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ABSTRACT
Gut-associated microbial communities are known to play a vital role in the health and
fitness of their hosts. Though studies investigating the factors associated with among-
individual variation in microbiome structure in wild animal species are increasing,
knowledge of this variation at the individual level is scarce, despite the clear link between
microbiome and nutritional status uncovered in humans and model organisms. Here,
we combine detailed observational data on life history and foraging preference with
16S rRNA profiling of the faecal microbiome to investigate the relationship between
diet, microbiome stability and rates of body mass gain in a migratory capital-breeding
bird, the light-bellied Brent goose (Branta bernicla hrota). Our findings suggest that
generalist feeders have microbiomes that are intermediate in diversity and composition
between two foraging specialisms, and also show higher within-individual plasticity.
We also suggest a link between foraging phenotype and the rates of mass gain during
the spring staging of a capital breeder. This study offers rare insight into individual-
level temporal dynamics of the gut microbiome of a wild host. Further work is needed
to uncover the functional link between individual dietary choices, gut microbiome
structure and stability, and the implications this has for the reproductive success of this
capital breeder.

Subjects Ecology, Microbiology, Molecular Biology, Zoology
Keywords Host-microbe interactions, Brent goose, Microbiota, Foraging specialism

INTRODUCTION
Gut-associated microbial communities play a pivotal role in organismal health and
behaviour. Recent research has highlighted the importance of the gut microbiome for
structuring host social networks (Liberti et al., 2022) influencing diet choice (Trevelline
& Kohl, 2022) and shaping immunity and resistance to pathogens (Belkaid & Harrison,
2017; Ley et al., 2008). However, knowledge of the forces shaping the structure and stability
of the gut microbiome remains limited, especially for non-model systems (Bodawatta
et al., 2021). An understanding of the processes linked to plasticity or flexibility in the
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gut microbiome is vital for deriving accurate measures of the strength of host-microbe
interactions in the wild, and the mechanisms that drive them.

The majority of gut microbiome research to date has focused on laboratory model
systems including Drosophila spp., lab mice and animals of high economic importance
such as poultry (Abd El-Hack et al., 2022; Bodawatta et al., 2021), or critically endangered
species such as kakapos (Strigops habroptilus; Bjerrum et al., 2006; Waite & Taylor, 2015)
and hummingbirds (Dutch et al., 2022; Herder et al., 2021). Studies such as these highlight
how critical the gut microbiome is for host development and health (Maki et al., 2019)
and experimental systems are well-placed to infer casual relationships between host and
microbiome. However, the gut microbiome of wild species, especially birds, remains
understudied (Grond et al., 2018) but is of vital importance in understanding the influence
of host-microbiome interactions on host fitness, especially for particular taxonomic groups
displaying unique life history strategies (Bodawatta et al., 2022; Gil & Hird, 2022; Sun et al.,
2022).

Capital-breeding migratory birds, which use stored energy reserves to finance
reproductive efforts, are a group where the consequences of microbiome variation are
expected to be particularly pronounced. Due to their complex annual cycles, often
involving use of multiple wintering and staging sites along the flyway, migratory birds
are subject to a range of ecological pressures such as food availability or pathogen
exposure that vary spatially and temporally, all of which have potential to shape the
gut microbiome (Harrison et al., 2013). Migration is known to affect microbiome stability
and therefore has the potential to shape host nutrition, metabolism, and energy yield
from food (Risely et al., 2018). Work has identified the physiological reorganisation of
organs pre-migratory departure (Handby et al., 2022; Landys-Ciannelli, Piersma & Jukema,
2003; Piersma, Gudmundsson & Lilliendahl, 1999). Which could be a potential driver of gut
microbiota shifts. Many studies have focussed on characterising broad-scale patterns of
microbiome variation at the group, site, or population level (Pekarsky et al., 2021; Risely et
al., 2017). Though such group-level studies have revealed the gut microbiome of migratory
birds to be highly variable in response to their environment and diet, they provide limited
information on the underlying ecological processes that potentially drive this variation.
Longitudinal measures of microbiome structure from individuals remain exceedingly rare
for avian hosts because of the difficulty of repeat sampling individuals in the wild (Videvall
et al., 2018; Waite & Taylor, 2015), yet could deepen our knowledge considerably of the
role of gut microbial communities in the evolution and life history of a host (Obrochta et
al., 2022; Skeen et al., 2020).

Here we use a capital-breeding migrant, the light-bellied Brent goose, (Branta bernicla
hrota; hereafter LBB) as a model system for understanding the processes shaping the
dynamics of the gut microbiome. Spring staging on the Álftanes Peninsula in Iceland
during May is a critical period in the annual cycle where individuals sequester fat stores
to finance the large energetic cost of migratory flight and subsequent reproduction. The
reproductive success of the LBB goose is impacted not only by processes occurring during
the breeding season, but also by those affectingmass gain during Icelandic staging (Harrison
et al., 2013). The potential of these carryover effects has been the focus of previous studies
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investigating the reproductive benefits gained by maximising body stores on the staging
grounds (Harrison et al., 2013; Inger et al., 2008; Inger et al., 2010). Females who have the
greatest mass at the end of the spring staging period have higher reproductive success
within years where breeding conditions are favourable (Harrison et al., 2013).

Previous work in the wild has focused only on dietary quality as drivers of individual
condition and has largely ignored the potential of the gutmicrobiome tomodulate energetic
yield from the diet (Turnbaugh et al., 2006; Knutie, 2020). The gut microbiome is known
to play an important role in energy homeostasis by producing short-chain fatty acids,
which are involved in various complex pathways regulating insulin resistance, adiposity,
gluconeogenesis and satiety (Besten et al., 2013). In humans, reduced diversity and a higher
ratio of the dominant Phyla Firmicutes and Bacteroidetes have been associated with obesity,
although these patterns are not always consistent across studies (Magne et al., 2020). This
variation among studiesmay be partly explained by differences in environmental factors and
initial microbiome structure, as mammals have been shown to host different ‘enterotypes’
of microbiome which respond differently to factors such as diet (Couch et al., 2021; Wang
et al., 2014; Wu et al., 2011). Variation in metabolic phenotype of the host gut, driven
by differences in microbiome structure, could therefore generate asymmetries between
individuals in the rate of energy assimilation even if they were foraging the same resource
(Turnbaugh et al., 2006). This poses the question of whether the optimal foraging choice
for individuals may be modulated by the host gut microbiome by controlling the rate of
energy and nutrient intake from the host’s diet (Bäckhed et al., 2004; Trevelline & Kohl,
2022).

The spring staging site inhabited by the geese in Iceland comprises two feeding resources;
intertidal marine resources (Zostera spp., Enteromorpha spp. And Ulva lactuca) and
terrestrial resources (maintained and agricultural grasses; Inger et al., 2008). Prior research
into the LBB goose has found that individuals have a dietary phenotype with individuals
either specialising on one resource or generalising on both resources (Inger et al., 2006).
Individuals that specialise on marine resources have a higher average body mass and
condition (Inger et al., 2008). These two feeding specialisations are bridged by generalist
individuals which are switching between the two resources. For capital breeding species with
strictmigratory schedules andnarrow temporalwindows inwhich to attain a threshold body
condition, the gut microbiome structure and the matching of gut microbiome enterotype
to diet may be especially crucial (Wu et al., 2018). During this short, month-long spring
staging period, feeding generalism could be costly if the microbiome has a period of
adjustment to the new nutritional niche. Within this transition, energetic uptake could
be compromised leading to a lower-than-average condition and therefore a mismatch
with the phenology on the breeding grounds (Inger et al., 2008). We hypothesise that body
condition and mass gain as a function of diet and foraging phenotype will be associated
with differences in gut microbiome structure and diversity. We predict that: (i) foraging
phenotype (marine specialist, terrestrial specialist, or ‘switcher’) will be linked to differences
in the diversity and the structure of the gut microbiome; and (ii) foraging specialists will
show higher rates of mass gain, because they are not paying the physiological cost of
incompatible microbiomes; and finally (iii) marine specialists should have on average
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better body condition at the end of spring staging than terrestrial specialists because of
the superior nutrient quality of the resource (Inger, 2006). This work will improve our
understanding of the selective forces facilitating the emergence and persistence of foraging
specialisms. Portions of this text were previously published as part of a preprint (Jones et
al., 2023).

METHODOLOGY
Data collection
Foraging preference, body condition and microbiome data of LBB geese were sampled
during the spring staging of May 2017 on the Álftanes Peninsula, Iceland (64◦06′27.5′′N,
22◦00′11.9′′W). Individual geese were marked using coloured leg rings containing unique
alphanumeric codes (Harrison et al., 2011). Observations of the geese across Álftanes
were made over an approx. 12-hour period on a daily basis. The data were collected by
researchers working in a pair, with one individual observing the focal goose at a distance of
between 20–50 m using a high-powered telescope until the focal goose produced a faecal
sample (as a proxy for distal gut microbial content; (Videvall et al., 2018). The observing
individual then directed a second researcher to the faecal sample using two-way radios, with
the samples then being placed into sterile plastic bags and kept initially at −20 ◦C before
long-term storage at −80 ◦C prior to metagenomic sequencing. The individual collecting
the samples was only dispatched when the observer could be confident that faecal sample
could be unambiguously identified through the scope. The goose ID, time of day, flock size,
abdominal profile index (API), and feeding location (marine or terrestrial sites) were all
recorded. API is a reliable proxy for body condition (Inger et al., 2010) and was measured
on a scale of 1–7, 1 being smallest and 7 being the largest abdomen which was protruding
closer to the ground. Calibration of the API scores among researchers was carried out over
the initial few days to ensure repeatability. Individual birds were sampled opportunistically
each week throughout May, yielding 123 faecal samples, 1–4 samples per individual for
sequencing, with a mean of 2.05. The two types of foraging specialisations were categorised
based on location and flora present. The ‘‘marine’’ locations were salt marsh areas and
contained Zostera spp., Enteromorpha spp. and Ulva lactuca. The ‘‘terrestrial’’ locations
were managed grassland areas or agricultural grasses as well as saltmarsh. An individual’s
foraging specialisation was allocated based on the location of the bird when the faecal
sample was collected as well as the location of the bird when it was resighted (for individuals
observed at least five times). In total, 92 birds were observed five or more times and were
therefore assigned a foraging phenotype. Individuals which were seen on both marine and
terrestrial sites at least once were categorised as ‘‘switchers’’, while individuals seen only on
one type of habitat were categorised as specialists on either marine or terrestrial resources.
This work was reviewed and approved by the ZSL Ethics Committee (Project ID Code
BPE-0682).

16S rRNA gene sequencing and bioinformatics
DNA extraction and sequencing of the v4 region of the 16S rRNA gene was conducted
at the Institute of Zoology, London Zoo on the Illumina Miseq. We used a modified
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Qiagen DNEasy plate extraction protocol with an added digestion step using mutanolysin
to increase recovery of gram-positive bacteria (Yuan et al., 2012). Positive and negative
controls were used. Extensive details of the extraction and 16S rRNA gene amplification
protocol are provided in supplementary material of Harrison et al. (2019). The raw 16S
rRNA gene reads were processed in the DADA2 pipeline using default parameters to
determine amplicon sequence variants (Callahan et al., 2016). The phyloseq package
(McMurdie & Holmes, 2013) was used for downstream sequence processing in R (R Core
Team, 2021). We removed 2081 chloroplast, mitochondria and archaea ASVs using the
prune_taxa function (McMurdie & Holmes, 2013). Within the package decontam (Davis et
al., 2017) a prevalence threshold of 0.5 was used to identify seven negative contaminant
ASVs and these were subsequently removed. The iNEXT package was used to generate
rarefaction and sample coverage curves to determine at what point diversity estimates
plateau, this threshold was used to remove samples with less than 5,000 reads (n= 22;
Hsieh, Ma & Chao, 2016; Figs. S1, S2).

Statistical analysis
Alpha diversity
Alpha diversity was calculated using richness estimated using the iNEXT package. A
Bayesian regression analysis with richness as the response variable, and foraging phenotype
as the explanatory variable, was fitted using the Stan computational framework with the
R package brms (Bürkner, 2017) to examine which factors best explain variation in alpha
diversity. Bird ID was fitted as a random effect to account for repeat observations of
the individual geese. Day of year was standardised to have a mean of zero and standard
deviation of one to aid model convergence. To assess how differences in group sizes may
influence the patterns in alpha diversity across foraging phenotypes, the rarefied data was
subsampled to the minimum group size with one random sample per bird (n= 6, marine
specialists), and the average richness value calculated over 1,000 iterations to produce a
distribution of bootstrapped richness estimates per foraging phenotype.

Beta diversity
A centred log ratio (CLR) transformation of ASV abundances was used for beta diversity
analyses, which does not require data to be lost to rarefying, accounts for the compositional
nature of the microbiome data and normalises the read depth of the dataset (Gloor et al.,
2017). A PERMANOVAwas performed using Euclidean distances with the adonis2 function
in the R package vegan (Oksanen et al., 2020). Pairwise comparisons were used to assess
which foraging phenotypes differed in microbiome structure with the pairwiseAdonis
package (Martinez Arbizu, 2020). We visualized variation in microbiome structure within
and among foraging phenotypes using a Principle Component analysis performed on the
CLR-transformed data. A test for dispersion was performed using betadisper in the vegan
package (Oksanen et al., 2020) followed by a Tukey’s post-hoc test of pairwise differences
with a Bonferroni correction for multiple testing.
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Shared and unique taxa
To account for the uneven sampling effort across foraging phenotypes when calculating
the proportions of shared and unique taxa at the group level, we performed bootstrap
subsampling with replacement on the unrarefied data using the minimum sample size
using one random sample per individual (n= 6, marine specialists) over 1,000 iterations.
We randomly selected one iteration of the subsampling for visualisation. A bipartite
network diagram was constructed using the R package ggraph (Pedersen, 2021), with
foraging phenotype as one type of node, and ASVs as the second type of node. Edges were
defined as an ASV being present in any sample from a given foraging phenotype. To test
for differences in the proportion of shared taxa among different foraging phenotypes, we
performed permutational t -tests of the pairwise Jaccard Index with 1,000 permutations
between the following groups of sample pairs (removing within-individual comparisons);
same phenotype (marine-marine/terrestrial-terrestrial), switcher-specialist (switcher-
marine/switcher-terrestrial) and different specialists (marine-terrestrial). An indicator
analysis was performed using the package labdsv (Dufrene & Legendre, 1997; Roberts,
2016). to determine the specificity and fidelity of ASVs to each foraging phenotypes. Set
seed ‘‘17072020’’ was used to ensure reproducibility.

Investigating drivers of body condition
To investigate the influence of foraging phenotype on body condition, we fitted a linear
mixed model with API as the response variable, and foraging phenotype, day of year (and
its quadratic effect), and sex as explanatory variables in the R package lme4 (Bates et al.,
2015). Bird ID was fitted as a random effect to account for pseudoreplication within the
data. Day of year was standardised to have a mean of zero and standard deviation of one
to aid model convergence. Competing models were ranked using AIC selection via the
dredge function in theMuMIn package (Barton, 2020). All models within six AICc units of
the best supported AICc model were considered to be relatively equally supported in the
data. To remove overly complex models from consideration the nesting rule was applied
(Harrison et al., 2018; Richards, 2008).

RESULTS
Alpha diversity
Richness differed among the three foraging phenotypes (Fig. 1A). Terrestrial specialists
had the lowest microbiome alpha diversity compared to the other foraging phenotypes
(marine vs terrestrial difference (95% Confidence Interval) = −0.71 [−1.05, −0.39];
switcher vs terrestrial difference (95% Confidence Interval) = −0.50 [−0.75, −0.25]).
Marine specialists had the highest alpha diversity but was not significantly higher than that
of switchers (switcher vs marine difference (95% Confidence Interval) = −0.21 [−0.55,
0.12]). Subsampling the foraging phenotypes to the minimum group size produced mean
richness estimates that were similar to those predicted from the above model, with marine
specialists showing the highest richness, switchers an intermediate value and terrestrial
specialists showing the lowest richness (Fig. S3).
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Figure 1 Alpha and beta diversity of phoraging phenotypes. (A) Variation in alpha (richness) diversity
across different foraging phenotypes (Marine n = 17, Switcher n = 34, Terrestrial n = 57). Filled circles
are raw data points. White circles represent posterior means from a Bayesian GLM. Black bars show 66%
and 95% credible intervals of the means. (B) The relative abundance of the top five most abundant bac-
terial Phyla are shown for each foraging phenotype. (C) A principle component analysis on centred log-
ratio transformed microbiome community data reveals Switchers to have a mean community composi-
tion intermediate to that of the two specialisms. Each point represents a sampled gut community and are
coloured by individual foraging specialisation. Points are connected to group centroids by lines. (D) Val-
ues from the primary axis of the ordination in C plotted as a function of the proportion of marine sites
used by individual geese (n = 108 geese). Line and shaded area are mean and 95% confidence intervals
from a linear model.

Full-size DOI: 10.7717/peerj.16682/fig-1

Beta diversity
The gut microbiome of individuals was primarily composed of the Phlya Actinobacteria,
Bacteroidetes, Firmicutes, Proteobacteria and Tenericutes (Fig. S4). Gut community
composition varied among the three foraging phenotypes (PERMANOVA; F2,104= 3.887,
R2
= 0.070, p= 0.001) with marine specialists showing a lower proportion of Firmicutes

but proportionally higher Proteobacteria compared to switchers and terrestrial specialists
(Fig. 1B). The microbiome structure of terrestrial specialists clustered together along
the first Principle Component axis (PC1; Fig. 1C) and were significantly different from
that of other foraging specialists (PERMANOVA; marine vs terrestrial; F1,67 = 6.210,
R2
= 0.085, p= 0.001 and switcher vs terrestrial; F1,88 = 4.092, R2

= 0.044, p= 0.001).
Marine specialists and switchers showed more overlap in their composition, but a weak
difference was still detectable between these foraging phenotypes (Fig. 1C; PERMANOVA
F1,53= 1.528, R2

= 0.028, p= 0.044). The average position of individuals along PC1 was
linearly correlated to the proportion of time spent on marine or terrestrial sites (Fig. 1D;
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slope of proportion marine in diet 3.5 (95% CI [2.63–4.36])). In addition, the foraging
phenotypes differed significantly in how variable the composition of their microbiomes
were (F2,104= 17.541, p= 0.001), with terrestrial specialists showing the least variability
(difference in mean distance to centroid [95% Confidence Intervals]; Terrestrial-Marine;
−13.555 [−20.402,−6.707], p< 0.0001, Terrestrial-Switcher;−10.826 [−16.057,−5.596],
p< 0.0001) and marine and switcher phenotypes being equally variable (Switcher-Marine;
−2.728 [−9.880, 4.423], p= 0.637).

Shared and unique taxa among foraging phenotypes
Only four ASVs were consistently present across the majority of the gut communities
sampled irrespective of foraging phenotype (using thresholds of 70%prevalence and 0.001%
relative abundance); these belonged to Lactobacillaceae (Lactobacillus), Micrococcaceae,
Aurantimonadaceae (Aureimonas) andMicrobacteriaceae. The samewas true when looking
within each foraging phenotype, with Micrococcaceae only common among terrestrial
samples, and the other three common within all foraging phenotypes.

We next examined the extent of shared and unique microbial taxa among foraging
phenotypes. Strikingly, the marine foraging group had the highest proportion of unique
ASVs (34.95% of total), followed by switchers (22.83%) and then terrestrial (14.86%)
foraging groups as estimated through bootstrapping (Fig. 2A; Fig. S5). Marine and switcher
foraging groups shared the most ASVs in common, with the smallest proportion of shared
ASVs between marine and terrestrial groups (2.76%), and approximately 9.31% of ASVs
common among all foraging groups (Fig. 2A). There were slight taxonomic biases across
these subsets of the community, which broadly mirror the overall composition of each
group. For instance, the ASVs unique or shared with terrestrial communities were enriched
for Firmicutes while ASVs unique or shared with marine samples were enriched for
Proteobacteria (Fig. 2B).

At the sample level, gut communities of individuals using the same habitat (marine-
marine and terrestrial-terrestrial) shared significantly more ASVs in common compared to
the proportion of ASVs shared between switchers and either marine or terrestrial specialists
(observed t = 29.93, p< 0.001), or across the two different specialisms (marine-terrestrial;
observed t = 38.22, p< 0.001). The switchers also shared significantly more ASVs in
common with the two foraging specialisms compared to those shared between the different
specialisms (observed t = 15.87, p< 0.001). In addition, terrestrial specialists shared more
ASVs in common with each other than did marine specialists, while switchers shared
the same number of ASVs in common with each other as they did with either foraging
specialism (Fig. S6). Through an indicator analysis we identified four indicator ASVs for
terrestrial specialists and two for marine specialists (see Table S1).

Within-individual microbiome trajectory over time
Individual stability in microbiome structure differed among foraging phenotypes (GLMM
of distances to individual centroids: F2,38= 7.801, p= 0.001). Interestingly, we found that
terrestrial specialist individuals had stable microbiomes through time, exhibiting relatively
uniform values of both richness (Fig. 3A) and composition (PC1; Fig. 3B) throughout
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Full-size DOI: 10.7717/peerj.16682/fig-2
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May. Consistent with group level dispersion patterns, switchers and marine individuals
exhibited the most variation in microbiome structure over time (switcher vs marine:
3.805 [±3.700], p= 0.310; Fig. S7), while terrestrial specialists showed significantly lower
variability compared to marine and switcher foraging phenotypes (terrestrial vs marine:
−11.973 [±3.540], p= 0.002, terrestrial vs switcher: −8.170 [±2.704], p= 0.005; Fig. S6).

Mass gain trajectories
The simplest model of variation in API retained foraging phenotype, sex, the interaction
between standardised day and foraging phenotype, and its relevant quadratic term as
predictors (Table S2). API increased significantly during spring staging as individuals gained
mass prior to departure for breeding (z-standardised day; p< 0.001). In addition, there
was a significant effect of sex on API over time, with females having a significantly higher
API than males (β ± SE = 0.444 ± 0.134; p= 0.002). Consistent with our predictions, we
also detected a significant interaction between z-standardised day and foraging phenotype
type (X 2

= 30.005, p< 0.001). Switchers had the lowest rates of mass gain (Fig. 4), with
terrestrial specialists having an API which increased significantly more over time than
both marine specialists and switchers (β ± SE = 0.138 ± 0.652, p= 0.034). Interestingly,
although these effects of foraging phenotype on mass gain trajectory are apparent in this
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model, there remains a high degree of variation within these groups such that, for instance,
switchers were amongst the individuals ending spring staging in both the best and worst
body condition.

DISCUSSION
Here we show how individual foraging behaviour is linked to the structure and stability of
the faecal microbiota of LBB geese. Our study provides a rare example of within-individual
longitudinal variation in the faecal microbiome in a wild migratory bird, where the
microbiome shows foraging phenotype-associated temporal dynamics. These data suggest
a possible link between microbiome, diet choice and body mass gain in a capital breeding
bird, which has the potential to significantly influence downstream reproductive success
(Harrison et al., 2013). These results have broad implications for our understanding of the
interplay between gut microbiome, diet and behaviour in natural systems.

Our results suggest that individual foraging phenotype has a significant effect on the
diversity, composition, and stability of the Brent goose faecal microbiome, and is linked
to differences in body mass at the end of spring staging. Marine diets contain much less
fibre than terrestrial grasses (Inger, 2006), making them more easily digestible and so
marine specialists are perhaps less reliant on their gut microbes for efficient digestion
of this resource. One might then expect to see reduced alpha diversity in hosts utilising
marine resources due to a decrease in carbohydrate complexity and fibrolytic niche space,
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coupled with an increase in variability among hosts due to weaker selective pressures
and enhanced ecological drift (Stothart et al., 2020). While we did find higher dispersion
among hosts with access to marine resources, the microbiomes of marine specialists
and switchers were found to have higher alpha diversity than terrestrial specialists. This
could be explained by higher diversity of (non-fibrous) dietary substrates, as marine
diets comprise species such as eelgrass (Zostera spp.), and the algae Enteromorpha spp.
and Ulva lactuca. However, the link between diet diversity and microbiome diversity in
wild populations remains unresolved (Bolnick et al., 2014; Kable et al., 2022; Kartzinel
et al., 2019; Weinstein et al., 2021). Alternatively, there could be a greater source of
environmentally transmitted microbes on marine sites (Grieneisen et al., 2019; Ottman
et al., 2019; Zhou et al., 2018). Less reliance on the microbiome for digestion may lead
to increased uptake of transient environmental microbes, as predicted for avian hosts
compared to mammalian counterparts (Hammer, Sanders & Fierer, 2019; Risely et al.,
2017; Song et al., 2020).

The observed reduction in terrestrial specialist microbiome diversity may be due
to exposure to chemicals on managed terrestrial grassland. Exposure to pesticides has
been found to alter the honeybee (Apis mellifera) gut microbiome (Kakumanu et al.,
2016). However, the impacts of habitat on the microbiome in wild birds have not been
thoroughly studied (Wu et al., 2018). An experimental study found that urban diets
reduced alpha diversity and altered taxonomic composition in house sparrows (Passer
domesticus; Teyssier et al., 2020). Such environmental stressors could also explain the
decrease in variability among terrestrial specialists, if they act as a filter for which microbes
are able to tolerate these conditions (Jani et al., 2021; Lavrinienko et al., 2020). Therefore,
it is possible that exposure to environmental stressors and pollutants associated with
particular foraging strategies could be altering the gut microbiome of Brent geese. A
study of migratory swan geese (Anser cygnoides) showed that gut microbial community
structure and microbial interactions differed between breeding and wintering sites, which
where differentially impacted by human activities (Wu et al., 2018). This could suggest that
anthropogenic influences such as chemical exposure are playing a role in the differences
in community structure observed in this study, as some terrestrial sites are managed golf
courses maintained as monocultures with pesticides and fertilisers (Obrochta et al., 2022).

Switching individuals displayed signatures of faecal microbiome diversity and
composition that were intermediate to both marine and terrestrial specialists, consistent
with their gut microbiota existing in a transitionary state between the two diet-specific
optima. Switchers showed the most dramatic variation in within-individual microbiome
trajectory over time, reflecting a rapid microbial turnover in response to dietary shifts.
A key hypothesis to be tested is that this constant microbial turnover incurs frequent
mismatches between an individual’s diet and the metabolic capacity of the microbiome to
digest that diet. As a capital breeder with a narrow time window in which to reach peak
mass, any changes in their mass gain capability could have major implications for their
breeding success. We expected switcher faecal microbiomes to be an intermediate of the
terrestrial andmarine microbial communities, depending on proportional site use. Instead,
switching individuals were found to have a high number of unique taxa (22.83% of the
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total), which we would not expect to arise from sampling error alone. These microbes
could represent certain taxonomic groups that allow switchers to digest food resources
from both dietary types, or represents the fact that switchers are exposed to a greater
diversity of environments, increasing the chance of environmental transmission of novel
microbes. That marine and switchers shared the most ASV’s in common could be due to
the higher alpha diversity in marine individuals resulting in a larger probability of detecting
an overlap in shared taxa.

All three foraging phenotypes showed large increases in API over spring staging,
consistent with previous work on this system (Inger et al., 2008). Females also reached
higher API values than males, as they require resources not only for the migratory flight
but also investment into egg production (Harrison et al., 2013). Therefore, we expect diet—
microbiome interactions and foraging behaviour to have sex-dependent consequences for
the geese, with consequences of diet-microbiome mismatch felt more strongly in females.
In contrast to previous work (Inger et al., 2006), we found that terrestrial specialists had
significantly higher API gain over time compared to switchers and marine specialists.
However, there was considerable variation in rate of API gain for all three foraging types.
One hypothesis is that switchers could represent the socially inferior individuals oscillating
between resource types because they are constantly being forced fromhigh quality resources
by more dominant individuals. However, this hypothesis alone cannot explain our data
because some switchers end spring staging at some of the highest condition (API) scores.
Instead, we think some switchers are better able to buffer the potential cost of switching
through an ability of their microbiome to more rapidly shift metabolic capacity to match
their diet, and/or may be moving among resources strategically to maximise foraging
opportunities and energy intake. Similarly, switcher geese that change feeding phenotype
at the start of the spring staging and then specialise on one diet for the remainder of the
month could be finishing the month with higher API due to greatly reduced turnover
of microbiome. Integrating detailed behavioural data alongside metrics of microbiome
dynamics may be key to explaining the large degree of noise in API trajectory relationships.
For example, geese from larger family groups have longer uninterrupted feeding because of
reduced aggression from other geese and decreased vigilance behaviour (Inger et al., 2010).
Such individual-level data are crucial for resolving why switchers show such variance in API
at the end of staging and unravel whether ‘decisions’ to switch are driven by behavioural
interactions such as competitive exclusion, or optimisation of resource intake and digestion.

CONCLUSION
This study has highlighted the impact of feeding preference on body mass gain, potentially
through shifts in gut microbiome structure, during a vital stage of a capital breeder’s annual
migration, with implications for among-individual variation in reproductive success in
this wild host.

A major outstanding question is how shifts in the gut microbiota impact the ability of
the host to uptake themaximum potential amount of nutrients from their food source. Our
data reveal complex microbiome dynamics at the individual level over short timescales, but
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also highlight that more intensive sampling is required to derive accurate metrics of rates of
microbiome turnover and measure costs to the host. Though group level approaches can
detect variation in average microbiome composition, they cannot estimate individual-level
variation in community membership or rates of turnover that are so vital for being able
to understand the consequences of microbiome variation for shaping animal life histories.
Future research should also adopt a functional approach to the study of the microbiome
(i.e., using metagenomics, see Gil & Hird, 2022) to establish the link between diet-driven
variation in gut community structure, metabolic function and body mass gained during
the spring staging period. Understanding within-individual variance in the presence and
function of gut microbial species over time will allow us to more clearly elucidate the role
of the microbiome in driving variation in digestion, nutrition and condition in natural
systems.
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