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ABSTRACT
Objective: Premature ovarian failure (POF) is a disease with high clinical
heterogeneity. Subsequently, its diagnosis is challenging. CXCL10 which is a small
signaling protein involved in immune response and inflammation may have
diagnostic potential in detection of premature ovarian insufficiency. Therefore, this
study aimed to investigate CXCL10 based diagnostic biomarkers for POF.
Methods: Transcriptome data for POF was obtained from the Gene Expression
Omnibus (GEO) database (GSE39501). Principal component analysis (PCA)
assessed CXCL10 expression in patients with POF. The receiver operating
characteristic (ROC) curve, analyzed using PlotROC, demonstrated the diagnostic
potential of CXCL10 and CXCL10-based models for POF. Differentially expressed
genes (DEGs) in the control group of POF were identified using DEbylimma.
PlotVenn was used to determine the overlap between the POF-control group and the
high-/low-expression CXCL10 groups. QuadrantPlot was employed to detect
CXCL10-dysregulated genes in POF. Gene Ontology (GO), Kyoto Encyclopedia of
Genes and Genomes (KEGG), and Gene Set Enrichment Analysis (GSEA) were
conducted on DEGs using RunMulti Group cluster Profiler. A POF model was
induced with cisplatin (DDP) using KGN cells. RT-qPCR and Western blot were
used to measure the expression of CXCL10, apoptosis-related proteins, and
peroxisome proliferator–activated receptor (PPAR) signaling pathway-related
proteins in this model, following siRNA-mediated silencing of CXCL10. Flow
cytometry was employed to assess the apoptosis of KGN cells after CXCL10
downregulation.
Results: The expression of CXCL10 is dysregulated in POF, and it shows promising
diagnostic potential for POF, as evidenced by an area under the curve value of 1.
In POF, we found 3,362 up-regulated and 3,969 down-regulated DEGs compared to
healthy controls, while the high- and low-expression groups of POF (comprising
samples above and below the median CXCL10 expression) exhibited 1,304
up-regulated and 1,315 down-regulated DEGs. Among these, 786 DEGs consistently
displayed dysregulation in POF due to CXCL10 influence. Enrichment analysis
indicated that the PPAR signaling pathway was activated by CXCL10 in POF.
The CXCL10-based model (including CXCL10, Itga2, and Raf1) holds potential as a
diagnostic biomarker for POF. Additionally, in the DDP-induced KGN cell model,
interfering with CXCL10 expression promoted the secretion of estradiol, and reduced
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apoptosis. Furthermore, CXCL10 silencing led to decreased expression levels of
PPARβ and long-chain acyl-CoA synthetase 1 compared to the Si-NC group. These
results suggest that CXCL10 influences the progression of POF through the PPAR
signaling pathway.
Conclusion: The CXCL10-based model, demonstrating perfect diagnostic accuracy
for POF and comprising CXCL10, Itga2, and Raf1, holds potential as a valuable
diagnostic biomarker. Thus, the expression levels of these genes may collectively
provide valuable diagnostic information for POF.

Subjects Bioinformatics, Gynecology and Obstetrics, Translational Medicine
Keywords Premature ovarian failure, CXCL10, Diagnostic biomarker, PPAR signaling pathway

INTRODUCTION
Premature ovarian failure (POF) is a disease with high clinical heterogeneity (Luisi et al.,
2015), and its incidence is rising with rapid socioeconomic development. Hormone
supplement therapy is the primary treatment method for POF, alleviating clinical
symptoms but failing to improve ovarian function (Chon, Umair & Yoon, 2021).
Therefore, establishing a safe and effective diagnosis for patients with POF has gained
significant attention.

Transcriptome-based prognostic signatures entail specific gene expression patterns
predicting disease outcome and prognosis (Ahluwalia, Kolhe & Gahlay, 2021; Lemij et al.,
2023). They aid in identifying genes or groups of genes whose expression levels are
associated with specific clinical outcomes, such as disease progression, survival rates, or
treatment response. These gene expression signatures can provide valuable information for
personalized medicine, treatment decision-making, and patient management (Ma et al.,
2022), shedding light on the molecular mechanisms underlying disease progression and
facilitating tailored treatment (Zhou et al., 2022).

Several genes, including GDF9, BMP15, NGF, FANCM, STAG3, FSHR, NRIP1, XPO1,
and MACF1, have relevance in the genetic diagnosis, research, and clinical practice of POF
(Dixit et al., 2010; Pouresmaeili & Fazeli, 2014). Jaillard et al. (2020) identified GDF9,
FANCM, STAG3, and FSHR as being involved in POI pathogenesis, and proposed novel
associated candidate genes, NRIP1, XPO1, and MACF1, to be further investigated.
Fassnacht et al. (2006) conducted a diagnostic analysis in 101 patients with POF,
investigating the major candidate genes (DAZL, DBX, FOXL2, INHalpha, GDF9, USP9X)
that contribute to POF development. While several transcriptome analyses in POF have
been performed (Kuang et al., 2014; Li et al., 2019), a specific molecular diagnostic marker
for POF remains elusive.

CXCL10, a small signaling protein, is produced by various cell types, including immune
cells, endothelial cells, and fibroblasts, in response to immune and inflammatory signals
such as interferon-gamma (IFN-γ).

CXCL10 is involved in immune response, host defense against viral and bacterial
infections, and several inflammatory and autoimmune diseases (Karin & Razon, 2018;
Nakagome & Nagata, 2022). In autoimmune diseases, CXCL10 contributes to tissue

Qin et al. (2023), PeerJ, DOI 10.7717/peerj.16659 2/20

http://dx.doi.org/10.7717/peerj.16659
https://peerj.com/


damage by promoting the infiltration of immune cells into affected tissues (Ghafouri-Fard
et al., 2021; Tokunaga et al., 2018). Additionally, it may have diagnostic potential in the
early detection of premature ovarian insufficiency (POI) and a role in ovarian fibrosis
(Wang & Sun, 2022). However, the exact function and clinical significance of CXCL10 in
POF remains unclear.

Gene-based diagnostic models have the potential to revolutionize disease diagnosis,
personalized medicine, and patient management, offering more accurate and targeted
approaches to healthcare (Han et al., 2022). They offer the possibility of early detection,
improved treatment selection, and better patient outcomes (Thaker et al., 2019). POF
results from various genetic causes, and while a single definitive diagnostic gene marker
remains elusive, gene-based markers can aid in some cases.

This study explores CXCL10-based diagnostic biomarkers for POF, investigating its
expression, global regulation, and related signaling pathways. Furthermore, we developed
and validated a highly accurate CXCL10-based model for diagnosing POF.

MATERIALS AND METHODS
Data collection
Transcriptome data associated with POF was obtained from the Gene Expression
Omnibus (GEO) database (dataset: GSE39501). This dataset comprised gene expression
data from three POF mouse samples (cases, including GSM970254, GSM970255, and
GSM970256) and three wild-type mouse samples (controls, including GSM970248,
GSM970249, and GSM970250). The POF mouse samples were ovaries obtained from
C57BL/6 mice with induced POF, while the control mouse samples were ovaries obtained
from wild-type C57BL/6 mice. The three POF mouse samples were further divided into
high and low CXCL10 expression groups using as a threshold the median expression level
of CXCL10 (4.059386919). The data underwent standardization using RunNorm, a tool
developed based on the Limma tool (Ritchie et al., 2015).

Principal component analysis (PCA)
PCA is a standard technique for reducing dimensionality in multivariate statistical
analysis, emphasizing the most variance-contributing dataset features. By using PCA, we
reduced dataset dimensionality and created a two-dimensional scatter map for an initial
sample distribution overview (Li et al., 2022). PCA was performed using the PCA
expression plot feature in RStudio. The transcriptional levels of CXCL10 in POF and
control groups were visualized using ViolinPlot, which generates violin plots based on the
result file and grouping information output with the RunNorm application.

Receiver operating characteristic (ROC) curve
The ROC curve is a common clinical practice tool that can be used to evaluate the
performance of classifiers. An area under the curve (AUC) value exceeding 0.5 and
approaching 1, indicates better diagnostic accuracy. AUC values ranging from 0.5 to 0.7
indicate low accuracy, values ranging from 0.7 to 0.9 indicate moderate accuracy, and
values exceeding 0.9 indicate high accuracy. ROC analysis was performed to assess the
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optimum cutoff value, sensitivity, specificity, and AUC with a 95% confidence interval
(CI). The ROC curve of CXCL10 was plotted and analyzed using the PlotROC application,
based on the R language package pROC (Sachs, 2017).

The Least Absolute Shrinkage and Selection Operator (LASSO) regression is a
commonly used data mining method in machine learning known for variable selection and
complexity adjustment within generalized linear models to mitigate multicollinearity in
regression analysis. We utilized Baiyin Cloud to implement RunLASSO for selecting
feature genes impacted by CXCL10 in POF with diagnostic potential. This application,
based on the R language LASSO package, establishes a LASSO model (Friedman, Hastie &
Tibshirani, 2010) while generating Lambda plots, LASSO model diagrams, and ROC
curves. Transcriptional expression of model genes was depicted using PlotBox showcasing
them in a box plot.

Gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes
(KEGG), and Gene Set Enrichment Analysis (GSEA) pathway analysis
The “clusterProfiler” package was used to perform GO, KEGG, and GSEA pathway
analyses of the differentially expressed genes (DEGs) to annotate biological functions and
enriched pathways. Enrichment results with false discovery rate (FDR) <0.05 were
considered significant. POF dysregulation genes influenced by CXCL10 underwent
enrichment analysis using RunMutiGroupclusterProfiler, an application developed based
on the clusterProfiler package in R language (Yu et al., 2012), for GO and KEGG.
The significance of the enrichment results was based on a p-value < 0.05. The enrichment
results for biological processes (BP) or KEGG pathways were visualized using the
PlotClusterBubble application on Baiyin Cloud.

Cell proliferation assay
The cell counting kit-8 (CCK-8) method was used for assessing cell proliferation. KGN
cells were cultured in a 96-well plate for 24 or 48 h. Then, 10 mL of CCK-8 medium (HY-
K0301; MCE, Concord, CA, USA) was added to each well. After a 1-h incubation at 37 �C
with 5% CO2, the optical density (OD) at 450 nm was measured. Each measurement was
conducted in triplicate.

Cell culture and transfection
Human ovarian granulosa cells (KGN cells) were obtained from the American Type
Culture Collection (ATCC) and cultured in RPMI-1640/F12 medium (Gibco, Waltham,
MA, USA) supplemented with 10% fetal bovine serum (FBS; Gibco, Waltham, MA, USA),
100 U/mL penicillin, and 100 mg/mL streptomycin. The cells were grown at 37 �C with 5%
CO2. CXCL10 short interfering RNAs (siRNAs) were synthesized by Shanghai Gene
Pharma Co., Ltd. (Shanghai, China). Lipfectmine3000 (Thermo Fisher, Waltham, MA,
USA) was used to transfect the siRNAs at a final concentration of 50 nM, following the
manufacturer’s instructions.

For cisplatin (DDP) treatment (Wang et al., 2022), the KGN cells were treated with
different concentrations of substance (0, 10, 20, 40, and 80 mg/mL) for 24 or 48 h.
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The utilized siRNA sequences were as follows: Si-CXCL10, 5′-
GCCTTATCTTTCTGACTCTAA-3′; Si-NC, 5′-CCTAAGGTTAAGTCGCCCTCG-3′.

RNA extraction and quantitative reverse transcription (RT-qPCR)
Total RNA from KGN cells was extracted using TRIzol� Reagent (Thermo Fisher
Scientific, Waltham, MA, USA) following the manufacturer’s instructions. DNA was
digested using Dnase I (18068015; Thermo Fisher Scientific, Waltham, MA, USA) at 25 �C
for 1 h. Contamination assessment was performed using a 20-minute agarose gel
electrophoresis at 130 V. The quality of the RNA was evaluated using NanoDrop One
(Thermo Fisher Scientific, Waltham, MA, USA), targeting an A260/280 ratio of 1.8–2.0.
RNA integrity was evaluated using an Agilent 2100 bioanalyzer, with an RNA integrity
number (RIN) ranging from 7 to 10. The SPUD assay was used to test for inhibition,
according to the SPUD Assay for Detection of Assay Inhibitors Protocol (Merck, Rahway,
NJ, USA). For each microgram of total RNA, 0.5 µg of primer or primer-adaptor was
added to 2 µg of total RNA in a sterile Rnase-free microcentrifuge tube.

The mixture, in a total volume of ≤15 µL of water, was heated to 70 �C for 5 min.
Reverse transcription of cDNA was performed using 200 units of M-MLV reverse

transcriptase (M170A; Promega, Madison, WI, USA) in a 25 mL volume, incubating for
60 min at 37 �C with random primers or 42 �C with other primers or primer-adaptors.
RT-qPCR was carried out on ABI7500 Real-Time PCR Detection System with a 20 mL
reaction system, including 2 mL of cDNA and AceQ Universal SYBR qPCR Master Mix
(Q511; Vazyme, Nanjing, China) containing 50 mmol/L dNTP, 1.5 mmol/L Mg2+, 20 U
AceTaq DNA polymerase according to the protocol. The PCR process comprised an initial
pre-denaturing step at 95 �C for 2 min, followed by 42 cycles of 95 �C for 30 s, 58 �C for
30 s, and 72 �C for 30 s.

The dissolution curve must be unimodal. Standard curves with slope and y-intercept
were developed, aiming for an r2 value of 0.99. The dynamic range of the PCR reaction
should exhibit linearity, with a Cq variation at the lower limit of 10. The limit of detection
(LOD) was determined to be 2.5 target molecules with a 95% confidence interval.
The 2−ΔΔCt method was used to determine the relative expression of CXCL10 (NM_
001565.4), normalized to GAPDH (NM_002046.7), using the Applied Biosystems ViiATM

7 Real-Time PCR System, with GAPDH serving as control. The primer sequences used
for GAPDH and CXCL10 were as follows: 5′-GTGGCATTCAAGGAGTACCTC-3′,
5′-TGATGGCCTTCGATTCTGGATT-3′, 5′-AAGTATGACAACAGCCTCAAG-3′ and
5′-TCCACGATACCAAAGTTGTC-3′.

The amplicon length was approximately 100 bp, corresponding to the gene’s exon,
which was verified in NCBI. The comparative 2−ΔΔCt method assessed the stability of each
gene by determining the standard deviation of Cq differences. No Cq value was detected
for the No Template Control (NTC). Outliers, defined as values significantly deviating
from the other two values within three technical replicates were excluded from statistical
analysis. Each experiment involved three biological and technical replicates.
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Western blot
Cells were suspended in CellScope’s RIPA lysis buffer, and protein concentration was
determined using the bicinchoninic acid assay (Thermo Fisher Scientific, Waltham, MA,
USA). A 40 mg protein sample was loaded on a 10% gel for sodium dodecyl polyacrylamide
gel electrophoresis (SDS-PAGE). The proteins were transferred to a polyvinylidene
fluoride (PVDF) membrane which was blocked using 5% skim milk and subsequently
incubated with the following antibodies: anti-GAPDH (ab9484; Abcam, Cambridge, UK),
anti-CXCL10 (ab306587; Abcam, Cambridge, UK), anti-peroxisome proliferator-activated
receptor (PPAR) β (ab310323; Abcam, Cambridge, UK), anti-long-chain acyl-coenzyme A
synthetases 1 (ACSL1, ab177958; Abcam, Cambridge, UK), anti-caspase (ab32351; Abcam,
Cambridge, UK), anti-B-cell lymphoma 2 (Bcl-2, ab182858; Abcam, Cambridge, UK), and
anti-Bcl-2-associated X protein (Bax, ab32503; Abcam, Cambridge, UK). The blots were
then incubated with a secondary goat anti-rabbit IgG (H+L) antibody (A16104; Thermo
Fisher, Waltham, MA, USA) for 1 h at room temperature. Immunoreactive bands were
visualized using an enhanced chemiluminescence reaction (Pierce, Appleton, WI, USA)
following standard protocols.

Annexin V-fluorescein isothiocyanate (FITC)/propidium iodide (PI)
assay
KGN cells were placed in a six-well culture dish and cultured in an incubator at 37 �C with
5% CO2. After 48 h of culture, cells from each group were then treated with 5 mL of
annexin V-FITC and 5 mL of PI solutions (E-CK-A211; Elabscience, Houston, TX, USA) at
37 �C for 20 min in the absence of light. Apoptotic cells were counted using a flow
cytometer (BD Biosciences Co. Ltd, Franklin Lakes, NJ, USA).

Enzyme-linked immunosorbent assay (ELISA)
Human estradiol (E2) levels were detected using human estradiol ELISA kit (MM-0777H1;
Jiangsu Meimian Industrial Co., Ltd., Jiangsu, China) according to the instructions of the
manufacturer. The absorbance was measured at 450 nm using a microplate reader.

Statistical analysis
We performed statistical analysis using SPSS 21.0 software (SPSS Inc., Chicago, IL, USA).
Data are expressed as mean ± standard deviation (SD). To assess differences between two
or more groups, we employed an unpaired Student’s t-test or v2-test, and a one-way
analysis of variance, respectively. Tukey’s multiple comparison test was applied when
necessary. Each experiment was conducted with a minimum of three biological replicates,
and statistical significance was defined as p-levels < 0.05.

RESULTS
Expression of CXCL10 in POF
The PCA analysis revealed that the expression of CXCL10 was higher in the POF group
than in the control group (Fig. 1A). Additionally, the violin plot demonstrated a significant
increase in CXCL10 expression levels in the POF group compared to the control group
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(Fig. 1B). ROC curve analysis using PlotROC revealed that CXCL10 had a relatively
accurate diagnostic potential for POF with an AUC value of 1 (Fig. 1C). Overall, these
results indicate that the expression of CXCL10 is dysregulated in POF.

Global regulation of CXCL10 in POF
To understand the global regulation of CXCL10 in POF, we conducted a differential
expression analysis to identify DEGs in the control group of POF using Debylimma.

This analysis revealed 3,362 up-regulated and 3,969 down-regulated DEGs (Fig. 2A,
Table S1). Furthermore, we found 1,304 up-regulated and 1,315 down-regulated DEGs
between the high and low CXCL10 expression groups of POF (Fig. 2B, Table S2).
The overlap of DEGs between the POF-control group and the high- and low-CXCL10
expression groups was determined using PlotVenn, as shown in Fig. 2C. A total of 786
DEGs, uniformly up-regulated or down-regulated, were identified as POF-related genes
dysregulated by CXCL10. These genes were further analyzed using QuadrantPlot (Fig. 2D).

Enrichment analysis
To explore the potential BP and pathways affected by the CXCL10 gene in POF
progression, we conducted GO and KEGG analyses on DEGs using the RunMulti Group
cluster Profiler. GO enrichment analysis revealed significant involvement of these DEGs in
cell chemotaxis, negative regulation of response to DNA damage stimulus, and
diadenosine polyphosphate metabolic processes (Fig. 3A, Table S3). KEGG analysis
showed significant enrichment of these genes in the PPAR signaling pathway, adiponectin
signaling pathway, drug metabolism-cytochrome P450, and metabolism of xenobiotics by
cytochrome P450 (Fig. 3B, Table S3). Gene Set Enrichment Analysis (GSEA) indicated
strong activation of the PPAR signaling pathway in POF (Fig. 3C, FDR = 0.007 and
enrichment score = 0.813). The map generated using RunPathview displayed significant
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Figure 2 Global regulation of Cxcl10 in polycystic ovarian failure (POF). (A) Differentially expressed genes (DEGs) in the POF control group;
(B) Volcano map of the DEGs in the high- and low-expression POF groups. Larger absolute values of logFC indicate greater differences in the
multiple of gene expression between sample groups, while −log10P.adjust indicate the significance of expression differences. The larger the ordinate,
the more significant the difference expression; (C) overlap between DEGs in the POF-control group and the high- and low- CXCL10 expression
group using Plot Venn; (D) CXCL10-dysregulated genes in POF assessed using QuadrantPlot; blue represents DEGs with high expression (logFC >
0) in POF-Control and high expression (logFC > 0) in high- and low-expression of CXCL10. Red represents high expression (logFC > 0) in the
POF-Control and low expression in in high- and low-expression of CXCL10 (logFC < 0). Brown-yellow represents low expression in POF-Control
(logFC < 0) and low expression in CXCL10 (logFC < 0). Dark red represents low expression in POF-Control (logFC < 0) and high to low expression
in CXCL10 (logFC > 0). Full-size DOI: 10.7717/peerj.16659/fig-2
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changes in genes related to the PPAR signaling pathway, including LXRa, ACS, CYP4A1,
ACO, CPT-1, MCAD, POAR, and ADIPO. Among these, ACS was the most upregulated
in POF (Fig. 4, Table S2). These results indicated that CXCL10 activates the PPAR
signaling pathway in POF.
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Diagnostic efficacy of CXCL10-based clinical model
ROC curves for CXCL10-dysregulated genes in POF were analyzed using PlotROC.
RunLASSO performed characteristic gene selection for these genes, identifying three
feature genes, namely Cxc110, Raf1, and ITGA2, with non-zero regression coefficients
(lambda.min = 0.0006). The Lambda diagram (Fig. 5A) illustrates the diagnostic
performance of the CXCL10-based model across different Lambda values, with the best
Lambda at 0.001 and the minimum at 0.0006. The LASSO model diagram (Fig. 5B)
indicates the model’s confidence in predicting POF diagnosis. Finally, the ROC curve
(Fig. 5C) demonstrates that the CXCL10-based model possesses excellent diagnostic
efficiency (AUC = 1) for POF in the training set, serving as a potential diagnostic
biomarker for POF.

Moreover, the expression of the model genes significantly differed between the POF and
control groups. Additional ROC curves (Fig. S1) further support the diagnostic potential of
CXCL10-based model genes. The CXCL10 expression was higher in the case group than in

Figure 4 Changes in the peroxisome proliferator–activated receptor signaling pathway-related genes, including LXRa, ACS, CYP4A1, ACO,
CPT-1, MCAD, POAR, and ADIPO, assessed using RunPathview. Full-size DOI: 10.7717/peerj.16659/fig-4
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the control group, indicating its association with POF. Similarly, lower Itga2 and Raf1
expression in the case group suggests their potential as diagnostic markers for POF
(Fig. 5D).

CXCL10 affects the progression of POF by influencing the PPAR
signaling pathway
To verify the role of CXCL10 in POF, we constructed a DDP-induced KGN cell model of
injury, silencing the expression of CXCL10 in these cells. Firstly, we determined that DDP
at concentrations exceeding 10 mg/mL significantly reduced cell proliferation at both 24
and 48 h (Fig. 6A), indicating that this concentration of DDP can induce KGN cell damage.

Si-CXCL10#2 was chosen for further experiments due to its efficacy in silencing
CXCL10 in KGN cells, as confirmed by RT-qPCR analysis (Fig. 6B). RT-qPCR and WB
analyses revealed increased expression of CXCL10 in the POF cell model group compared

Figure 5 Diagnostic efficacy of the CXCL10-based clinical model. (A) Lambda diagram of the diagnostic efficiency of CXCL10-dysregulated genes
in POF under different lambdas; (B) The LASSO model diagram of the diagnostic efficiency of CXCL10-dysregulated genes in POF under different
log(Lambda); (C) Receiver operating characteristic (ROC) curve of CXCL10-dysregulated genes in POF were analyzed using PlotROC to assess the
CXCL10-based model’s performance. Subsequently, RunLASSO was used to select characteristic genes dysregulated in POF through CXCL10 and
possessing POF diagnostic efficiency; (D) Box plot of the transcriptional expression levels of model genes, including CXCL10, ITGA2, and RAF1.

Full-size DOI: 10.7717/peerj.16659/fig-5
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to the control group. However, CXCL10 expression was significantly reduced in the POF
+Si-CXCL10 group compared to the si-NC group (Figs. 6C and 6D). Estradiol secretion
was significantly inhibited in the KGN cell model of injury after 48 h of culture, but this
inhibition was alleviated upon interference with CXCL10 expression (Fig. 6E). These
findings demonstrated that CXCL10 interference had a protective effect against
DDP-induced granulosa cell damage, preserving granulosa cell function.
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Figure 6 CXCL10 affects the secretion of follicle-stimulating hormone and estradiol in KGN POF
model cells. (A) Assessment of cisplatin concentration needed to induce KGN cell; (B) silencing effi-
ciency of CXCL10 SiRNA in KGN cells assessed using reverse transcription quantitative polymerase
chain reaction (RT-qPCR); (C and D) Expression of CXCL10 in POF cell model before and after CXCL10
silencing assessed using RT-qPCR and Western blot; the concentration of DDP that was finally used was
10 mg/mL for 48 h. (E) Secretion of estradiol (E2) was detected in KGN cells before and after CXCL10
silencing. ��p < 0.01, ���p < 0.001, ����p < 0.0001. Full-size DOI: 10.7717/peerj.16659/fig-6
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Subsequently, we examined the effect of CXCL10 on apoptosis. The results indicated a
substantial increase in the apoptosis rate of KGN cells in the POF group compared to the
control group. However, silencing CXCL10 resulted in significant inhibition of apoptosis
when compared with the si-NC group (Fig. 7A). This was further corroborated by WB
analysis, which revealed that the expressions of pro-apoptotic genes Bax and caspase
increased while the anti-apoptotic gene Bcl-2 decreased in the POF group compared to the
control group. Compared to the Si-NC group, the expressions of Bax and caspase were
decreased in the Si-CXCL10 group, and the expression of Bcl-2 was significantly increased
(Fig. 7B).

In addition, we examined the effect of CXCL10 on the PPAR signaling pathway,
revealing a significant increase in the expressions of PPARβ and ACSL1 in the POF group
compared to the control group. However, CXCL10 silencing led to decreased levels of
PPARβ and ACSL1 compared to the Si-NC group (Fig. 7C), indicating that CXCL10
impacts the PPAR signaling pathway.

DISCUSSION
In this study, we developed a CXCL10-based gene cluster model as a potential diagnostic
biomarker for POF, a multifactorial and heterogeneous disease characterized by
amenorrhea, decreased estrogen levels, and increased female gonadotropin levels
(Komorowska, 2016). The incidence of POF is increasing annually. Furthermore, POF is a
major cause of infertility in women of childbearing age, yet its etiology remains complex
and poorly understood (Bai & Wang, 2022). While POF diagnosis typically relies on a
combination of clinical evaluation, hormone testing, and imaging studies, there is no single
definitive diagnostic marker.

The diagnosis of POF typically involves a combination of clinical evaluation, hormone
testing, and imaging studies. Various tests, such as assessing the levels of FSH, LH,
estradiol, anti-mullerian hormone (AMH), and anti-ovarian antibodies (de Kat,
Broekmans & Lambalk, 2021; Szeliga et al., 2021) can assist in diagnosis. However, genetic
markers for the diagnosis of POF are currently lacking. In our study, we explored CXCL10,
a chemokine involved in inflammatory and immune responses, as a potential diagnostic
marker (Reschke & Gajewski, 2022).

While limited research has explored the role of CXCL10 in POF, our study reveals that
its expression is dysregulated in individuals with this pathology. Dysregulation of CXCL10
implies abnormal expression in patients with POF compared to healthy individuals.
We also demonstrated that CXCL10 is involved in the regulation of progesterone and
estradiol secretion, and the apoptosis of KGN cells in a POF cell model. In addition, we
confirmed the high diagnostic potential of CXCL10 for POF through the AUC value of 1,
which indicates perfect accuracy for diagnosing the condition.

Although these findings suggest a potential association between CXCL10 and POF, the
exact mechanisms behind the contribution of CXCL10 to the development of POF remain
unclear. POF is a complex condition influenced by various genetic, hormonal, and
immune factors (Chapman, Cree & Shelling, 2015; Shamilova et al., 2013) CXCL10
represents just a component of this complex interplay, and further comprehensive research
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Figure 7 CXCL10 affects the apoptosis and the peroxisome proliferator–activated receptor (PPAR) signaling pathway in KGN cell model of
polycystic ovarian failure (POF). (A) Apoptosis of KGN cells following CXCL10 inhibition assessed using flow cytometry; (B) expressions of
caspase, anti-B-cell lymphoma 2 (Bcl-2), and anti-B-cell lymphoma 2 (Bcl-2) detected by Western blot in KGN cells following CXCL10 inhibition;
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is needed to fully understand its significance in POF. In the present study, we
demonstrated that the CXCL10-based model, including CXCL10, ITGA2, and RAF1,
exhibits promise as a potential diagnostic biomarker for POF. ITGA2 encodes the alpha-2
subunit of integrin receptors known for their essential roles in cell adhesion, migration,
signaling, and interaction with the extracellular matrix (Chuang et al., 2018; Ding et al.,
2015). ITGA2 participates in various physiological processes, including platelet function,
immune cell adhesion, and cell signaling.

Dysregulation of ITGA2 contributes to bleeding disorders, cancer metastasis, fibrosis,
and inflammatory conditions (Wu et al., 2014). RAF1 is a gene encoding the Raf-1 protein,
a key component of the MAPK signaling pathway that regulates cellular processes such as
proliferation, differentiation, and survival (Iglesias-Martinez et al., 2023). Mutations or
overactivation of RAF1 can contribute to genetic disorders and cancer (Bekele et al., 2021;
Simanshu, Nissley & McCormick, 2017), highlighting its importance in normal cellular
function and disease development. Although the MAPK signaling pathway plays a crucial
role in POF, the specific function of RAF1 in POF remains unclear (Liu et al., 2021;
Mantawy, Said & Abdel-Aziz, 2019). These genes have yet to be comprehensively
characterized, and collectively, they may provide valuable information for accurately
diagnosing POF when their expression levels are analyzed. In summary, the dysregulation
of CXCL10 is observed in POF, accompanied by DEGs and the activation of the PPAR
signaling pathway. The CXCL10-based model, including other genes such as Itga2 and
Raf1, may serve as a potential diagnostic biomarker for POF. However, these genetic
markers are not present in all cases of POF, and genetic testing may not provide a
conclusive diagnosis for every individual with POF.

The PPAR signaling pathway is a crucial regulatory pathway involved in the control of
various physiological processes, including lipid metabolism, glucose homeostasis,
inflammation, and cell differentiation (Wang, Dougherty & Danner, 2016). The pathway is
controlled by a group of nuclear receptor proteins known as PPARs, which act as
ligand-activated transcription factors. There are three subtypes of PPARs: PPAR-alpha,
-delta ( or beta), and -gamma, each with distinct tissue expression patterns and
physiological roles (Wagner & Wagner, 2020). In the present study, significant changes
were observed in the PPAR signaling pathway-related genes, including LXRa, ACS,
CYP4A1, ACO, CPT-1, MCAD, POAR, and ADIPO, with ACS being the most
upregulated in POF. Studies suggest that the PPAR signaling pathway might play a crucial
role in the progression of POF.

Transcriptome analysis suggests that cyclophosphamide hampers cholesterol
biosynthesis, causing premature ovarian failure. Furthermore, it reveals the importance of
the PPAR signaling pathway and ovarian infertility genes in the progression of POF (Li
et al., 2019). Said et al. (2016) demonstrated that resveratrol enhanced ovarian function by
increasing AMH levels and reducing ovarian inflammation. This was mainly achieved by
upregulating the expression of PPAR-γ and SIRT1, subsequently inhibiting the production
of NF-κB-induced inflammatory cytokines. Ju et al. (2023) demonstrated that reducing the
expression of PPAR-γ modifies the protein expression of the primary target and increases
estrogen levels. In this study, enrichment analysis and Western blot confirmed the
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activation of the PPAR signaling pathway induced by CXCL10 in POF. These findings
suggest that dysregulation of CXCL10 in POF may influence these processes through the
activation of the PPAR signaling pathway. Understanding how CXCL10 and the PPAR
signaling pathway interact in POF can provide valuable insights into the molecular basis of
the condition and potentially lead to the development of targeted therapeutic strategies.

The CXCL10-based gene cluster model for POF may have certain limitations as a
diagnostic biomarker. POF is a complex condition with diverse underlying causes,
including genetic factors, autoimmune disorders, and chemotherapy. The CXCL10-based
gene cluster model might not encompass the full range of genetic and molecular variations
associated with POF, limiting its effectiveness in detecting other causes-induced POF.
Adequate sample sizes of healthy and individuals with POF are essential for accurate
model development and validation. The diagnostic accuracy of a biomarker can vary
among different populations due to genetic and environmental factors. Thus, it is critical to
validate the CXCL10-based gene cluster model across diverse populations. These
limitations are not specific to the CXCL10-based gene cluster model alone but to the
development of any diagnostic biomarker, emphasizing the need for further research,
validation, and collaboration among researchers to enhance diagnostic accuracy and
clinical utility for POF.

CONCLUSION
In summary, the dysregulation of CXCL10, along with associated DEGs and PPAR
signaling pathway activation, is associated with the progression of POF. Subsequently,
combining CXCL10 with other genes such as Itga2 and Raf1, could serve as a potential
diagnostic biomarker for POF. Further research in this area can enhance our
understanding of the mechanisms underlying POF, potentially improving diagnostics and
therapeutic strategies.
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