‘minimis[ing] and if possible eliminat[ing] incidental by-catch
of marine mammals, birds, turtles and fish so that it does not represent a threat to the
protection and conservation of these species by 2030’’ (OSPAR, 2021).

Remarkably, the control rules that managed (on average) to decrease, and thereby
minimise, the removal rate over time were ART1 and ART2 (Table 5, Fig. 6; see associated
Shiny app (https://pelabox.univ-lr.fr/pelagis/DART/)). This feature was achieved thanks to
a time-weighted likelihood approach in parameter estimation (Eq. (9)). Currently, the
method for choosing weights in weighted likelihood is not formalized and is beyond the
scope of this investigation. One potential venue is to consider a formal Decision Theory
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Figure 6 Example of a simulation. Tuning with respect to the OMMEG interpretation of the
ASCOBANS CO: to restore population to 80% of K with probability 0.8 in 100 years. (B) Tuning
with respect to a CO of restoring population to a theoretical MNPL of 60% of K with probability 0.9 in 50
years. On the upper panel, the dashed red line materializes the depletion level targeted by the CO. On the
lower panel, the dashed red line materializes the ASCOBANS fixed percentage of 1.7% (0.017) of the best
available abundance estimate.

Full-size DOI: 10.7717/peerj.16688/fig-6

analysis for choosing a value for (η̂,θ̂), for example using

(η̂,θ̂)= arg min
η>0,θ
−log`w(η)({Rt }|θ)+λpen(θ,η)

where pen(θ,η) is a penalty term for regularization to be made explicit in future work.
In this study, an arbitrary choice for η̂ was used: this does not differ from the control rule
RLA which also used a weighted likelihood and a weight that was found to work well in
practice (Cooke, 1999; Boyce, 2000). In practice, the lack of robustness (Fig. 3) of candidate
rule ART1 disqualifies it from further consideration and only ART2 remains competitive.

The control rule that was the most stable was PBR: it had the smallest variability
(as gauged by the performance metrics cv; Table 5; see associated Shiny app (https:
//pelabox.univ-lr.fr/pelagis/DART/)). The value of the coefficient of variation was close to
23.5%, the mean value assumed for the precision of abundance estimates in the operating
model (Fig. 2). This result was expected as the only source of variation in a limit set with PBR
comes from the uncertainty in abundance estimates. This result merely testified to a correct
implementation of functions in the package RLA (see Table 3 for the bespoken functions).
The rule that had themost variability was RLA: this variability was borne out of the ability to
set nill removals limits thanks to a feedback mechanism honing in on evidence of excessive
depletion (the so-called Internal Protection Level, see Eq. (2)). The necessity of having
nill limits stems from the tumultuous history of whaling management (e.g., Fitzmaurice,
2015) where, in a nutshell, the interplay of excessive quotas and over-investment in fleet
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capacity led to the systematic depletion of whale stocks. The RLA, a child of the IWC catch
limit algorithm (see Internation Whaling Commission (2012) for a full description of the
CLA), inherited this ability with an IPL currently set to 54% of K (Punt, 1993; Butterworth
& Best, 1994), and displayed the shortest delays to recovery among the different tested
rules (Table 5, Fig. 5). However, setting a limit to naught can be quite abrupt, resulting in
non-smooth profile of removals limits over time and a high volatility. The latter presents
clear challenges to the social acceptability of removals limits as a sudden ban on removals
amounts to the cessation of fishing activities, leaving no room for a smoother transition of
human activities towards reduced removals. In addition, the IPL represents another free
parameter that can be challenged by stakeholders given its importance, and RLA could lead
to ‘haggling’ and a displacement (sensu Rayner 2012) of the conservation issue of managing
PETS removals towards a wild goose chase of endless simulation testing to identify, for
example, an ‘optimal IPL’.

While the ability to set nill limits may be desirable from a conservation point of
view, it may also entrench polarization between stakeholders vying for the attention
of policy makers (see for example the discussion in Authier, Rouby & Macleod, 2021).
Conservationists should, however, be aware that the RLA rule (and PBR to a lesser extent)
also allows limits to increase over time as populations recover. This increase does not align
with a desideratum to minimise, or when possible eliminate, anthropogenic removals of
PETS: RLA is a double-edged sword that should be handled with care. In contrast, the
candidate rule ART2 had a very different behaviour: its use resulted in a slow recovery
because removals limits remained initially high, and sometimes above the ASCOBANS
definition on ’unacceptable interactions’ (corresponding to 1.7%; Fig. 6 and Supplementary
Information Appendix 5). There was also a high autocorrelation between successive
limits set according to this rule (Table 5). These features can be assets for the acceptability
of this rule in policy fora as it may favor gradual changes in practices that are at the root
of removals, thereby giving time in finding mitigation actions or industry adaptations.
The progressive decrease in removals limits makes it also clear that removals need to be
minimized, as limits will be lowered progressively. This predictable behaviour is transparent
to stakeholders who know before hand to expect each successive limit to be similar to the
previous one, yet lower by ≈ 5% (in the current set of simulations; see Table 5).

One clear asset of the candidate rule ART2 is its built-in negative feedback of any evidence
for a decline in abundance on removals limits. The trend estimated by the regularized
approach has a low type-S (i.e., sign) error rate (Gelman & Tuerlinckx, 2000; Authier et al.,
2020): this property explains the similarity between limits sets with or without taking this
trend into account (Fig. 6). Authier et al. (2020) chose to estimate a trend that is relative to
the first available abundance estimate. The rationale for this modelling choice stems from
EU conservation instruments such as the HD which defines baselines as the abundance
estimate at the time of enactment of the directive (1992), or the estimate closest to that
date. The non-deterioration principle holds that management action should not lead to a
worsening of conservation status over time, which is precisely what the candidate rule ART2

endeavours to achieve. However this rule does not forbid further degradation in the very
short-term if unmanaged removals have been very high as recent past removal rates inform
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heavily this rule (see Fig. 6). In the EU, the current overaching conservation instrument
for marine ecosystems is the MSFD. Its biodiversity indicator is built on several criteria
including by-catch (non-intentional removals due to fisheries) and population abundance.
A recent assessment of the abundance of cetaceans at the level of the North-East Atlantic
for OSPAR’s Quality Status Report 2023 was based on estimation of such trends (Geelhoed
et al., 2022). The candidate rule ART2 meshes together abundance indicators and removals
limits, and has thereby the potential to achieve a seamless integration of current regional
indicators (Geelhoed et al., 2022; Taylor et al., 2022), at least for cetaceans. This meshing
resulted in increased robustness: in the scenario where abundance was overestimated,
the recovery factor for ART2 was not reduced and remained the same as in the base case
scenario (Fig. 3).

Our investigation and benchmarking of several control rules was carried out assuming
a single stock or population for the PETS of interest. This assumption translates as a
closed population with no migration, either in or out of the area of interest. This choice
stems partly from simplicity considerations, and from familiarity with some wide-ranging
cetacean species with one single assessment unit in the North-East Atlantic (e.g., the
common dolphin Geelhoed et al., 2022). Venues for future work are developing multi-
stock operating models to further assess the robustness of control rules against uncertainty
in stock/population structure (Hammond & Donovan, 2003). Such developments will be
undertaken for integration in the RLA package (Genu et al., 2021) and for carrying out MSE
of increased ecological realism by considering scenarios with migration between source
and sink populations when relevant. Finally, our focus on cetaceans is not prescriptive: the
new control rule could be tested in an MSE framework for other taxa (seabirds, sharks,
etc.) with appropriate operating population dynamics models (Haider et al., 2017;Horswill,
O’Brien & Robinson, 2017; Tsai, Liu & Chang, 2020; Tinker et al., 2022).

We envision that the control rule ART (and more precisely ART2 since ART1 is not
robust) can be put to use in the current context of managing human activities in the
Northeast Atlantic (McQuatters-Gollop et al., 2022), and more precisely to set thresholds
on anthropogenic removals to assess by-catch (see e.g., Taylor et al., 2022). Managing PETS
by-catch is fraught with many hurdles including the allocation problem (Holmes & Miller,
2022). In other words, once a threshold is known, how to divide it up between the different
fisheries flying different flags? There are currently, to the best of our knowledge, no forum
in the EU where this allocation issue is being discussed for PETS. One reason might be
that the first step, assessing quantitatively the impact of anthropogenic activities at relevant
ecosystemic scales is still in its infancy, and the recently OSPAR Quality Status Report
for 2023 (https://oap.ospar.org/en/ospar-assessments/quality-status-reports/qsr-2023/) is
a major step forward. Methodologies for setting thresholds are critical (Palialexis et al.,
2021) and MSE are state-of-the-art in this respect (Rademeyer, Plagányi & Butterworth,
2007; Bunnefeld, Hoshino & Milner-Gulland, 2011; Punt et al., 2016; Kaplan et al., 2021).
Focusing onmarinemammals, PBR,RLAandARTcanbe calibrated to specific conservation
objectives (a.k.a. ‘‘conceptual objectives’’ in Punt et al., 2016). The output of these control
rules is a threshold, that is a value of PETS that can be removed each year within a MSFD
cycle and with a policy-agreed-upon risk. This threshold corresponds to a management
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4see for example Internation Whaling
Commission (2012) for a description of
procedure of allocating a catch limit to
small areas.

objective (a.k.a. ‘‘operational objectives’’ in Punt et al., 2016). It is important to keep in
mind that PBR, RLA and ART are meant to be updated with new data on abundance and
removals: as such the values they give are expected to change over time. In this (desk) MSE,
we have devised a new control rule which can be updated every six years (corresponding to
a MSFD cycle) for assessing anthropogenic removals. In particular, ART is a competitive
control rule for developing threshold values for the maximum allowable mortality rate
from incidental catches of PETS.

How to enforce relevant management actions that will ensure that these values are not
exceeded remain the difficult question which we have not discussed here. This question is
beyond the scope our this study, as it entails to tackle issues which are under the competence
of the EU fishery common policy or EU member states, such as the allocation problem4

and the effective monitoring of fisheries.

CONCLUSION
After developing a stochastic SPM, we carried out an MSE to test two new candidate
control rules for managing anthropogenic removals of marine PETS. One of these rules
(ART1) turned out to be brittle but the other (ART2) was robust to plausible biases
in data that can be typically collected on marine PETS. Our investigation was inspired
by cetaceans, with which we are most familiar and which are impacted by anthropogenic
activities (Taylor et al., 2022). Our results need not, however, be restricted to this taxonomic
group. In particular, we identified a promising new control rule to minimize removals
over time. This candidate rule not only compared favorably against rules currently in
use to assess marine mammal removals, but displayed also greater alignment with EU
conservation instruments and aspirations. One co-lateral result of our MSE, which tested
two conservation objectives, is to highlight the remarkable effectiveness of the rule PBR
in meeting CO rapidly. The light data requirements of PBR (Table 3) underscore how
crucial are abundance estimates for managing PETS removals, and stress the need to secure
adequate governance for monitoring schemes with adequate coverage for management
purposes. For cetaceans, depending on species and current knowledge on population
structure, several surveys provide important data in the North-East Atlantic (Geelhoed et
al., 2022). A prominent example is the large-scale SCANS surveys in theNorth-East Atlantic
(Hammond et al., 2013; Hammond et al., 2021b; Gilles et al., 2023). Estimates of human-
induced removals of PETS are clearly needed (Murphy, Borges & Tasker, 2022), at the very
least to be able to carry out assessments; and efforts to (i) make the best use of currently
available data (Authier, Rouby & Macleod, 2021), or (ii) to develop data acquisition with
Remote Electronic Monitoring (Kindt-Larsen et al., 2023) need to be pursued. Yet, this
should not eclipse the need for regionally coherent, dedicated surveys (see e.g., Hammond
et al., 2021a) that collect high-quality data to inform on PETS abundance (Gilles et al.,
2023).

Decision-making usually involves trade-offs (Regan et al., 2005; Cressie, 2022). In this
analysis, we investigated some of the salient trade-offs needed tomove forward onmanaging
the impacts of human activities in the North-East Atlantic (McQuatters-Gollop et al.,
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2022). We developed a stochastic SPM, whose full study is beyond the scope of this
paper (Ouzoulias, 2022), and identified a promising candidate control rule for managing
anthropogenic removals of marine PETS in an age of ever-expanding anthropic activities
in the oceans.
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