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ABSTRACT
Anthropogenic activities increase sediment suspended in the water column and
deposition on reefs can be largely dependent on colony morphology. Massive and
plating corals have a high capacity to trap sediments, and active removal mechanisms
can be energetically costly. Branching corals trap less sediment but are more
susceptible to light limitation caused by suspended sediment. Despite deleterious
effects of sediments on corals, few studies have examined the molecular response of
corals with different morphological characteristics to sediment stress. To address this
knowledge gap, this study assessed the transcriptomic responses of branching and
massive corals in Florida and Hawai‘i to varying levels of sediment exposure. Gene
expression analysis revealed a molecular responsiveness to sediments across species
and sites. Differential Gene Expression followed by Gene Ontology (GO) enrichment
analysis identified that branching corals had the largest transcriptomic response to
sediments, in developmental processes and metabolism, while significantly enriched
GO terms were highly variable between massive corals, despite similar morphologies.
Comparison of DEGs within orthogroups revealed that while all corals had DEGs in
response to sediment, there was not a concerted gene set response by morphology or
location. These findings illuminate the species specificity and genetic basis
underlying coral susceptibility to sediments.
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INTRODUCTION
Coral reefs are incredibly diverse marine ecosystems, providing numerous ecological and
economic services such as biodiversity, cultural value, coastal protection, fisheries, and
tourism (Reaka-Kudla, 1997; Sumaila & Cisneros-Montemayor, 2010; Costanza et al.,
2014). Reef-building corals form a critical nutritional symbiotic relationship with
unicellular photosynthetic algal endosymbionts in the family Symbiodiniaceae
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(LaJeunesse et al., 2018). The carbohydrates produced by the algal photosynthesis are
translocated to the coral to be used as its primary energy source, supporting the daily
respiratory carbon demand of tropical corals (Muscatine & Porter, 1977; Muscatine et al.,
1984). This coral-algal symbiosis fuels reef productivity and accretion (Roth, 2014), but is
sensitive to changing environmental conditions that can impact the symbiosis such as
light, nutrients, temperature, pH, and sediment (Hoegh-Guldberg et al., 2007; Davy,
Allemand &Weis, 2012). For example, under exposure to sedimentation, or the downward
fall of sediment from the water column toward the benthos (Schlaefer, Tebbett & Bellwood,
2021), corals display reduced photosynthetic efficiency (Weber, Lott & Fabricius, 2006;
Rushmore, Ross & Fogarty, 2021), increased respiration rates (Riegl & Branch, 1995;
Browne et al., 2014), decreased calcification (Bak, 1978), and rapid consumption of energy
reserves (Sheridan et al., 2014). While sediment transport naturally occurs on reefs,
suspended sediment caused by anthropogenic activities such as dredging, runoff, and
coastal development have increased (Rogers, 1990; Fabricius, 2005; Erftemeijer et al., 2012;
Miller et al., 2016; Cunning et al., 2019).

Deposited sediment and suspended sediment are the two primary ways that sediment
interacts with corals (Rogers, 1990; Fabricius, 2005; Erftemeijer et al., 2012). Deposited
sediment occurs when sediment particles settle directly on the coral surface, making
physical contact with the tissue. Passive removal of sediment includes gravity or flow
removing it from the coral surface (Lasker, 1980; Jones, Fisher & Bessell-Browne, 2019).
In response to deposited sediment, corals can also initiate an acute response to attempt to
move the sediment using active mechanisms. Active sediment removal mechanisms
include ciliary and tentacle movement, increased mucus production, and hydrostatic
inflation (Rogers, 1990; Stafford-Smith & Ormond, 1992; Stafford-Smith, 1993; Bessell-
Browne et al., 2017). However, these active mechanisms are often very energetically costly,
and thus cannot be sustained for long periods of time (Riegl & Branch, 1995; Erftemeijer
et al., 2012). If the sediment deposition rate exceeds the coral’s sediment clearance rate,
sediment will accumulate on the coral, reducing heterotrophic feeding and light
transmission to algal endosymbionts and creating hypoxic conditions near the coral tissue,
which often leads to tissue necrosis and coral mortality (Philipp & Fabricius, 2003;Weber,
Lott & Fabricius, 2006; Weber et al., 2012).

Corals can also, or alternatively, interact with suspended sediment, which occurs when
particles such as clay, silt, and sand are moved into the water column by some natural or
anthropogenic disturbance and remain in the water column for a period of time (Rogers,
1990; Fabricius, 2005; Erftemeijer et al., 2012). Suspended sediment reduces the amount of
light that reaches the coral, impeding the ability of the algal endosymbionts to
photosynthesize and provide the coral host with sufficient energy for metabolism and
growth (Rogers, 1990; Fabricius, 2005; Erftemeijer et al., 2012; Bessell-Browne et al., 2017).
Reduced photosynthetic efficiency can induce corals to switch to heterotrophic feeding, a
much less efficient way to obtain carbon than through its endosymbionts (Muscatine &
Porter, 1977; Anthony & Fabricius, 2000; Houlbrèque & Ferrier-Pagès, 2009). Additionally,
heterotrophic feeding in the presence of sediments may lead the coral to ingest sediment
particles, disrupting its nutritional intake and potentially acting as a vector for harmful
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bacteria and toxins (Erftemeijer et al., 2012; Studivan et al., 2022). Suspended sediment has
also been observed to induce immune responses and increase disease prevalence in corals
(Pollock et al., 2014; Sheridan et al., 2014).

In addition to sediment type, the morphology of the coral can modulate its interaction
with sediments. For example, massive, plating, and encrusting corals have a higher planar
surface area and thus higher capacity to trap sediments in comparison to branching corals
with high three-dimensional and more vertical structure. Sediment removal from massive
corals often requires active removal mechanisms (Dallmeyer, Porter & Smith, 1982; Rogers,
1990; Stafford-Smith, 1993). However, massive corals may also be more resilient to high
suspended sediment concentrations because their greater surface area allows for increased
opportunities to capture light, maximizing the photosynthetic efficiency of their algal
endosymbionts (Fabricius, 2005; Erftemeijer et al., 2012). In contrast, the relatively small
surface area and vertical branches of branching coral species means sediment is minimally
trapped and can be more easily removed by gravity or currents (Lasker, 1980; Rogers, 1983;
Stafford-Smith, 1993). Branching coral species typically have faster clearance rates than
non-branching species, and active removal mechanisms are required less frequently,
allowing branching corals to devote that energy towards other functions such as
reproduction and growth (Stafford-Smith, 1993; Jones, Fisher & Bessell-Browne, 2019).
Collectively, these studies support that morphology plays a role in response to sediment
stress.

While most research has focused primarily on physiological responses to sediment
stress, there is a small but growing body of work on gene expression of corals exposed to
sediment stress. Early microarray studies found that the upregulation of heat shock
proteins (HSPs) occurred in response to sediment stress (Wiens et al., 2000; Hashimoto
et al., 2004). As a generalized stress response protein, HSPs have also been implicated in
coral response to other stressors, such as deoxygenation, temperature and ocean
acidification (DeSalvo et al., 2008; DeSalvo et al., 2010; Kaniewska et al., 2012; Alderdice
et al., 2022). Another general response to sediment stress is upregulation of biomarkers of
oxidative stress (Morgan, Edge & Snell, 2005), more specifically, thioredoxin, a protein that
modulates redox and cell-to-cell signaling (Tomanek, 2015). A potentially more specific
gene responding to sediment stress is indicated by the differential expression of urokinase
plasminogen activator surface receptor (uPAR) transcripts in the coral Diploria strigosa
along a sedimentation/pollution gradient in Castle Harbor, Bermuda (Morgan, Edge &
Snell, 2005). uPAR is associated with proteolysis, wound healing and inflammation, and is
hypothesized to contribute to coral tissue remodeling in response to elevated levels of
sedimentation (Morgan, Edge & Snell, 2005). Genes related to immunity, as well as energy
metabolism, were also implicated in the transcriptomic response to sediment stress in
corals from two locations, Singapore (Goniastrea pectinata and Mycedium elephantotus)
and Eilat, Israel (G. pectinata only) using RNASeq (Bollati et al., 2021). While there were
some methodological differences between their experiments, shared mechanisms were
identified across different species and populations, demonstrating a conserved response to
sediment stress across species and sediment types. However, the corals evaluated in that
study, G. pectinata and M. elephantotus, both have similar morphological characteristics
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(massive and encrusting), indicating that this response may only be relevant to massive
and encrusting corals (Bollati et al., 2021).

While these initial molecular analyses have provided important insights into the coral
transcriptomic response to sediment stress, less is known about shared molecular
responses by morphology and location/sediment type. To this end, our study aims to fill
these knowledge gaps by examining gene expression across different coral morphologies
and the use of multiple locations/types of sediment. Here we quantified the transcriptomic
responses of corals with different colony morphologies in response to different types of
sediment stress. Floridian corals (Acropora cervicornis, Montastraea cavernosa and
Orbicella faveolata) were exposed to sterilized white carbonate sediment for 18 days,
whereas Hawaiian corals (Montipora capitata, Pocillopora acuta (formerly Pocillopora
damicornis) and Porites lobata) were exposed to unsterilized terrigenous red soil for up to
7 days. In this study, A. cervicornis and P. acuta were categorized as branching corals, while
M. cavernosa, O. faveolata and P. lobata were categorized as massive corals.
The morphology of M. capitata was considered as intermediate between branching and
plating, as M. capitata tends to form plates growing horizontally with branches sprouting
upward (Veron, 2002). The methodological differences prevent us from making direct
statistical comparisons between the experiments. However, it is still relevant to highlight
general biological processes and mechanisms related to sediment stress responses across
morphology and location.

METHODS
To characterize a broad range of responses to different kinds of sediment stress, two
independent experiments were performed in Florida and Hawai‘i; the separate
experiments will be referred to as either Florida or Hawai‘i throughout the text (Fig. 1).
In the first experiment, Hawaiian corals were exposed to live terrigenous red soil for up to
7 days. In the other experiment, Floridian corals were exposed to sterilized coral rubble
sediment for 18 days. We acknowledge that differences in experimental sediment regimes
do not allow for direct statistical comparisons between these two experiments at all levels.
However, qualitatively examining the patterns found in response to sediment across two
experiments and in orthogroups across taxa in response to sediment provides the unique
opportunity to describe these findings and test for shared transcriptomic patterns in
response to sediment stress. Portions of this text were previously published as part of a
preprint (Ashey et al., 2023; https://www.biorxiv.org/content/10.1101/2023.01.30.
526279v1.full).

Collections and exposures

Hawai‘i
All coral collections were obtained under Hawai‘i SAP permit (SAP 2015-48). Montipora
capitata, Porites lobata and Pocillopora acuta adult corals were collected in early June 2015
from Kāne‘ohe Bay, O‘ahu, Hawai‘i (21�25′59.1″N 157�47′11.1″W). One fragment was
collected per colony, and fragments were acclimated to tank conditions for 1 week post
collection. Following acclimation, 12 fragments per species were placed in six 60-L
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flow-through outdoor tanks (two replicate tanks per treatment and two replicate fragments
per tank for n = 4 samples per treatment, exceptM. capitata where n = 3) at the Point Lab
of the Hawai‘i Institute of Marine Biology (HIMB). Corals in Hawai‘i have become
increasingly exposed to sedimentation, agricultural runoff, and pollution that contains
organic material (Pastorok & Bilyard, 1985; Hunter & Evans, 1995; Ogston & Field, 2010;
Weber et al., 2012; Abaya et al., 2018), and the increased prevalence of organic matter in
sediment and outflows can negatively affect corals (Hodgson, 1990; Weber, Lott &
Fabricius, 2006;Weber et al., 2012; Loiola, Oliveira & Kikuchi, 2013). Given the prevalence
of organic matter in sediment in Hawai‘i, fragments were exposed to sediment originating
from a live terrigenous Hawaiian red soil collected from the highest elevation point on
Moku O Lo‘e (Coconut Island). The total suspended sediment (TSS) concentration was
determined by the technique described in Cortés & Risk (1985). The unfiltered unsterilized
terrigenous red dirt was mixed with fresh water to mimic the sediment moved during a
storm and extract the silt and clay (<60 micron) used in the experiment as in Bahr et al.
(2020). Particles were filtered through mesh sieves to remove debris and produce the final
silt-clay mixture. Sediment was added from a concentrated stock at day 0 and again at day
4 to reach a low and a high total suspended sediment (TSS) concentration, immediately

Figure 1 Experimental design for Florida (A–C) and Hawai’i (D–F) experiments. (A) Species used and their morphologies in parentheses for
Florida study: Acropora cervicornis (branching morphology), Montastrea cavernosa (massive morphology) and Orbicella faveolata (massive mor-
phology). (B) Illustration of timeline and sediment treatments. (C) Experimental tanks from the Florida experiment (image by Francois Seneca). (D)
Species used and their morphologies in parentheses for Hawai’i study:Montipora capitata (intermediate morphology), Pocillopora acuta (branching
morphology) and Porites lobata (massive morphology) (E) Illustration of timeline and sediment treatments. (F) Experimental tanks from the Hawai’i
experiment (image by Francois Seneca). Images of coral species were obtained from Corals of the World (Veron et al., 2016a, 2016b, 2016c, 2016d,
2016e, 2016f) (C) Corals of the World. Full-size DOI: 10.7717/peerj.16654/fig-1
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following addition. To test the efficacy of our additions, triplicate samples were taken from
the experimental tanks following sediment dosing to measure the sediment load.
The sediment samples were filtered and oven dried on Whatman paper, and the sediment
weight measured with a precision scale at 150 ± 73 and 235 ± 63 mg/L, respectively
(Philipp & Fabricius, 2003; Browne et al., 2014). Powerheads (Eheim Universal 300 L/h)
were placed at the bottom of each tank to ensure water motion. Seawater was pumped
directly from the lagoon in front of the Point Lab and was filtered through a sand filter to
remove sediment before being distributed to the experiment tanks at a flow-through rate of
12 L/h. The temperature exposure was the natural profile of the lagoon water by HIMB
during the time of the experiment (Station 51207; NOAA Buoy in Kāne‘ohe Bay, Hawai‘i;
Fig. S1A). Salinity and total pH fluctuated between 34–35 psu and 7.90–8.01 during the
experimental period, following the water conditions of the lagoon (MPCO2 Mooring
Kāne‘ohe, NOAA Buoy). The irradiance within the 60-liter experimental tanks was
reduced by 30% with shade cloth to obtain a maximal daylight value fluctuating
approximately between 60–90 lux, measured with a HOBO pendant data logger (HOBO
Pendant Temp/Light 64 K logger) placed at the bottom of the tanks. Tanks received
natural day/night light cycles. The coral fragments were not fed in this experiment. Coral
fragments (n = 4 replicate fragments per species), two from each of the two tanks, in each
of the three treatments were exposed (except M. capitata where n = 3) and were collected
and preserved in liquid nitrogen at day 4 (24 samples on June 12, 2015), and day 7
(24 samples on June 15, 2015) of the exposure. Samples were then stored at −80 �C until
extraction.

Florida
Adult Acropora cervicornis, Montastraea cavernosa, and Orbicella faveolata colonies were
collected from the Key West nursery of the Florida Keys National Marine Sanctuary on
March 23, 2016 under NOAA National Marine Sanctuaries Permit #FKNMS-2015-016
and #FKNMS-2016-017. On March 28, 2016, coral colonies were transported from Key
West to Fort Pierce in bins filled with aerated seawater and placed in acclimatation tanks at
the Smithsonian Marine Station (Fort Pierce, FL, USA) prior to the start of the experiment.
After acclimation, 15 fragments per species were placed in fifteen 12-L static outdoor tanks
(three replicate tanks per treatment and 1 fragment per tank for n = 3 samples per
treatment). The water source was oceanic water and had a consistent salinity of 35 psu.
The experimental tanks were static, and reverse osmosis water was added daily to maintain
the salinity. Tanks were submerged in recirculating water baths to keep them at a constant
temperature of 28 �C. pH was not recorded during the experiment. Corals in Florida are
subject to an increased number of sedimentation events, in particular through dredging
and coastal development (Barnes et al., 2015;Miller et al., 2016; Cunning et al., 2019); these
activities disturb bottom/seafloor sediments, which reduces light availability and can
smother corals, leading to a multitude of adverse effects (Erftemeijer et al., 2012; Jones
et al., 2016). Given the increased prevalence of dredging and coastal development in
Florida, coral fragments were exposed to sterilized carbonate sand sediment intended to
mimic dredging and development activities. Sediment was collected from Key Largo
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(25�08′22.0″N 80�23′37.6″W) and was filtered through a 63 micron sieve to remove debris
and obtain a fine grain mixture. Sediment was then run through active carbon filters for a
week in seawater to reduce chemical pollution. Sterilization of the sediment stock was
performed using an autoclave program for liquid (20 min at 121 �C and 2.1 bar). Despite
being sterilized, the sediment still had the capacity to induce adverse effects in corals.
Previous studies have found that sterilized sediment can deplete energy reserves, induce
immune responses, and decrease photosynthetic capabilities (Browne et al., 2014; Junjie
et al., 2014; Sheridan et al., 2014). Thus, it is likely that the sterilized sediment stressor used
in the Florida experiment induced an ecologically relevant response. The total suspended
sediment (TSS) concentration was determined by the technique described in Bahr et al.
(2020). On the first day of exposure (May 23, 2016), sediment was added from the sterilized
concentrated stock (458 g/L). Sediment was added again on May 25, 27, and 30 to mimic
repeat dredging activities. There were five total suspended sediment (TSS) 0, 30, 100, 300,
1,000 mg/L targets (Rogers, 1979; Junjie et al., 2014). To approximately obtain these TSS
concentrations, 1, 3, 10, and 30 mL of stock was added to each 12-L treatment tank.
Powerheads (Eheim Universal 300 L/h) were placed at the bottom of each tank to ensure
water motion. Tanks received natural day/night cycles and were under 50% reduction
shade, measured with a HOBO pendant data logger (HOBO Pendant Temp/Light 64 K
logger) placed at the bottom of the tanks. The coral fragments were not fed in this
experiment. On June 9, coral fragments from all tanks were collected and frozen in liquid
nitrogen. Samples were then stored at −80 �C until extraction.

RNA extraction
Prior to RNA extraction, frozen coral samples were crushed with a manual hydraulic press
(12 tons pressure) and a metal mortar and pestle chilled with liquid nitrogen.
Approximately 100 mg of frozen coral powder was used in the RNA extractions starting
with 1 mL of TRIzolTM Reagent (Invitrogen, Waltham, MA, USA) and 100 uL of 0.1 mm
ceramic beads in 2.0 mL tubes. Coral tissues were lysed with two rounds of 20 s at
6,500 bpm on a tissue homogenizer (FastPrep), and a rest on ice of 30 s in between rounds.
Tissue slurries were then incubated on ice for 5 min. After a brief spin down to gather
liquid at the bottom of the tube, 300 uL of molecular grade chloroform was added to the
slurry. Tubes were hand shaken for 15 s and rested for 3 min on ice. Phase separation was
obtained by centrifugation at 12 xg for 15 min at 4 �C. Top aqueous phase containing RNA
was transferred to new 1.5 mL tubes and mixed again with 200 uL of chloroform.
The previous three steps were repeated. An equal volume of chilled 70% molecular grade
ethanol was added to the RNA in solution. From this point, the Direct-zolTM RNA
MiniPrep (Zymo Research; Cat# R2070, Orange, CA, USA) protocol with DNase
treatment was followed. Total RNAs were eluted in DEPC-treated water and quantified
using the Qubit fluorometer. RNA quality was assessed using a NanoDrop
spectrophotometer in addition to a visual check for degradation via a 1% agarose TAE gel.
Samples with at least 9 ug/uL of RNA were sent for sequencing.
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RNA sequencing
RNA samples were diluted to accommodate for library production starting with 100 ng of
total RNA. Samples were then loaded onto Neoprep cards and processed following the
TruSeq stranded mRNA Library Prep for NeoPrep kit (Document # 15049725 v03;
Illumina, San Diego, CA, USA) protocol. Quality controlled libraries were then sequenced
through HiSeq 50 cycle single read sequencing v4 by the High Throughput Genomics Core
Facility at the University of Utah.

Bioinformatic analysis
Workflows and data are located at https://github.com/JillAshey/SedimentStress. Quality
checks of raw and trimmed reads were performed using FASTQC (v0.11.8, Java-1.8;
Andrews, 2010) and MultiQC (v1.7, Python-2.7.15; Ewels et al., 2016). Reads that did not
pass quality control were trimmed with Trimmomatic (v0.30, Java-1.8; Bolger, Lohse &
Usadel, 2014). Genomes, protein sequences, and transcript sequences were obtained from
the following locations: Acropora cervicornis (Baums Lab, v1.0_171209; https://usegalaxy.
org/u/skitch/h/acervicornis-genome); Montastraea cavernosa (Matz Lab, July 2018
version; https://matzlab.weebly.com/data–code.html); Montipora capitata (http://
cyanophora.rutgers.edu/montipora/; Version 2, Stephens et al., 2021); Orbicella faveolata
(NCBI, assembly accession GCF_002042975.1; Prada et al., 2016); Pocillopora acuta
(http://cyanophora.rutgers.edu/Pocillopora_acuta/; Version 1, (Stephens et al., 2021);
Porites lutea (used to analyze P. lobata data in current study; http://plut.reefgenomics.org/
download/; Version 1.1, Robbins et al., 2019). We have archived all references used for this
analysis at https://osf.io/8qn6c/ (DOI 10.17605/OSF.IO/8QN6C) to enable reproducible
analyses for this project. After trimming, reads were mapped to their respective genomes
using STAR (v2.5.3; Dobin et al., 2013). The aligned read files from STAR (BAM file
format) were assembled to the references and count data were generated using StringTie
(v2.1.1-GCCcore-7.3.0; Pertea et al., 2015). Assembly quality was assessed with gffcompare
(v0.11.5; Pertea & Pertea, 2020). The StringTie prepDE python (v2.7.15; Pertea et al., 2015)
script was used to generate a gene count matrix.

To generate current gene ontology information for all species, functional annotation
was performed on all genomes using the following workflow (https://github.com/
JillAshey/FunctionalAnnotation). First, protein sequences from each species were
identified using BLAST (blastp; v2.11.0; Altschul et al., 1990) against NCBI’s nr database
(1e-5 e-value; database accessed and updated on Oct. 12, 2021) and the Swissport database
(1e-5 e-value; database accessed and updated on Oct. 22, 2021; Bairoch & Apweiler, 1997).
The XML files generated from the BLAST output were then used as input for BLAST2GO
(v.5.2.5) to generate gene ontology (GO) terms (Götz et al., 2008). Protein sequences were
also used as input to InterProScan (v5.46–81.0; Java v11.0.2), which identified homologous
sequences and assigned GO terms (Jones et al., 2014). Using BLAST2GO, the XML file
generated from InterProScan was merged with the nr and Swissprot BLAST2GO output,
creating final functional annotation tables, which were saved in csv format (https://osf.io/
8qn6c/).
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Gene expression and ontology analysis
All gene expression and ontology analyses were done in RStudio (v1.3.959) using v4.0.2 of
R. First, genes were filtered using genefilter’s (v1.70.0; Gentleman et al., 2021) pOverA
function; genes were retained for expression analysis only if counts were greater than or
equal to 5 in at least 85% of the samples, which minimizes differential expression results
from low count genes with lower confidence. Because different samples may have been
sequenced to different depths, size factors were calculated as the standard median ratio of a
sample over a ‘pseudosample’ (for each gene, the geometric mean of all samples; Anders &
Huber, 2010; Love, Huber & Anders, 2014). After confirming size factors were estimated to
be less than 4, filtered gene counts were normalized using DESeq’s (v1.28.1) vst function
(Love, Huber & Anders, 2014). Treatment was set as a factor; in the HI experiment, Time
(Day 4 and Day 7) was not significant as a factor and so corals sampled on different days
were combined by treatment for further analysis. Differential gene expression was assessed
using the DESeq function with the Wald likelihood test ratio (p-adjusted < 0.05; Love,
Huber & Anders, 2014). PCA plots with differentially expressed genes were generated using
the plotPCA function (Love, Huber & Anders, 2014). To estimate the power to detect a
range of effect sizes (1.25, 1.5, 1.75, and 2), the R package RNASeqPower (v1.38.0; Hart
et al., 2013). Depth of sequencing was calculated using the formula derived from Sims et al.
(2014) as LN/G, where L is read length, N is the average number of reads and G is the
transcriptome length. The power analysis using the filtered gene datasets (Table S1)
indicates the power to detect an effect was similar across the six species (effects size
standard error of the mean ranged from 0.012 to 0.06 across the range of effect sizes
tested).

Gene ontology analysis was completed with GOSeq (v1.40.0; Young et al., 2010), which
corrects for the higher-confidence in differential expression as a function of gene length as
follows: Genes that passed the pOverA filter and were marked as differentially expressed
genes by DESeq above were used to calculate the probability weighting function using
function nullp with the bias data being gene length (Young et al., 2010). To identify
category enrichment amongst differentially expressed genes, the goseq function was
performed with the Wald method (Young et al., 2010). Significantly enriched GO terms
from each of the biological processes (BP), molecular functions (MF), or cellular
components (CC) ontologies were denoted as those with an over-represented p-value <
0.05. BP GO term analysis is presented here; CC andMF GO term analyses can be found in
the Supplemental Material (See Figs. S2–S7). GO term information was organized under
their parent GO slim terms (obtained from http://www.informatics.jax.org/gotools/data/
input/map2MGIslim.txt; accessed on April 4, 2021) for qualitative comparison across
species. Overlap of GO terms between species was compared and visualized using
ComplexUpset’s (v1.3.3; Lex et al., 2014) upset function.

Orthology analysis
To test for functional similarities in response to sediment stress across taxa, all species were
characterized into orthogroups using OrthoFinder (v2.3.3) with dependencies Diamond
(v0.9.22), MCL (v14.137), FastME (v2.1.6.1) and BLAST+ (v2.8.1) and default parameters
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(Emms & Kelly, 2015, 2019). Orthogroups were filtered to those common in all species.
The differentially expressed genes (DEGs) in the orthogroups for each species were
identified using the DESeq2 results. Commonality in functional orthogroups containing
DEGs were compared between species and visualized using ComplexUpset’s (v1.3.3; Lex
et al., 2014) upset function.

RESULTS
Read sequencing and quality
Sequencing of 77 samples (n = 11–15 per species; Table 1) yielded a total of 1,173,800,658
raw reads with an average of 15,244,164 ± 3,285,387 raw reads per sample (Table S2).
Quality filtering and trimming removed an average of 140,560 ± 119,359 reads per sample,
leaving an average of 15,103,605 ± 3,290,800 cleaned reads per sample for analysis
(Table S2). Reads were aligned to the species-specific genome, and alignment rates ranged
from an average of 50.18% in M. cavernosa to an average of 70.62% in A. cervicornis
(Table 1; Table S2).

Gene expression
For Florida species, A. cervicornis had 215 unique differentially expressed genes (DEGs),
M. cavernosa had 62 DEGs, and O. faveolata had 8 DEGs between ambient and sediment
exposure treatments (Table 2; Table S3). Among these, 67 genes in A. cervicornis, 19 in
M. cavernosa, and 0 in O. faveolata were upregulated (Log Fold Change, LFC > 0,
padj < 0.05), while 154 genes in A. cervicornis, 44 in M. cavernosa, and 8 in O. faveolata
were downregulated (LFC < 0, padj < 0.05; Table 2; Table S3). In PCA plots of all genes for
Hawaiian species, ‘Days’ was not visually separated from ‘Treatment’; therefore, ‘Days’ was
dropped as an independent variable in further analyses. For Hawaiian coral species, when
comparing ambient and sediment exposure treatments, M. capitata had 157, P. acuta had
263, and P. lobata has 153 unique DEGs (Table 2; Table S3). 79 genes inM. capitata, 129 in
P. acuta and 32 in P. lobata were upregulated (LFC > 0, padj < 0.05), while 78 genes in
M. capitata, 135 in P. acuta and 128 in P. lobata were downregulated (LFC < 0, padj < 0.05;
Table 2; Table S3). Interestingly, there were more downregulated DEGs than upregulated
in all species examined, with the exception of M. capitata. It is possible that the lower
numbers of DEGs in the Florida coral group was due, in part, to a level of acclimation to

Table 1 Summary of read sequencing, quality and alignment by species. See Table S1 for more details.

Species Location # of samples Avg. raw reads Avg. clean reads Avg. # of reads removed Avg. % of reads mapped

A. cervicornis Florida 13 16,630,621 16,499,909 130,712 70.62

M. cavernosa Florida 15 15,921,959 15,740,195 181,765 50.18

O. faveolata Florida 14 14,111,857 13,905,076 206,781 65.54

M. capitata Hawai‘i 11 16,360,670 16,280,212 80,459 63.75

P. acuta Hawai‘i 12 14,441,259 14,359,654 81,605 68.94

P. lobata Hawai‘i 12 13,995,393 13,858,883 136,510 52.83
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the sediment stress, as the Florida experiment was longer (18 days) than the Hawai‘i
experiment (up to 7 days).

PCA of the DEGs for each species showed that all sediment treatments clustered away
from the control on the PC1 axis (PC1 variance explained was 51% for A. cervicornis, 46%
forM. cavernosa, 51% for O. faveolata, 79% forM. capitata, 64% for P. acuta, and 50% for
P. lobata), supporting a concerted gene expression response to sediment stress across taxa
(Figs. 2A–2F). There was slight separation between the mid and high treatments on the
PC2 axis for both P. acuta and P. lobata, indicating differential responses to sediment
concentration (PC2 variance explained was 13% for P. acuta and 22% for P. lobata; Figs.
2E and 2F).

Gene ontology
Significantly enriched gene ontology (GO) terms were identified in the DEGs of the species
in the present study. In the Florida experiment, corals exposed to sterilized carbonate
sediment for 18 days resulted in 278 unique GO terms assigned to A. cervicornisDEGs, 158
to M. cavernosa DEGs, and 27 to O. faveolata DEGs (Table 2; Table S2). A. cervicornis
shared GO terms related to developmental processes and signal transduction with both
M. cavernosa and O. faveolata (Table 3; Fig. 3; Table S4). Specifically, ovarian cumulus
expansion (GO:0001550), positive regulation of skeletal muscle tissue development (GO:
0048643) and regulation of Rho protein signal transduction (GO:0035023) were shared
between A. cervicornis and M. cavernosa, while chondrocyte development (GO:0002063)
and positive regulation of signal transduction (GO:0009967) were shared between
A. cervicornis and O. faveolata (Table 3; Fig. 3; Table S4). Despite similar morphologies,
M. cavernosa and O. faveolata did not share any GO terms.

In the Hawaiian coral species that were exposed to unsterilized red terrigenous sediment
for up to 7 days, 237, 380, and 198 GO terms were assigned to M. capitata, P. acuta, and
P. lobataDEGs, respectively (Table 2; Table S2). Grouping by GO slim term, we found that
GO enrichment occurred in functions related to developmental processes, protein
metabolism, cell organization and biogenesis, signal transduction, and stress response,
among others (Table 3; Fig. 3; Table S4). Only one shared GO term was found in all three

Table 2 Summary of differentially expressed genes (DEGs), gene ontology (GO) terms and orthogroups by species. See Tables S2–S5 for more
details.

Species Loca-
tion

Morpholo-
gy

Unique
DEGs

Up-
regulated
DEGs

Down-
regulated
DEGs

Unique GO terms
assigned to DEGs

Orthogroups
containing DEGs

DEGs in
orthog-roups

A.cervicornis Florida Branching 215 67 154 278 102 119

M. cavernosa Florida Massive 62 19 44 158 28 31

O. faveolata Florida Massive 8 0 8 27 2 2

M. capitata Hawai‘i Intermediate 157 79 78 237 80 87

P. acuta Hawai‘i Branching 263 129 135 380 100 123

P. lobata Hawai‘i Massive 153 32 128 198 56 66
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ofM. capitata, P. acuta, and P. lobata, namely microtubule-based processes (GO:0007017;
Table 3; Fig. 3; Table S4). M. capitata and P. acuta, both of which were branching corals,
shared 20 GO terms, primarily relating to developmental processes and signal transduction
(Table 3; Fig. 3; Table S4). This was the largest number of GO terms shared between
species. P. acuta and P. lobata shared functional responses related to cell organization and
biogenesis, cell-cell signaling, and developmental processes. Developmental processes
included five shared GO terms, specifically embryonic axis specifications (GO:0000578),
embryonic organ development (GO:0048568), eye development (GO:0001654), neural
crest cell fate specification (GO:0014036), and neural plate anterior/posterior
regionalization (GO:0021999). P. acuta had the most GO terms identified across both
experiments (Table 3; Fig. 3; Table S4). Aside from the microtubule-based process,
M. capitata and P. lobata did not share other GO terms.

There was overlap of GO terms between location and morphology (Table 3; Figs. 4
and 5).M. capitata was present in all in common three-way interactions; it shared positive
regulation of skeletal muscle tissue development (GO:0048643) with M. cavernosa and

Figure 2 Principal component analysis (PCA) of differentially expressed genes in (A) A. cervicornis, (B) M. cavernosa, (C) O. faveolata,
(D) M. capitata, (E) P. acuta, and (F) P. lobata. Full-size DOI: 10.7717/peerj.16654/fig-2
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Table 3 Shared Biological Processes gene ontology (GO) terms between species. See Tables S2 & S3 for more details.

Species # of shared
GO terms

GO slim category GO term

A. cervicornis +
M. cavernosa +M. capitata

1 Developmental processes Positive regulation of skeletal muscle tissue development (GO:
0048643)

M. capitata + M. cavernosa
+ P. acuta

1 Transport Riboflavin transport (GO:0032218)

M. capitata + P. acuta +
P. lobata

1 Other biological processes Microtubule-based process (GO:0007017)

A. cervicornis +
M. cavernosa

Cell-cell signaling & transport Regulation of neurotransmitter uptake (GO:0051580)

Developmental processes Ovarian cumulus expansion (GO:0001550)

Other metabolic processes Diadenosine tetraphosphate biosynthetic process (GO:0015966)

Signal transduction Regulation of Rho protein signal transduction (GO:0035023)

No GO slim category identified Negative regulation of chondrocyte proliferation (GO:1902731)

11 Positive regulation of cell junction assembly (GO:1901890)

Negative regulation of histone H4-K16 acetylation (GO:2000619)

Plasma membrane raft assembly (GO:0044854)

Cellular response to exogenous dsRNA (GO:0071360)

Cellular response to platelet-derived growth factor stimulus (GO:
0036120)

Positive regulation of extrinsic apoptotic signaling pathway via
death domain receptors (GO:1902043)

A. cervicornis + O. faveolata 2 Developmental processes Chondrocyte development (GO:0002063)

Signal transduction Positive regulation of signal transduction (GO:0009967)

A. cervicornis + M. capitata 1 No GO slim category identified positive regulation of adipose tissue development (GO:1904179)

A. cervicornis + P. acuta 5 Other biological processes Maintenance of gastrointestinal epithelium (GO:0030277)

Signal transduction Wnt receptor signaling pathway (GO:0016055)

Protein metabolism Mo-molybdopterin cofactor biosynthetic process (GO:0006777)

Stress response Cellular response to starvation (GO:0009267)

No GO slim category identified Mesenchymal stem cell maintenance involved in nephron
morphogenesis (GO:0072038)

A. cervicornis + P. lobata 3 RNA metabolism Positive regulation of transcription by RNA polymerase II (GO:
0045944)

DNA methylation-dependent heterochromatin assembly (GO:
0006346)

Cell organization and biogenesis DNA methylation-dependent heterochromatin assembly (GO:
0006346)

M. capitata + M. cavernosa 4 Cell organization and biogenesis Positive regulation of neuron projection development (GO:
0010976)

Developmental processes Positive regulation of neuron projection development (GO:
0010976)

Retina development in camera-type eye (GO:0060041)

Other biological processes Negative regulation of mitochondrial membrane potential (GO:
0010917)

No GO slim category identified Ventricular compact myocardium morphogenesis (GO:0003223)

(Continued)
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Table 3 (continued)

Species # of shared
GO terms

GO slim category GO term

M. capitata + P. acuta 20 Cell adhesion Heterophilic cell adhesion (GO:0007157)

Developmental processes Embryonic hindlimb morphogenesis (GO:0035116)

Positive regulation of osteoclast differentiation (GO:0045672)

Other biological processes Positive regulation of bone resorption (GO:0045780)

Positive regulation of cellular pH reduction (GO:0032849)

Oxidation reduction (GO:0055114)

Response to activity (GO:0014823)

Response to glucagon stimulus (GO:0033762)

Response to pH (GO:0009268)

RNA metabolism Positive regulation of transcription factor activity (GO:0051091)

Signal transduction Blue light signaling pathway (GO:0009785)

Stress response Response to pain (GO:0048265)

Transport Carbon dioxide transport (GO:0015670)

Secretion (GO:0046903)

No GO slim category identified Angiotensin-activated signaling pathway (GO:0038166)

Cellular response to retinoic acid (GO:0071300)

Positive regulation of dipeptide transmembrane transport (GO:
2001150)

Positive regulation of mitochondrial membrane permeability (GO:
0035794)

Negative regulation of glucocorticoid secretion (GO:2000850)

Regulation of chloride transport (GO:2001225)

M. cavernosa + P. acuta 2 Developmental processes Ectoderm development (GO:0007398)

No GO slim category identified Anterior head development (GO:0097065)

M. cavernosa + P. lobata 3 Developmental processes Somatic muscle development (GO:0007525)

No GO slim category identified Regulation of cell junction assembly (GO:1901888)

Regulation of protein serine/threonine kinase activity (GO:
0071900)

O. faveolata + P. acuta 1 Other biological processes Response to stimulus (GO:0050896)

P. acuta + P. lobata 11 Cell-cell signaling SPEMANN organizer formation (GO:0060061)

Cell organization and biogenesis Neural crest cell fate specification (GO:0014036)

Developmental processes Embryonic axis specification (GO:0000578)

Embryonic organ development (GO:0048568)

Eye development (GO:0001654)

Neural crest cell fate specification (GO:0014036)

Neural plate anterior/posterior regionalization (GO:0021999)

Other biological processes Regulation of circadian rhythm (GO:0042752)

No GO slim category identified Canonical Wnt signaling pathway involved in neural crest cell
differentiation (GO:0044335)

Cellular hypotonic response (GO:0071476)

Endocardial cushion development (GO:0003197)

Negative regulation of cardiac cell fate specification (GO:2000044)
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A. cervicornis, riboflavin transport (GO:0032218) with M. cavernosa and P. acuta,
and microtubule-based process (GO:0007017) with P. acuta and P. lobata.M. capitata and
M. cavernosa also shared three GO terms related to developmental processes (positive
regulation of neuron projection development (GO:0010976) and retina development in
camera-type eye (GO:0060041; Table 3; Table S4). Among others, M. cavernosa from the
FL experiment, shared GO terms relating to ectoderm development (GO:0007398) and
regulation of protein serine/threonine kinase activity (GO:0071900) with P. acuta and
P. lobata, respectively. A. cervicornis and P. acuta, both branching corals, shared 11 GO
terms, including Mo-molybdopterin cofactor biosynthetic process (GO:0006777) andWnt

Table 3 (continued)

Species # of shared
GO terms

GO slim category GO term

A. cervicornis 256 See Tables S2 and S3

M. capitata 209 See Tables S2 and S3

M. cavernosa 136 See Tables S2 and S3

O. faveolata 24 See Tables S2 and S3

P. acuta 339 See Tables S2 and S3

P. lobata 181 See Tables S2 and S3

Figure 3 UpSet plot of biological process GO terms across species. UpSet plot of the intersection of biological process GO terms across location
(green bar or circle = Florida; orange bar or circle = Hawai»i) and morphology (blue stripe = branching; gray stripe = intermediate; yellow
stripe = massive). Full-size DOI: 10.7717/peerj.16654/fig-3
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receptor signaling pathway (GO:0016055). With the exception of O. faveolata, the massive
corals, M. cavernosa and P. lobata, shared GO terms relating to regulation of cell junction
assembly (GO:1901888), regulation of protein serine/threonine kinase activity (GO:
0071900), and somatic muscle development (GO:0007525). In total, more significantly
enriched GO terms were identified at HI and in the branching corals (Figs. 4 and 5).

Orthogroups
In total, 21,688 total orthogroups were identified and 9,216 were common to all species.
Amongst the Florida species, common orthogroups contained 119 DEGs from
A. cervicornis, 31 fromM. cavernosa, and two from O. faveolata (Table 2; Table S5). In the
Hawai‘i species, common orthogroups included 87 DEGs from M. capitata, 123 from
P. acuta, and 66 from P. lobata (Table 2; Table S5).

Similarly to GO terms, there was overlap in orthogroups between species. There was one
4-way interaction, in which A. cervicornis, M. capitata, P. acuta, and P. lobata shared two
orthogroups (Fig. 6; Table S5). A. cervicornis and P. acuta shared 3 orthogroups, the most
orthogroups shared between a set of species (Fig. 6; Table S6). Although there may not

Figure 4 Counts of biological process GO terms grouped under GO slim categories by location. GO
slim categories are on the x-axis, while the number of Biological Processes GO terms in each GO slim
category is on the y-axis. The bars are colored by location: green bar = Florida, orange bar = Hawai’i.

Full-size DOI: 10.7717/peerj.16654/fig-4
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have been a high number of overlapping orthogroups, the function of those overlapping
orthogroups were similar between species. For example, one orthogroup (OG0000487)
contained DEGs related to microtubule-based processes and structural constituent of
cytoskeleton in M. capitata and P. acuta (Table S6).

DISCUSSION
In this study, we conducted two separate experiments to characterize the molecular
underpinnings of corals with differing morphological characteristics responding to
sediment stressors in two locations, Florida and Hawai‘i. The methodological differences
prevent us from making direct statistical comparisons between the experiments. However,
it is still relevant to highlight general biological processes and mechanisms related to
sediment stress responses across morphology and location.

Responses to unsterilized red sediment in Hawai‘i
It is well established that morphology can play a role in modulating a coral’s response to
sediment stress, but it is unknown if gene expression varies in corals with differing
morphological traits. Our study found that, across morphologies in Hawaiian corals,

Figure 5 Counts of biological process GO terms grouped under GO slim categories by morphology.
GO slim categories are on the x-axis, while the number of Biological Processes GO terms in each GO slim
category is on the y-axis. The bars are colored by morphology: blue bar = branching, gray bar = inter-
mediate, yellow bar = massive. Full-size DOI: 10.7717/peerj.16654/fig-5
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developmental processes were primarily affected by unsterilized sediment. Previous work
has demonstrated that sediment deposition, high turbidity, and low light have been shown
to adversely affect development and reproductive output across morphologies (Kojis &
Quinn, 1984; Gilmour, 1999; Humphrey et al., 2008), thoughM. capitata development and
fecundity are not always negatively affected by high sedimentation rates (Padilla-Gamiño
et al., 2014). In the present study, the branching coral, P. acuta, shared a relatively high
number of overlapping developmental processes-related responses with corals with
intermediate (M. capitata; 20 shared terms) and massive (P. lobata; 11 shared terms)
morphology. Shared responses corresponded to reproduction and developmental
processes like embryonic axis specifications, embryonic organ development, eye
development, neural crest cell fate specification, neural plate anterior/posterior
regionalization, embryonic hindlimb morphogenesis and others. Unexpectedly, these
terms primarily correspond to vertebrate developmental processes, complicating our
ability to interpret these results. Given our use of specific annotation databases (i.e., NCBI,
SwissProt, InterPro), it is possible that these databases are all dominated by
vertebrate-related annotations and thus, invertebrate protein sequences are assigned
vertebrate-centric annotations. While it is clear that developmental processes are affected
by short term sediment stress across morphologies, it is unclear how vertebrate specific
gene functions may translate to developmental processes in basal metazoans. More work is
necessary to evaluate equivalency across annotation softwares.

Figure 6 UpSet plot of the intersection of orthogroups across location (green bar or circle = Florida; orange bar or circle = Hawai‘i) and
morphology (blue stripe = branching; gray stripe = intermediate; yellow stripe = massive). Full-size DOI: 10.7717/peerj.16654/fig-6
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During the year, M. capitata, P. acuta, and P. lobata develop their gametes and then
release when conditions are optimal, typically June and July in Hawai‘i (Stimson, 1978;
Richmond & Jokiel, 1984; Padilla-Gamiño & Gates, 2012; Brown et al., 2020). Because the
corals in our study were exposed during this time period, it is possible that we captured
gene expression signatures unique to corals at or near the peak of their reproductive
phenotype. Although the corals were not sampled at different times of year under the same
experimental conditions, these results suggest that because the corals were sampled during
their reproductive period, signals of developmental processes may be higher than they
might have been at other points in the year. Given the high number of shared and unique
developmental process GO terms in the Hawai‘i corals, however, it is likely that sediment
has the potential to have reproductive and developmental consequences, which can have
subsequent impacts on population growth and dynamics.

The only specific shared response across the three Hawaiian species was the
downregulation of microtubule-based processes. Microtubules, tubulin polymers that
maintain structure and shape to eukaryotic cells, are major components of cilia, which
coral utilize for activities such as feeding and clearing sediment (Westbroek, Yanagida &
Isa, 1980; Rogers, 1990; Erftemeijer et al., 2012). Downregulation of processes relating to
cilia biogenesis/degradation and motility was also observed in the P. acuta host and its
endosymbionts in response to combined acute heat and sediment stress (Poquita-Du et al.,
2019, 2020). The authors of these studies hypothesized that the corals were likely diverting
energy resources away from feeding and active sediment clearing in order to prioritize
energy for basic homeostasis. While our experiment did not include heat stress, it is
probable that downregulation of microtubule or cilia-related processes is a generally
conserved response to sediment stress. Exhaustion of sediment-clearing activity of corals
and eventual loss/breakdown of cilia cells can also be a consequence of continued exposure
to high levels of sediment stress (Stafford-Smith & Ormond, 1992; Stafford-Smith, 1993;
Erftemeijer et al., 2012). Given the acute nature of the stress in the Hawai‘i experiment (i.e.,
sediment was added at day 0 and day 4), the corals here may have exhausted their ciliary
action abilities, thus leading to downregulation of microtubule-based processes.

Responses to sterilized white sediment in Florida
No specific responses were shared among A. cervicornis, M. cavernosa, and O. faveolata,
despite being exposed to the same sediment for the same amount of time. Given the length
of time of this experiment, it is possible that we only captured the longer-term stress
responses of these corals and that their responses may have been more similar at the
beginning of the exposures. Morphology also may have contributed to the divergent
responses between these species. In previous sediment stress studies, morphology
contributed to physiological response variability (Stafford-Smith, 1993; Fabricius, 2005;
Erftemeijer et al., 2012). For example, Rogers (1979) evaluated the effect of shading (as a
proxy for turbidity) for 5 weeks on several coral species from San Cristobal Reef, Puerto
Rico. The branching coral, A. cervicornis, had entirely bleached, while the massive coral,
M. cavernosa, was visibly unaffected and appeared to have little response. On the other
hand,M. annularis had substantial bleaching after 5 weeks, despite being a close relative of
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M. cavernosa (Rogers, 1990). Different branching coral species exhibit a wide range of
sediment tolerances; after 12 weeks of exposure, the lowest sediment treatments that
caused full colony mortality were 30 mg/L−1 for M. aequituberculata and 100 mg/L−1 for
A. millepora (Flores et al., 2012). Stafford-Smith (1993) examined sediment rejection
efficiency in 22 species of Australian corals from a range of morphologies, finding that
there was a wide range of active-rejection efficiencies between species. For instance,
Gardineroseries planulata is a competent rejector of a variety of sediment sizes, but only for
a short period of time. Favia stelligera and Leptoria phrygia had moderate clearance rates,
but tissue mortality occurred within one to two days.M. aequituberculata and Porites spp.
had low rejection efficiency and had bleached tissues, but no tissue mortality for up to
8 days. Morphology was a driving factor in those results, as branching corals had faster
clearing rates than massive corals (Stafford-Smith, 1993). Thus, it is likely that morphology
played a role in driving differences in long-term response in the Floridian corals,
highlighting the challenge of predicting responses to sedimentation across species.

Despite differing morphologies, the branching coral, A. cervicornis, shared responses
related to developmental processes and signal transduction with both massive corals,
M. cavernosa and O. faveolata, independently. Interestingly, no specific responses were
shared between M. cavernosa and O. faveolata, despite similar morphologies.
Downregulation of Rho protein signal transduction was observed in A. cervicornis and
M. cavernosa (with the exception of upregulation in the M. cavernosa T2vT3 treatment
comparison). Rho proteins are part of a superfamily of signaling GTPase proteins, which
typically control the assembly and organization of the cytoskeleton, as well as participate in
functions such as cell adhesion, contraction, migration, morphogenesis, and phagocytosis
(Mackay & Hall, 1998; Moon & Zheng, 2003; Phuyal & Farhan, 2019). In corals, Rho
GTPases participate in cytoskeleton remodeling during phagocytosis, as well as cell
division of endosymbionts within symbiotic gastrodermal cells (Li et al., 2014).
Rho GTPase pathways have been identified in coral polyp bailout responses to heat stress
and hyperosmosis, as well as in bleached corals in response to low flow environments
(Chuang & Mitarai, 2020; Fifer et al., 2021; Gösser et al., 2021). In this study,
downregulation of Rho protein pathways suggests that minimal cytoskeleton maintenance,
assembly and organization is occurring and that the corals may not be able to properly
maintain their cellular structures under sedimentation.

A. cervicornis and O. faveolata both downregulated chondrocyte development, a
developmental response. Chondrocytes are cells in cartilage that make up the cytoskeletal
matrix in humans and other animals, including some marine invertebrates (Philpott &
Person, 1970; Cowden & Fitzharris, 1975; Libbin et al., 1976; Archer & Francis-West, 2003;
Kamisan et al., 2013). In corals, the cytoskeleton matrix is made up of calcium carbonate,
as opposed to cartilage, which forms through rapid accretion of protein rich skeletal
organic matrix and extracellular calcium carbonate crystals to form a stony skeleton
(Vandermeulen & Watabe, 1973; Akiva et al., 2018). Skeletal matrix formation begins
when planktonic coral larvae settle and begin to secrete calcium carbonate, which helps to
anchor the coral to the substrate (Akiva et al., 2018). The skeleton grows as the coral
animal continues to secrete calcium carbonate, building up a large and intricate 3D skeletal
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structure (Tambutté et al., 2011). Sedimentation can hinder coral skeletal growth by
depositing sediment on the tissue and diverting energy away from growth, as well as
decreasing the amount of light that reaches the coral, thus affecting the possibility for
light-enhanced calcification, which is responsible for most of the skeletal growth in corals
(Dodge, Aller & Thomson, 1974; Erftemeijer et al., 2012). Downregulation of chondrocyte
development may be related to the disruption of skeletal matrix formation, which may
influence skeletal density and growth. Decreased skeletal density was observed in corals
from inshore reefs which experience higher levels of sedimentation as compared to corals
from offshore reefs (Lough & Barnes, 1992). Therefore, the downregulation of genes
relating to chondrocyte development across morphologies, suggests that corals with a
range of morphological characteristics may have decreased skeletal growth in response to
sediment stress.

Differences in response based on morphological characteristics
This study combined data from two independent experiments in order to characterize the
molecular mechanisms that corals use to respond to different sedimentation stressors.
The experiments used different sediment types (unsterilized red clay sediment in Hawai‘i,
sterilized carbonate sand sediment in Florida) and lengths of exposure (up to 7 days in
Hawai‘i, 18 days in Florida). Differences in experimental methodology prevent us from
making direct statistical comparisons between the two experiments; however, the shared
morphologies between experiments enables us to identify broad generalizations about
conserved gene regulation in response to sediment stress. These comparisons are relevant,
as knowledge of what genes and biological processes are broadly affected by sediment
stress can help coral reef management.

We did not identify a generalized response across morphology nor gene expression
patterns across taxa. There were two groups of three species (M. capitata, M. cavernosa,
P. acuta and A. cervicornis, M. capitata, M. cavernosa) that shared specific responses.
However, no group contained a single morphology and gene expression patterns varied
among species. For example, M. capitata (intermediate), M. cavernosa (massive), and
P. acuta (branching) all expressed genes relating to riboflavin transport, the transport of
certain vitamins in cells, though they had very different expression patterns. Riboflavin
transport genes were upregulated in P. acuta, but downregulated in M. cavernosa;
M. capitata, on the other hand, differentially expressed two genes relating to riboflavin
transport, one of which was upregulated and the other downregulated. Thus, even though
a shared response was identified, the direction of the response varied greatly. This result
demonstrates that responses may be shared across morphologies, locations and sediment
types, but it may be difficult to predict the directionality of the response. This response
may also be due a level of acclimation attained byM. cavernosa during the longer exposure
in the Florida experiment. The other group, which contained A. cervicornis (branching),
M. capitata (intermediate), and M. cavernosa (massive), all downregulated genes relating
to positive regulation of skeletal muscle tissue development. This term refers to the
activation, maintenance, or increase of the rate of skeletal muscle tissue development
(Buckingham et al., 2003; Grefte et al., 2007). Given that this term is downregulated, it
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means that there is little to no activation, maintenance, or increase of the rate of muscle
tissue development in these corals. These gene expression patterns highlight the
complexity of characterizing responses to different kinds of sedimentation stress in species
with different morphotypes.

Some terms were shared across both morphology and location, indicating a generalized
sediment stress response. For example, DNA methylation-dependent heterochromatin
assembly was shared between A. cervicornis (branching) and P. lobata (massive). Opposite
expression patterns were again observed, in which upregulation occurred in A. cervicornis
and downregulation in P. lobata. DNA methylation-dependent heterochromatin assembly
refers to repression of transcription by DNA methylation leading to the formation of
heterochromatin (Jones & Wolffe, 1999; Grewal & Moazed, 2003). In the case of
A. cervicornis, upregulation suggests that repression of transcription by DNA methylation
and subsequent heterochromatin formation is occurring. Therefore, certain portions of
DNA cannot be accessed, giving A. cervicornis more stringent control on gene expression.
On the other hand, the downregulation of these genes in P. lobatameans less repression of
transcription by DNA methylation occurring and heterochromatin is not being fully
formed, leaving much of the DNA accessible to transcription machinery and ultimately,
reducing the amount of control that P. lobata has on gene expression. To date, no work has
examined how sediment stress affects epigenetic mechanisms, such as DNA methylation,
in coral. However, previous studies have found changes to DNA methylation in response
to stress and environmental change (Putnam, Davidson & Gates, 2016; Liew et al., 2018;
Dimond & Roberts, 2020; Rodríguez-Casariego, Mercado-Molina & Garcia-Souto, 2020).
Additionally, it has been observed in corals that genes with weak methylation signals are
more likely to demonstrate differential gene expression (Dixon, Bay & Matz, 2014;
Entrambasaguas et al., 2021). Epigenetic modifications and their regulation of gene
transcription are highly species and context dependent. Furthermore, the directionality of
epigenetic regulation on gene expression or repression can vary depending on the
underlying genetic machinery and the environment. This is exemplified in the two species
with overlapping response terms. Namely, A. cervicornis exhibits a more regulated control
on gene expression in contrast to P. lobata, which exhibits a less regulated profile of gene
regulation. Thus, it is likely that sedimentation stress from each location impacted DNA
methylation and heterochromatin in different ways, causing opposing expression patterns.

More general responses were shared over morphology and location, as identified by the
orthogroup analysis. The orthogroup analysis grouped homologous gene sequences in
different species related to one another by linear descent. The resulting ‘orthogroup’
represents a group of similar gene sequences across multiple species (Emms & Kelly, 2015,
2019). Orthogroups were shared across morphology and location, though in relatively low
numbers (sharing between one and three orthogroups). This sharing may represent a
group of orthogroups that form a core group of genes in response to sediment stress.
Although we cannot directly compare the genes or orthogroups between experiments, the
shared orthogroups represent potential overlap in sedimentation response over location
and morphology.
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The branching corals, A. cervicornis from the Florida experiment and P. acuta from the
Hawai‘i experiment, shared a metabolic response, ‘Mo-molybdopterin cofactor
biosynthetic process’, which describes the creation of the Mo-molybdopterin cofactor, an
essential component for catalytic activity of certain enzymes (Kisker, Schindelin & Rees,
1997; Mendel, 2013). Molybdenum (Mo) is a trace metal synthesized de novo through
GTP-based processes; cyclic pyranopterun monophosphate (cPMP) is initially formed,
which is then converted to the molybdopterin cofactor (Mendel, 2013). This essential
cofactor catalyzes the oxidation and reduction of molecules in enzymatic processes
regulating nitrogen, sulfur, and carbon (Daniels et al., 2008; Iobbi-Nivol & Leimkühler,
2013). Similar to other results in the present study, both species demonstrated opposing
differential gene expression for this term. Mo-molybdopterin cofactor biosynthetic process
was downregulated in A. cervicornis, but upregulated in P. acuta, suggesting that while
different sediment types and exposure durations can induce similar differentially expressed
genes, it can produce different expression patterns for those genes. Molybdopterin are
co-factors for oxidoreductases, a family of enzymes that catalyze the transfer of electrons
between molecules (Kisker, Schindelin & Rees, 1997). Upregulation of molybdopterin
synthesis may suggest that these types of enzymes are more metabolically active. Stressful
conditions have made these kinds of enzymes more active in plants and corals (Bouchard
& Yamasaki, 2008; Zdunek-Zastocka & Sobczak, 2013). Upregulation of metabolism
related genes was also observed in a study that examined transcriptomic responses of
corals in response to two different sediment experiments (Bollati et al., 2021).
Downregulation of Mo-molybdopterin cofactor synthesis may indicate that the coral does
not have enough energy to synthesize molybdopterin which in turn makes it so the activity
of these specific enzymes is decreased or stopped altogether, suggesting a decrease in
metabolism for A. cervicornis. It is also possible that the unsterilized sediment was
providing molybdopterin to P. acuta, making it necessary for P. acuta to upregulate genes
relating to molybdopterin processing to manage the influx (Fujimoto & Sherman, 1951;
Siebert et al., 2015). Because the sediment was sterilized in the Florida experiment, no
molybdenum would be present in the sediment, indicating that molybdenum-related
enzymes may not have been functioning at a high level, leading to downregulation.

CONCLUSION
This study incorporated data from two separate experiments to more fully characterize the
molecular mechanisms induced by sedimentation in corals. We found that developmental
processes are primarily impacted in branching corals across location, highlighting
potential future research avenues with regards to sediment stress and reproductive
potential and output. While few specific genes were shared across morphology and
location, orthogroup analysis uncovered potential overlap in generalized sediment stress
responses. Direct comparisons across species are necessary to further elucidate the genetic
basis of coral susceptibility to sediment stress.
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