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ABSTRACT
Glycogen synthase kinase 3 (GSK-3) is a serine/threonine kinase widely expressed in
various tissues and organs. Unlike other kinases, GSK-3 is active under resting
conditions and is inactivated upon stimulation. In mammals, GSK-3 includes GSK-3
a and GSK-3β isoforms encoded by two homologous genes, namely, GSK3A and
GSK3B. GSK-3β is essential for the control of glucose metabolism, signal
transduction, and tissue homeostasis. As more than 100 known proteins have been
identified as GSK-3β substrates, it is sometimes referred to as a moonlighting kinase.
Previous studies have elucidated the regulation modes of GSK-3β. GSK-3β is
involved in almost all aspects of brain functions, such as neuronal morphology,
synapse formation, neuroinflammation, and neurological disorders. Recently, several
comparatively specific small molecules have facilitated the chemical manipulation of
this enzyme within cellular systems, leading to the discovery of novel inhibitors for
GSK-3β. Despite these advancements, the therapeutic significance of GSK-3β as a
drug target is still complicated by uncertainties surrounding the potential of
inhibitors to stimulate tumorigenesis. This review provides a comprehensive
overview of the intricate mechanisms of this enzyme and evaluates the existing
evidence regarding the therapeutic potential of GSK-3β in brain diseases, including
Alzheimer’s disease, Parkinson’s disease, mood disorders, and glioblastoma.
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INTRODUCTION
GSK-3 is an extensively conserved serine/threonine (S/T) protein kinase that catalyses the
phosphorylation of threonine or serine residues, regulating numerous cellular biological
processes, including glycogen metabolism, insulin signalling, cell growth, and
differentiation (Duda et al., 2020). Inhibition of glycogen synthase (GS) by GSK-3 results
in reduced glycogen synthesis in the liver and muscles, accompanied by elevated blood
glucose levels or hyperglycaemia (Gupte et al., 2020). For this reason, GSK-3 is closely
correlated with the pathogenesis and progression of many diseases, such as diabetes,
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obesity, and cancer (Amar, Belmaker & Agam, 2011). GSK-3 is constitutively activated in
resting cells and is frequently inhibited by growth factors (e.g., insulin, insulin-like growth
factor (IGF), vascular endothelial growth factor (VEGF), platelet-derived growth factor
(PDGF), and nerve growth factor (NGF)) and other extracellular stimuli (e.g., Wnt) (Duda
et al., 2018). In humans, there are two isoforms of GSK-3, namely, GSK-3a (51 kDa) and
GSK-3β (47 kDa), which are encoded by distinct genes, GSK3A and GSK3B, respectively.
The catalytic domains of GSK-3a and GSK-3β proteins exhibit a remarkable 98%
similarity, while their unique C-terminal regions diverge, showing only 36% homology
(Emma et al., 2020). Although they have higher homology in the kinase domain, GSK-3a
and GSK-3β have differentiated substrate preferences, and their cellular functions are at
least partially nonredundant, as demonstrated by isoform-specific gene knockout (KO)
studies in mice (Gupte et al., 2022). GSK-3a KO mice exhibit viability and normal
developmental patterns, whereas GSK-3β KO leads to embryonic lethality, primarily
attributed to severe liver degeneration (Hoeflich et al., 2000). The activity of the GSK-3β
kinase depends on phosphorylation. Phosphorylation of tyrosine 216 (T216) in GSK-3β
and tyrosine 279 (T279) in GSK-3a is needed for maximal activity, whereas
phosphorylation of serine 9 (S9) in GSK-3β and serine 21 (S21) in GSK-3a results in
inhibition of the kinase (Moore et al., 2021). For example, insulin inactivates GSK-3 by
phosphorylation of specific residues, namely, serine 21 (p-Ser21-GSK-3a) and serine 9
(p-Ser9-GSK-3β), in a phosphatidylinositol 3-kinase (PI3K)-dependent manner
(Zakharova et al., 2019). Among the many kinases that phosphorylate GSK-3β and thus
inhibit its activity, the best known is protein kinase B (PKB or AKT), which acts
downstream of PI3K and PDK1 kinase signalling. The inhibition of GSK-3β through
phosphorylation is not exclusive to AKT but also involves other protein kinases, including
protein kinase A (PKA) and protein kinase C (PKC) (Ku et al., 2011; Moore et al., 2013).
In addition, GSK-3β regulation is influenced by various other regulators, including the
mammalian target of rapamycin (mTOR), Wnt, and p38 mitogen-activated protein kinase
(p38 MAPK) signalling pathways. These pathways also hold significant importance in the
regulation of GSK-3β (Golick et al., 2018; Pan & Valapala, 2022; Taelman et al., 2010;
Thornton et al., 2008). Despite this inhibitory phosphorylation, dephosphorylation of the
Ser9 phosphate group on GSK-3β by protein phosphatases, such as protein phosphatase
2A (PP2A) and protein phosphatase 1 (PP1), enhances GSK-3β activity. This phenomenon
has been observed in triple-negative breast cancer and neuronal degeneration (Bennecib
et al., 2000; Jian et al., 2022; Liang & Chuang, 2007). Conversely, these regulators and
protein phosphatases may also function as substrates for GSK-3β (Hermida, Dinesh
Kumar & Leslie, 2017).

Over the past decades, dysregulation of GSK-3β has been linked to the pathogenesis of
many disorders, including type 2 diabetes mellitus (T2DM), atherosclerosis,
neurodegenerative diseases, and a variety of malignant tumours (Lin et al., 2020; Yang
et al., 2021; Zhang et al., 2018). Because aberrant GSK-3β expression has been implicated
in many diseases, accumulating studies have provided proof-of-concept that targeting
GSK-3β is a promising strategy for treating various diseases. In tumours, GSK-3β has been
demonstrated to play a paradoxical role as GSK-3β acts as a tumour promoter or
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suppressor based on the cell type and phosphorylation status (He et al., 2022; Li et al., 2017;
Pecoraro et al., 2021; Zhang et al., 2020). Furthermore, increasing evidence suggests that
GSK-3β signalling plays a critical role in driving the advancement of neurodegeneration.
Therefore, inhibition of GSK-3β is regarded as a prospective therapeutic strategy for
central nervous system (CNS)-related disorders, especially Alzheimer’s disease (AD)
(Eldar-Finkelman & Martinez, 2011; Lauretti, Dincer & Praticò, 2020).

In the next section, we summarize the regulatory mechanisms of GSK-3β action, the
physiopathological functions of GSK-3β in the brain, the current development of GSK-3β
inhibitors, and treatment of brain and neurological diseases. The major focus of this review
is on the intricate interactions between GSK-3β and neuroregulation, as well as the
potential of GSK-3β for the therapeutic intervention of brain disease.

Why this review is needed and who it is intended for
The brain is the main controller of learning, memory, movement, and other behaviours.
Despite intensive research, the exact mechanisms that trigger brain disorders, such as
Alzheimer’s disease (AD) and Parkinson’s disease (PD), are still not known, and at present,
there is no cure for many brain diseases. Recently, several signalling molecules, especially
glycogen synthase kinase-3β (GSK-3β), have been explored as possible candidate targets
for the treatment of AD, PD, and mood disorders. This review discusses and summarizes
the new advances in GSK-3β and its roles in brain physiology, neural development,
neurodegenerative disorders, and neuropsychiatric disorders. Our review will appeal to
researchers interested in the field of neuroscience, and it provides an overview of research
on molecular targeted therapy for neurological and brain diseases. Although research on
GSK-3β in the brain is still faced with many shortcomings and obstacles, the reported
results in drug treatment, especially in GSK-3β inhibitors, are surprising. Importantly,
these basic concepts and comprehensive knowledge are of great reference for chemists,
biological scientists, pharmacists, and clinical workers as they may provide new insights
into brain science and even a breakthrough in other fields.

SEARCH METHODOLOGY
PubMed andWeb of Science were used to identify relevant articles for this review, with the
most recent search conducted in 2023. The search was performed in full-text journals,
focusing on the most relevant advances in GSK-3β functions and their role in brain
physiology and pathology. We categorized keywords, synonyms, and variants into
categories, and used any combination of words from those categories for our search.
The following categories were used for the search: (1) GSK-3β, which included GSK3β,
glycogen synthase kinase-3β, and glycogen synthase kinase 3; and (2) brain disease, which
included central nervous system, neural, cerebral, nervous, mind, Alzheimer’s disease,
Parkinson’s disease, Huntington’s disease, amyotrophic lateral sclerosis, multiple sclerosis,
bipolar disorder, schizophrenia, glioblastoma, and ischaemia‒reperfusion (I/R) injury.
The words were merged via the Boolean operators “AND” and “OR”. The initial search
screened approximately 200 relevant articles written in English that could be useful for this
review. No language restrictions were imposed.
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Regulatory mechanisms of GSK-3b action
GSK-3β is involved in the regulation of cell biological functions through specific substrate
phosphorylation. The regulation of GSK-3β activity encompasses the following four
pivotal mechanisms: autophosphorylation regulation of GSK-3β, subcellular localization
of GSK-3β, assembly of protein complexes harbouring GSK-3β, and phosphorylation
status of GSK-3β substrates (Jope & Johnson, 2004) (Fig. 1). One of the clearest regulatory
mechanisms is the inhibition of GSK-3β activity by phosphorylation of Ser9 in GSK-3β
(corresponding to Ser21 in GSK-3a) (Patel & Werstuck, 2021). The PI3K/AKT signalling
pathway is the primary regulator of GSK-3β, which is activated in response to insulin and
several growth factors. However, AKT (PKB) and other kinases, including protein kinase A
(PKA), ribosomal 70-kDa protein S6 kinase (p70S6K), and p90 ribosomal S6 kinase
(p90RSK), phosphorylate the inhibitory Ser9 residue of GSK-3β, which results in the
inactivation of GSK-3β (Cervello et al., 2017). In contrast, phosphorylation of Tyr216 in
GSK-3β (corresponding to Tyr279 in GSK-3a) by Src, FYN, and PYK2 enhances the
catalytic activity of GSK-3β kinase, which may be constitutive in resting cells, but the
mechanism regulating this modification is unclear (Bhat et al., 2000; Nagini, Sophia &
Mishra, 2019).

The activity of GSK-3β is subject to regulation through subcellular localization,
particularly within the nucleus and mitochondria, where GSK-3β exhibits heightened
activity and undergoes dynamic regulation (Bijur & Jope, 2003). When translocated into
the nucleus, GSK-3β exhibits phosphorylation activity towards a diverse range of
substrates, mostly known as transcription factors (TFs) or epigenetic regulatory factors,
such as RXRa, p53, and KDM1A (Eom & Jope, 2009; Zhang et al., 2020; Zhou et al., 2016).
The localization of GSK-3β within protein complexes either facilitates or impedes its
activity towards specific substrates. For example, in the canonical Wnt signalling pathway,

Figure 1 Regulatory mechanisms governing the activities of GSK-3β. GSK-3β phosphorylation of
substrates is synergistically regulated by four mechanisms. Modified from Jope, Yuskaitis & Beurel (2007).
Copyright 2007, Springer Nature. Full-size DOI: 10.7717/peerj.16635/fig-1
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GSK-3β and the β-catenin transcriptional coactivator coexist on the Axin scaffold protein,
and this colocalization guides GSK-3β to phosphorylate β-catenin, consequently triggering
the degradation of β-catenin protein in the cytosol. Activation of the Wnt signalling
pathway prevents GSK-3β from accessing β-catenin, resulting in the accumulation of
active β-catenin (Marineau, Khan & Servant, 2020). The fourth mechanism refers to the
effect of GSK-3β being regulated by the substrate phosphorylation state, which is a
mechanism that indirectly regulates the substrate phosphorylation efficiency of GSK-3β.
Most of the substrates of GSK-3β must be in the “primed” (sensitized) state. Under the
condition that GSK-3β is prephosphorylated at a residue four amino acids C-terminal to
the phosphorylation site by another “priming kinase” (activated kinase), GSK-3β further
phosphorylates the “primed” substrate; that is, the regulation of substrate phosphorylation
activity by GSK-3β usually requires the coordination of the “priming kinase” (Duan et al.,
2022; Jope, Yuskaitis & Beurel, 2007). These complex mechanisms of GSK-3β regulation
provide GSK-3β with specific control over its substrates, a particularly important ability of
the enzyme that enables GSK-3β to phosphorylate numerous substrates and thus regulate
many biological functions.

Multifaceted functions of GSK-3b in the brain
GSK-3β is the most abundant in the brain and nervous system, and its expression level
increases with age (Lee et al., 2006). GSK-3β not only mediates abnormal pathological
processes but is also essential for the normal physiological function of the brain. To obtain
a comprehensive understanding, we summarized the pleiotropic role of GSK-3β in the
brain in Fig. 2.

Figure 2 Overview of GSK-3β functions and correlated diseases in the brain.
Full-size DOI: 10.7717/peerj.16635/fig-2
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GSK-3β, synaptic plasticity, and memory formation
The hippocampus is widely recognized as the central hub for learning and memory within
the brain, and it plays a crucial role in synaptic plasticity, encompassing the mechanisms
underlying both long-term potentiation (LTP) and long-term depression (LTD). LTP
refers to the enduring enhancement of synaptic strength, while LTD represents the
contrasting process (Parvez et al., 2023). GSK-3β exhibits high expression levels in the
hippocampus of a healthy brain where it assumes a crucial function in synaptic plasticity
and the formation of memories. Liu et al. (2017) reported that mice with GSK-3β deletion
specifically in the excitatory neurons of the dentate gyrus (DG) exhibit impairments in
spatial and fear memory. Subsequent investigations have revealed that deletion of GSK-3β
in the DG subset leads to the inhibition of synaptic transmission within the hippocampus;
additionally, it results in decreased expression levels of GluN1, GluN2A, GluN2B, GluA1,
PSD93, drebrin, and synaptophysin (Liu et al., 2017). Consistently, Koike et al. (2021)
demonstrated that aged GSK-3β+/− mice manifest deficiencies in the formation of both
short-term and long-term memories, thereby offering additional evidence for the essential
role of GSK-3β in memory formation during advanced age. Mechanistically, Peineau et al.
(2007) reported that the activation of GSK-3β is enhanced during NMDA
receptor-dependent LTD via activation of PP1, while the activity of GSK-3β is inhibited by
the induction of LTP. The induction of LTP in both the DG and CA1 regions of the
hippocampus leads to an elevation in the inhibitory phosphorylation of GSK-3β at Ser9
(Cunningham et al., 2017).

Memory impairment in old age is a hallmark of AD, with dementia developing in the
final stages. Alzheimer’s disease is marked by β-amyloid (Aβ) deposits and neurofibrillary
tangles (NFTs). Detectable NFTs in AD-associated memory impairment and dementia are
associated with synaptic and neuronal loss in diseased brains (Ashrafian, Zadeh & Khan,
2021). Prior to NFT formation, tau undergoes hyperphosphorylation due to the activation
of GSK-3β, resulting in the formation of tau oligomers with a granular structure.
The hyperphosphorylated tau is strongly linked to the loss of synapses and the impairment
of memory induced by Aβ. Mice overexpressing GSK-3β show an accumulation of
hyperphosphorylated tau, a reduction in hippocampal LTP, and memory impairment in
object recognition tests (Takashima, 2012). Notably, this memory deficit in mice is
reversed when tau expression stops. Consequently, reducing tau levels and inhibiting
GSK-3β each rescue memory impairment in AD models (Gómez de Barreda et al., 2010;
Roberson et al., 2007). Another possible mechanism is that GSK-3β inactivation enables
stabilization of β-catenin, which protects β-catenin from degradation mediated by the
proteasome. β-catenin is expressed in both pre- and postsynaptic terminals, and it is
responsible for cell adhesion and synaptic structure (Hui et al., 2018; Murase, Mosser &
Schuman, 2002). Downregulation of the β-catenin signalling pathway due to increased
GSK-3β activity has been observed in AD brains (Vallée et al., 2018). Given the pivotal role
of GSK-3β in the regulation of synaptic plasticity and memory formation, the reduction in
GSK-3β activity obtained by pharmacological approaches has been extensively explored
and reported in several AD models (Iqbal et al., 2023).
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GSK-3β and neuroinflammation
Inflammation has become a dominant contributor to brain disease, with principal
participation from ageing and proteinopathy, which has been widely studied to understand
its mechanism in neural pathology (Samim Khan et al., 2023). The initial defensive
reaction of the organism in response to allergic stimuli involves immune-mediated
inflammation. Although the initial response is protective, the persistent and excessive
response causes pathological lesions. In the neural network, the equilibrium between
inflammatory and anti-inflammatory processes is upheld through the activation of M1 and
M2 microglia. M1 microglia exhibit the capacity to generate inflammatory factors
primarily mediated by Toll-like receptors (TLRs), whereas M2 microglia function as
reparative agents, primarily releasing IL-10 and IL-4 (Cherry, Olschowka & O’Banion,
2014). As a result of pathological stimuli within the brain, the innate immune response is
initially engaged, leading to the subsequent transformation of microglia-mediated innate
immunity into neuroinflammation. Neuroinflammation is associated with glial activation,
blood‒brain barrier (BBB) breakdown, proinflammatory cytokine release, and leukocyte
invasion, in which the molecular mechanism generally involves the activity of NOD-like
receptor family pyrin domain-containing protein 3 (NLRP3), Toll-like receptors (TLRs),
and nuclear transcription factors, such as nuclear factor kappa B (NF-kB), nuclear factor of
activated T cells (NFAT), cAMP response element-binding protein (CREB), and signal
transducer and activator of transcription 3 (STAT3) (Candelario-Jalil, Dijkhuizen &
Magnus, 2022; Jurcau & Simion, 2021; Zhu et al., 2021).

NLRP3 is a cytoplasmic pattern recognition receptor (PRR) that is prominently
expressed in macrophages, and it serves as a crucial constituent of the inflammasome.
In the past decade, NLRP3 has been shown to be involved in neuroinflammatory processes,
in which the interplay between the innate immune system and the caspase-1 apoptotic
protein plays a significant role (Voet et al., 2019). The assembly of the NLRP3
inflammasome results in the secretion of potent proinflammatory cytokines, namely,
IL-1β, IL-18, and IL-33. These inflammatory factors play a crucial role in
neurodegeneration. After the discovery of the regulatory role of GSK-3β in the brain, its
participation in NLRP3-mediated inflammatory pathways has been widely explored.
Agents capable of inducing the phosphorylation of GSK-3β to mitigate NLRP3-mediated
inflammation, oxidative stress, apoptosis, and autophagy have been assessed in various
models of neurological disorders (Li et al., 2021; Liu et al., 2020b;Wang et al., 2021, 2019).
In the brain, Toll-like receptors (TLRs) mainly modulate glial and neuronal functions, as
well as innate immunity and neuroinflammation, under physiological or pathological
conditions (Fei et al., 2022; Mowry et al., 2021; Schilling et al., 2021). During the past
decade, numerous studies have demonstrated that GSK-3β is a key regulator of the TLR
signalling pathway via TLR3 and TLR4 (Ko & Lee, 2016). TNFR-associated factors
(TRAFs) are critical for the production of inflammatory cytokines and antiviral responses
in TLR3-mediated signalling pathways. Ko et al. (2015) identified TRAF6 as a direct E3
ligase for GSK-3β, and they demonstrated that TRAF6-mediated GSK-3β ubiquitination is
essential for cytokine production by promoting complexes assembled by TRIF, a TLR3
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adaptor protein. These researchers also reported that Src phosphorylation is regulated by
GSK-3β via TNFR-associated factor 2 (TRAF2)-mediated Src ubiquitination. Deficits of
GSK-3β in mouse embryonic fibroblasts significantly reduce IFN-stimulated gene
expression due to a reduction in Src tyrosine phosphorylation (Ko et al., 2019). Compared
to the wild type (WT) group, TLR3 deficiency significantly inhibits programmed necrosis
of brain cells in neonatal mice (Zhang et al., 2022a). TLR3 serves as a vital modulator of
neuronal survival and developmental neuroplasticity. TLR3-deficient mice display
augmented volumes of the hippocampal CA1 and DG regions, along with heightened
levels of the GluR1 AMPA receptor subunit in the CA1 region (Okun et al., 2010). In TLR4
knockout mice, stress-activated GSK-3β activity and the production of hippocampal
cytokines and chemokines are attenuated. Similarly, administration of TDZD-8, a GSK-3β
inhibitor, significantly reduces the expression of most hippocampal cytokines and
chemokines (Cheng et al., 2016). In addition, TDZD-8 treatment downregulates TLR4
protein expression, upregulates claudin5 protein expression, and significantly improves
cognitive function in aged mice (Liang et al., 2020).

Different transcription factors, such as nuclear factor kappa B (NF-kB), c-Jun, nuclear
factor of activated T cells (NFAT), cAMP response element-binding protein (CREB), and
signal transducer and activator of transcription 3 (STAT3), have been shown to be
substrates for GSK-3β activity (Gao et al., 2017; Götschel et al., 2008; Lakshmanan et al.,
2015). Furthermore, it is well documented that these GSK-3β substrates play important
roles in the regulation of neuroinflammation (Golpich et al., 2015). Among these factors,
NF-kB is a principal transcription factor activated by inflammatory processes leading to
cytokine production. A previous study has indicated that NF-kB is regulated by GSK-3β at
the level of the transcriptional complex (Hoeflich et al., 2000). In addition, GSK-3β directly
phosphorylates the NF-kB protein at Ser468 in unstimulated cells, thereby controlling the
basal activity of NF-kB (Buss et al., 2004). NF-kB is expressed in microglia, neurons, and
astrocytes, and it plays an important role in the regulation of inflammatory intermediates
during neuronal dysfunction (Singh et al., 2020). NFAT activity is needed for the
A-stimulated microglial activation that occurs during Alzheimer’s disease
(Rojanathammanee et al., 2015). Activation of STAT3 and the c-Jun signalling pathway
may contribute to neuroinflammation and cognitive impairment (Hu et al., 2021b; Li et al.,
2022). However, activation of the CREB signalling pathway significantly increases the
survival of neurons, improves cognitive behaviour, and promotes anti-inflammatory
effects (Sharma & Singh, 2020).

GSK-3β, neuronal survival, and neurogenesis
Neurogenesis involves cell survival, proliferation, and differentiation, which are strictly
controlled by epigenetic mechanisms of gene transcription. Neurogenesis is traditionally
recognized as an embryogenic phenomenon, but numerous studies have suggested that
this process exists in certain areas of the brain (Espinós et al., 2022). In recent years,
neurogenesis has attracted much attention, as drugs and targets promoting neurogenesis
have shown beneficial results in the treatment of neurodegenerative diseases. In support of
the hypothesis that GSK-3β is an important regulator in neurogenesis, transgenic mice
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overexpressing GSK-3β exhibit a reduction in proliferation and maturation of new
functional DG neurons, as well as a severe memory impairments. This GSK-3β-dependent
depletion of neurogenesis contributes to microglial activation and Aβ-mediated neuronal
death, further promoting neurodegeneration (Hernandez, Lucas & Avila, 2013). GSK-3β
inhibition has been shown to enhance the proliferation, migration, and differentiation of
neural stem cells in vitro. Inhibition of GSK-3β with the small molecule, tideglusib, induces
neurogenesis in the DG of the hippocampus in vivo (Morales-Garcia et al., 2012).
The above findings indicate that inactivation of GSK-3β is beneficial to promote the
survival of functional neurons in neuropathology with impaired neurogenesis.

A deficit in hippocampal neurogenesis contributes to cognitive decline in old age.
Activated GSK-3β accelerates hippocampal neurogenesis at the early stage, while
pharmacological inhibition of GSK-3β is efficient in preserving hippocampal neurogenesis
in senescent mice (Liu et al., 2020a). Inflammation is also implicated in the
neuropathology of neurodegenerative disorders, as increased levels of proinflammatory
cytokines, such as interleukin-1β (IL-1β), have been shown to be detrimental to
hippocampal neurogenesis. Previous results have suggested that GSK-3β activation is
involved in the antiproliferative and progliogenic effects of IL-1β, and reduced GSK-3β
activity facilitates the restoration of hippocampal neurogenesis in neuroinflammatory
conditions (Green & Nolan, 2012). Glucose is indispensable for neuronal survival, and
even minor changes in the glucose supply may result in serious consequences to the
normal physiology of the nervous system. Thus, glucose homeostasis needs to be precisely
regulated for the normal survival of neurons. Given the pivotal roles of GSK-3β in insulin
sensitivity, glycogen synthesis, and glucose metabolism, GSK-3β is also necessary for
neurogenesis.

GSK-3β and neural migration
Considerable evidence shows that GSK-3β directly or indirectly regulates neuronal
migration in the nervous system. Several studies have investigated GSK-3β targeting the
APC protein. Apart from its involvement in protein degradation, APC is a cytoskeletal
protein that relies on microtubules and contributes to the maintenance of the polarized
glial scaffold during brain development (Barth, Caro-Gonzalez & Nelson, 2008; Fang &
Svitkina, 2022). In the absence of APC, glial cells lose their polarity and respond to
extracellular polarity signals, such as neuregulin-1. Conditional gene targeting to eliminate
APC further induces instability in the glial microtubule cytoskeleton, thereby indicating a
significant role of APC in neuronal migration (Yokota et al., 2009). It remains unclear
whether the migration defects are caused by the disruption of the glial scaffold or the
absence of microtubule-associated APC in cortical neurons.

GSK-3β has been implicated in the regulation of neuronal migration through its
influence on β-catenin. Mouse studies have provided evidence that genetic manipulation of
β-catenin, either through deletion or overexpression, disrupts the development of the brain
and spinal system (Zechner et al., 2003). The migration process primarily arises from
aberrant neural progenitor development. In the context of a mutated nervous system, the
presence of abnormally localized neurons has also been observed. Additionally, the levels
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of β-catenin in progenitor cells influence the positioning of neurons (Mutch et al., 2009). A
possible explanation for the abnormal positioning of neurons is delayed determination of
progenitor fate. However, studies on β-catenin mutations provide strong evidence for the
potential involvement of GSK-3β in neuronal migration. Morgan-Smith et al. (2014)
demonstrated that GSK-3β is essential for radial migration and dendritic orientation.
Interestingly, this GSK-3β regulation of migration in neurons is independent of β-catenin
signalling (Morgan-Smith et al., 2014).

Researchers have also investigated the molecular regulation of GSK-3β in the migration
of neurons. For example, DISC1, a prominent susceptibility factor for numerous mental
disorders, governs the process of neuronal migration during brain development and has
been implicated in the regulation of neuronal migration through its interaction with GSK-
3β. At midembryonic stages, when neural progenitor proliferation is active, DISC1
interacts with GSK-3β. However, at later embryonic stages, when neuronal proliferation is
occurring, DISC1 dissociates from GSK-3β (Ishizuka et al., 2011). LKB1, an evolutionally
conserved polarity kinase also known as the upstream kinase of AMPK, is another
important regulator of neuronal migration in the development of neurons. Asada &
Sanada (2010) reported that LKB1 phosphorylates GSK-3β at Ser9, thereby promoting
neuronal migration in the developing neocortex. The delineation of the roles and
underlying mechanisms of GSK-3β in neuronal migration holds paramount importance,
as abnormalities in neuron migration are implicated in various neural disorders.

GSK-3β and cerebral ischaemia
The brain, being the most vulnerable organ to hypoxia and ischaemia, is highly susceptible
to the detrimental effects of cerebral ischaemia. This condition poses a significant threat to
human life because it can lead to severe impairment of brain functions. Additionally, both
cerebral ischaemia and the subsequent reperfusion phase inflict extensive damage to the
brain. Numerous studies have indicated the pivotal involvement of GSK-3β in neuronal
injury following cerebral ischaemia. Most recently, Peng et al. (2022) observed
downregulation of AKT accompanied by activation of GSK-3β within 12 h in cerebral
ischaemia/reperfusion, and they suggested this downregulation is mediated by mTORC
instead of PI3K and PDK1 signalling. Downregulation of GSK-3β using a siRNA-mediated
approach markedly attenuates neuronal damage and enhances cell viability in rat models
of ischaemia/reperfusion. Conversely, upregulation of GSK-3β significantly exacerbates
neurological impairments and inflicts damage upon cerebral cortical neurons in
ischaemia/reperfusion models (Li et al., 2016). In line with the findings of Kisoh et al.
(2017) experimental models have demonstrated a substantial increase in the
phosphorylation of GSK-3β at Ser9, as well as the phosphorylation of AKT, on the seventh
day following cerebral ischaemia. Additionally, administration of a PI3K inhibitor results
in a reduction in AKT activation and phosphorylation of GSK-3β at Ser9 in response to
cerebral ischaemia (Kisoh et al., 2017). Chen et al. (2017) examined the expression of GSK-
3β and p-GSK-3β in the gerbil hippocampal CA1 area after transient cerebral ischaemia,
and they reported that p-GSK-3β is highly expressed in astrocytes located in the stratum
oriens and radiatum. The results indicate an increase in GSK-3β immunoreactivity in

Lai et al. (2023), PeerJ, DOI 10.7717/peerj.16635 10/33

http://dx.doi.org/10.7717/peerj.16635
https://peerj.com/


pyramidal cells of the CA1 region at 6 h following ischaemia‒reperfusion. However, GSK-
3β levels decrease after 12 h and are scarcely detectable in CA1 pyramidal cells at 5 days
postischaemia‒reperfusion. Furthermore, p-GSK-3β is slightly decreased in CA1
pyramidal cells at 6 and 12 h but significantly increased at 1 and 2 days, and it is barely
detectable in CA1 pyramidal cells at 5 days after ischaemia‒reperfusion (Chen et al., 2017).

The occurrence of ischaemia‒reperfusion (I/R) injury can lead to neuronal cell death,
and it is closely related to oxidative stress. Nuclear factor erythroid 2-related factor 2
(Nrf2) is a master regulator of oxidative stress correlated with brain I/R injury. Several
studies have suggested that activation of Nrf2 via GSK-3β modulation alleviates I/R-
induced apoptosis and oxidative stress in neurons (Bai et al., 2021; Duan et al., 2019; Liao
et al., 2020; Xu et al., 2021). The involvement of GSK-3β in ischaemia‒reperfusion models
can be attributed to its regulation of the Nrf2/ARE pathway, resulting in a reduction in
oxidative stress. Treatment with a GSK-3β inhibitor or GSK-3β siRNA has been shown to
prevent neuronal injury caused by brain ischaemia through the activation of the Nrf2
signalling pathway (Li et al., 2016; Pang et al., 2016). In support of the hypothesis that
GSK-3β is an important regulator in cerebral ischaemia, inhibition of GSK-3β using GSK-
3β inhibitors enables protection of the brain from injury in various ischaemia‒reperfusion
models (Gao, Yang & Cui, 2021; Wang et al., 2017).

Altogether, GSK-3β is widely involved in physiological and pathological processes of the
brain with sophisticated regulatory mechanisms. It is imperative for future investigations
to elucidate additional facets of GSK-3β signalling in cerebral development that could hold
therapeutic significance in the realm of brain disorders.

GSK-3β and its inhibitors in brain diseases
Due to its multifaceted functions in the brain, GSK-3β has been strongly implicated in a
variety of brain diseases, including Alzheimer’s disease, Parkinson’s disease, mood
disorders, schizophrenia, and glioblastoma (GBM). Substantial evidence suggests that
small molecule inhibitors of GSK-3β have great value in drug development. Generally,
GSK-3β inhibitors are classified into the following four categories: (1) cations
encompassing the mood stabilizer lithium, along with other metal ions, such as zinc and
copper, which exert inhibitory effects on GSK-3β at millimolar or submicromolar
concentrations, respectively; (2) ATP competitive inhibitors; (3) allosteric non-ATP
competitive inhibitors; and (4) substrate competitive inhibitors (SCIs). The representative
GSK-3β inhibitors and their reported effects in brain diseases are summarized in Table 1.

To date, researchers have invested a great deal of effort into developing GSK-3β
inhibitors as potential drugs, especially for the treatment of neurodegenerative and
psychiatric disorders (Arciniegas Ruiz & Eldar-Finkelman, 2021). For example, AF3581 is a
new class of GSK-3β inhibitor, and studies have shown that this compound is effective in
chronic mild stress-induced depression (mimicking the low phase of bipolar disorder) and
mouse aggression (mimicking the high phase), indicating the therapeutic potential of
GSK-3β inhibitors in treating patients with bipolar disorder (Capurro et al., 2020).
Previous studies have documented the efficacy of Schisandrin B stereoisomers as inhibitors
of GSK-3β. These stereoisomers have demonstrated the ability to substantially enhance the
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Table 1 Representative GSK-3β inhibitors and its usage in brain disease models.

Type Typical compounds Structures Applications in brain disease

ATP competitive SB-216763, SB-415286 AD, PD, BD, I/R injury (Kalinichev & Dawson, 2011;
Wang et al., 2019; Xiong et al., 2013; Zhang, Yin & Zhang,
2014)

CHIR99021, CHIR98023 HD, GBM, I/R injury (Hu et al., 2021a; Yang et al., 2020;
Zhang et al., 2022b)

AZD1080 PD (Hu et al., 2020)

TWS119 AD, I/R injury (Gao, Yang & Cui, 2021; Jiang et al., 2021)

Non-ATP competitive TDZD-8 AD, PD, BD, GBM, MS, SZ, I/R injury (Aguilar-Morante
et al., 2010; Beurel et al., 2013; Duka et al., 2009; Huang
et al., 2017; Kalinichev & Dawson, 2011; Koehler, Shah &
Williams, 2019; Willi et al., 2013)

Tideglusib AD, PD, ALS, BD, GBM, I/R injury (Al-Zaidi et al., 2021;
Bahmad et al., 2021; del Ser et al., 2013; Martínez-
González, Gonzalo-Consuegra & Gómez-Almería, 2021;
Moretti, 2015; Wang et al., 2016)

(Continued)
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expression of p-GSK-3β (Ser9) while reducing the expression of p-GSK-3β (Tyr216 and
Tyr279). Furthermore, they have shown promising effects in mitigating cell damage
induced by amyloid β (Aβ) and ameliorating cognitive impairment in mice with
Alzheimer’s disease (AD). These findings highlight the potential utility of these
stereoisomers as neuroprotective agents for the treatment of Alzheimer’s disease (Hu et al.,
2019). After intranasal administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
(MPTP), rodents display time-dependent impairments in emotion, cognition, and motor
function, thus mimicking Parkinson’s disease in rodents. Lithium salt, a GSK-3β inhibitor,
prevents olfactory discrimination and short-term memory impairment in an intranasal
MPTP-induced Parkinson’s disease rat model (Castro et al., 2012).

GSK-3β and Alzheimer’s disease
Alzheimer’s disease (AD) is a neurodegenerative disease, a type of late-onset dementia,
characterized by gradual loss of memory, loss of speech ability, cognitive impairment, and
other mental symptoms. AD is characterized by profound alterations in the morphology of
numerous neuronal somata and axon terminals. The typical neuropathological changes of
AD include the formation of senile plaques, which are deposits of Aβ protein in the brain,
neurofibrillary tangles formed by the excessive phosphorylation of tau protein, neuronal
apoptosis, and a series of inflammatory reactions (Chou et al., 2012). Neurofibrillary
degeneration (NFD) is a type of intracellular damage caused by the modification of tau
protein, which is a structural protein involved in stabilizing the neuronal cytoskeleton.
During AD, tau protein undergoes hyperphosphorylation, which causes it to detach from

Table 1 (continued)

Type Typical compounds Structures Applications in brain disease

Substrate competitive L803mts AD, MS, HD (Beurel et al., 2013; Eldar-Finkelman &
VanHook, 2016; Rippin et al., 2021)

ITDZs MS (Palomo et al., 2012; Redondo et al., 2012)

Cations Lithium Li AD, PD, ALS, MS, BD, GBM, SZ, I/R injury (Leucht,
Kissling & McGrath, 2007; Ochoa, 2022; Smith, Mill &
Lunnon, 2020; Young, 2009)

Note:
Abbreviations of disease: AD, Alzheimer’s disease; PD, Parkinson’s disease; HD, Huntington9s disease; ALS, Amyotrophic Lateral Sclerosis; MS, Multiple Sclerosis; BD,
Bipolar Disorder; SZ, Schizophrenia; GBM, Glioblastoma; I/R injury, Ischemia-reperfusion (I/R) injury.
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microtubules and form paired pathological helical filaments, leading to progressive
neurofibrillary degeneration.

GSK-3β is significantly expressed in the neuronal cell bodies of the brains of AD
patients (Pei et al., 1997). Studies have shown that GSK-3β is a key enzyme for the
hyperphosphorylation of tau protein. Overexpression of GSK-3β in the brains of
transgenic mice leads to the hyperphosphorylation of tau protein, microtubule breakdown,
and the appearance of neurofibrillary degeneration (Brownlees et al., 1997; Hernandez,
Lucas & Avila, 2013). The activity of GSK-3β contributes to the production of Aβ and Aβ-
mediated neuronal death. Mechanistically, tau protein is a substrate for GSK-3β
phosphorylation and p-tau enable to form paired pathological helical filaments, leading to
progressive neurofibrillary degeneration. GSK-3β is involved in regulating the protein
hydrolysis and cleavage of amyloid precursor protein (APP), as well as the production of
Aβ, which is a small toxic peptide. Aβ is derived from the protein hydrolysis of APP, and
inhibiting GSK-3β reduces the production of Aβ and protects neurons from the toxic
effects of the peptides. In turn, abnormal aggregation of Aβ increases the activity of GSK-
3β, establishing a mechanistic link between the two major hallmarks of AD (accumulation
of Aβ and NFD) (Qing et al., 2008; Terwel et al., 2008). Studies have found that inhibiting
the activity of GSK-3β reduces the production of Aβ and tau phosphorylation while
improving learning and memory abilities (Zhang et al., 2011). Therefore, GSK-3β is
considered a potential target for treating Alzheimer’s disease. Currently, some GSK-3β
inhibitors have entered preclinical studies, but their efficacy and safety still need further
verification (Arciniegas Ruiz & Eldar-Finkelman, 2021).

GSK-3β in Parkinson’s syndrome
Parkinson’s disease (PD) is a chronic neurodegenerative movement disorder, and it is the
second most common neurodegenerative disease. PD is characterized by the degeneration
of substantia nigra dopaminergic neurons and depletion of dopamine in the striatum, as
well as the abnormal accumulation of a-synuclein and synphilin-1 (a-synuclein-
interacting protein), resulting in pathological and clinical abnormalities (Jankovic & Tan,
2020). Dopamine helps to guide muscle activity, and when there is a significant loss of
dopaminergic neurons in the substantia nigra of the brain, characteristic movement
difficulties of PD, such as tremors, rigidity, bradykinesia, impaired balance, and impaired
coordination, can occur (Reich & Savitt, 2019).

Numerous studies have found that the expression of GSK-3β is higher in the brains of
patients with PD. In the striatum of PD patients after death, the levels of a-synuclein and
p-GSK-3β phosphorylated at Tyr 216 are higher, and activated GSK-3β
hyperphosphorylates tau to produce toxic pathological forms of p-tau (Wills et al., 2010).
In transgenic mouse models, the activation of GSK-3β depends on the presence of
a-synuclein, and overexpression of a-synuclein is associated with increased activity of
GSK-3β, indicating that the accumulation of a-synuclein contributes to the activation and
increase of GSK-3β in the brain of PD, leading to excessive phosphorylation of tau. Both in
vitro and in vivo, GSK-3β is activated by MPTP in a strictly a-synuclein-dependent manner
and is responsible for the excessive phosphorylation of tau protein (Duka et al., 2009).
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Mechanistically, a-synuclein is a substrate for GSK-3β phosphorylation and has been
reported to activate NLRP3 inflammasome assembly by TLR2 stimulation. Interestingly,
a-synuclein reversely leads to GSK-3β activation, and an acidic region of a-synuclein is
responsible for the stimulation of GSK-3β-mediated tau phosphorylation (Samim Khan
et al., 2023). Thus, it has been concluded that there is crosstalk between a-synuclein and
GSK-3β-mediated tau phosphorylation, resulting in PD progression. A previous study has
reported that heat shock protein 70 (Hsp70) suppresses the a-synuclein-induced
phosphorylation of tau by GSK-3β through direct binding to a-synuclein, suggesting that
Hsp70 may act as a novel therapeutic target to counteract a-synuclein-mediated tau
phosphorylation in PD (Kawakami et al., 2011).

Inhibition of GSK-3β reduces the accumulation of a-synuclein and alleviates the
excessive phosphorylation of tau protein (Duka et al., 2009). Synphilin-1 is an a-synuclein-
interacting protein, and GSK-3β specifically phosphorylates synphilin-1, reducing its
ubiquitination in vitro and in vivo, which reduces its degradation by proteasomes
(Avraham et al., 2005). A small amount of GSK-3β is also detected in mitochondria, and
studies have shown that increased mitochondrial GSK-3β activity enhances the production
of reactive oxygen species and disrupts mitochondrial morphology. Chemical inhibitors of
GSK-3β inhibit cell apoptosis induced by rotenone, an inhibitor of complex I of the
electron transport chain, and attenuate GSK-3β-mediated damage to mitochondria (King
et al., 2008). Inhibition of GSK-3β activity is a key element in the treatment of PD, as GSK-
3β appears to be a specific therapeutic target for PD due to its involvement in neuronal
apoptosis, phosphorylation of tau protein, aggregation of a-synuclein, aggregation of
synphilin-1, and mitochondrial dysfunction (Golpich et al., 2015).

GSK-3β in bipolar disorder
Bipolar disorder (BD), also known as manic-depressive illness, is a severe mental disorder.
The symptoms of bipolar disorder first appear in adolescence or early adulthood, and they
recur unpredictably with features of cyclic alternation between manic and depressive
moods, characterized by periodic disturbances in mood, energy patterns, and behaviour
(Vieta et al., 2018). Lithium and valproic acid are representative drugs and mood
stabilizers used for bipolar disorder, which can alleviate mild to moderate manic episodes
in BD patients (Scarselli, 2023). Both lithium and valproic acid exert therapeutic effects by
inhibiting GSK-3β (Dandekar et al., 2018). Drugs used to treat bipolar disorder usually
inhibit GSK-3β, indicating that GSK-3β plays a critical role in the therapeutic effects of
bipolar disorder treatment.

GSK-3β is not only a target of lithium but also of other categories of mood stabilizers,
antidepressants, and antipsychotic drugs (Beaulieu, 2007). In transgenic mice
overexpressing GSK-3β, research has shown that the overexpression of GSK-3β leads to
hyperactivity and ADHD-like symptoms, similar to human mania (Prickaerts et al., 2006).
Heterozygous GSK-3βmice exhibit normal morphology, reduced exploratory activity, and
a lithium-mimetic antidepressant-like state (O’Brien et al., 2004). Increasing evidence
supports the important role of GSK-3β in the treatment of mania and depression
(Dandekar et al., 2018). GSK-3β represents a promising therapeutic target for addressing
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depression, with demonstrated antidepressant effects observed through the administration
of GSK-3β inhibitors in animal models (Rosa et al., 2008). Increased GSK-3β kinase
activity has been detected in brain samples of human patients with bipolar disorder (BD),
and abnormal GSK-3β activity occurs in patients with severe depression, indicating that
abnormal GSK-3β activity promotes the onset of BD (Polter et al., 2010). Dysregulation of
serotonin (5-HT) neurotransmission in the brain is considered the basis of bipolar
disorder. In transgenic mice, the decrease in brain 5-HT levels is accompanied by the
activation of GSK-3β, and the inactivation of GSK-3β alleviates abnormal behaviour
caused by 5-HT deficiency. Various 5-HT drugs inhibit brain GSK-3β signalling,
indicating that targeting the GSK-3β signalling pathway may provide a strategy for the
treatment of certain 5-HT-related psychiatric disorders (Beaulieu et al., 2008; Latapy et al.,
2012; Zheng et al., 2021).

A considerable array of GSK-3β inhibitors has been examined in models of bipolar
disorder (BD). In mouse models of mania, administration of various GSK-3β inhibitors,
including TDZD-8, SB-216763, SB-627772, AF3581, and indirubins, mitigates the “manic”
effects, as evidenced by decreased hyperactivity and restoration of normal ambulation
behaviour. GSK-3β inhibitors also demonstrate notable therapeutic advantages in
addressing the depressive phase in animal models. Administration of tideglusib, VP2.51,
and the SCI peptide yields antidepressant-like outcomes (Arciniegas Ruiz & Eldar-
Finkelman, 2021).

GSK-3β and schizophrenia
Schizophrenia is a common debilitating neurological disorder with a multigenetic basis,
and it is characterized by poor emotional response, impaired language reasoning, and
significant social dysfunction (Zamanpoor, 2020). AKT1 and GSK-3β play critical roles in
synaptic plasticity and neuronal function in the central nervous system. The AKT/GSK-3β
signalling pathway is involved in schizophrenia, with AKT1 being a potential susceptibility
gene for schizophrenia. Cognitive impairment, abnormal synaptic morphology, neuronal
atrophy, and dysfunction of neurotransmitter signalling may partly be explained by
reduced PI3K/AKT signalling in schizophrenia. Furthermore, lower levels of AKT may
have a detrimental effect on neurodevelopment by increasing the effect of risk factors,
attenuating the effect of growth factors, and reducing the response of patients to treatment
of antipsychotic agents (Zheng et al., 2012). AKT1-3 are upstream inhibitors of GSK-3β,
and Ser9 in GSK-3β is a phosphorylation site for AKT. Phosphorylation of GSK-3β (Ser9)
leads to its inactivation. It has been reported that the protein level of AKT1 is reduced in
patients with schizophrenia, accompanied by a decrease in phosphorylation of Ser9 in
GSK-3β and an increase in GSK-3β activity (Emamian et al., 2004). GSK-3β has hundreds
of single nucleotide polymorphisms (SNPs), and it has been reported that individuals
carrying the C allele of the GSK-3β promoter region C are more susceptible to
schizophrenia (Tang et al., 2013). In schizophrenia (SZ), carriers of the low-activity C allele
variant have significantly higher brain volume in the temporal lobe, which is the brain
parenchymal region with the most consistent morphological abnormalities in
schizophrenia. The neuropathological process in this area develops rapidly at the onset of
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the disease, suggesting that carrying the low-activity mutant C allele gene protects the
brain from related neuropathological damage. GSK-3β is an important factor that affects
the neuropathology of schizophrenia (Benedetti et al., 2010).

GSK-3β and tumour therapy
GSK-3β is associated with the occurrence and development of tumours. Given its ability to
negatively regulate oncogenic proteins, such as MYC and β-catenin, GSK-3β likely plays a
suppressive role in tumourigenesis. Nevertheless, several investigations have demonstrated
that GSK-3β may exhibit a positive regulatory role in tumourigenesis within human
ovarian, liver, colon, and pancreatic carcinomas (Luo, 2009). Whether GSK-3β plays a
tumour suppressor role or serves as a tumour promoter depends on the cell type and
cellular context (Takahashi-Yanaga, 2013). Glioblastoma (GBM) is the most common
primary intracranial tumour, originating from glial cells and accounting for approximately
81% of intracranial tumours (Xu et al., 2020). The expression levels of GSK-3β and
Tyr216-phosphorylated GSK-3β are higher in GBM tissues than in nontumor brain
tissues. GSK-3β in GBM often plays a pro-cancer role. Inhibiting the activity or expression
of GSK-3β in vitro reduces the survival and proliferation of glioblastoma cells, as well as
induces apoptosis of glioblastoma cells and delays the growth of mouse neuroblastoma
tumours (Dickey et al., 2011). The phosphorylation of GSK-3β at Ser9 results in the
inhibition of GSK-3β, which subsequently leads to the activation of glycogen synthase,
thereby facilitating glycogen synthesis. Glioblastoma cells exhibit notably elevated levels of
glycogen, and the accumulation of glycogen serves as a promoter for the growth of GBM
(Majewska & Szeliga, 2017). In the clinical setting, it has been observed that the levels of
GSK-3β and its phosphorylated form (Tyr216) are elevated in tumours compared to
normal tissues. Significant inhibition of GSK-3β has been shown to reduce the survival and
proliferation of glioblastoma cells, and this effect is accompanied by an upregulation of p53
and p21 expression (Miyashita et al., 2009). In addition, Kotliarova et al. (2008) reported
that inhibition of GSK-3β activity results in c-MYC activation, leading to the induction of
glioma cell death.

Of note, the role of GSK-3β in glioblastoma tumours is controversial (Fig. 3). Li et al.
(2010) demonstrated that GSK-3β is highly expressed and activated during differentiation
in sensitive C6 malignant glioma cells. Interference of GSK-3β activity with GSK-3β
inhibitors or siRNA potently suppresses differentiation in sensitive C6 cells. Conversely,
overexpression of a constitutively active form of GSK-3β (GSK-3β-S9A) mutant in
differentiation-resistant U251 glioma cells restores their differentiation abilities (Li et al.,
2010). Zhao et al. (2015) demonstrated that the levels of p-GSK-3β (Ser9) are significantly
upregulated in glioma tissues compared to normal tissues. Ectopic expression of GSK-3β in
glioma cells significantly inhibits tumour growth, which is accompanied by a decrease in
β-catenin expression and downregulation of p-mTOR and p-p70S6K1 (Zhao et al., 2015).
Consistently, inactivation or degradation of GSK-3β promotes glioblastoma invasion and
epithelial-mesenchymal transition (EMT) in glioblastoma cells (Li et al., 2019; Yang et al.,
2019). Furthermore, CHIR99021, a GSK-3β inhibitor, greatly increases glioma stem-like
cell (GSLC) properties in patient-derived glioma samples (Yang et al., 2020). Nevertheless,
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increasing evidence also suggests that GSK-3β is an important molecule that leads to the
malignant phenotype of GBM. AZD2858 is an effective adjunct to glioma radiotherapy at
clinical doses. Most recently, studies have shown that GSK-3β inhibition by AZD2858
promotes glioma cell death by disrupting centrosome function and inducing mitotic
defects (Brüning-Richardson et al., 2021).

CONCLUSIONS AND PERSPECTIVES
In the present review, the possible underlying mechanisms that connect GSK-3β signalling
with the physiopathology of the brain are discussed. From our perspective, the function of
GSK-3β in brain pathophysiology is complicated and not entirely understood. GSK-3β is
implicated in a variety of psychiatric and neurological disorders, emphasizing both its
importance and complexity within the brain. It is meaningful to elucidate the basic
biological mechanisms underlying GSK-3β in the brain because the increased
understanding of the relationship between GSK-3β and the neural system greatly impacts
the progress in treating several neurological diseases. Notably, there is a different opinion
in the field regarding the effects of GSK-3β on cognition in the brain. For example, studies
have shown that GSK-3β activity in the amygdala and hippocampus is needed for memory
reconsolidation (Hong et al., 2012; Xie et al., 2022). With an increase in total GSK-3β and
phosphorylated GSK-3β (Tyr216) in adult mice after exercise, Zang et al. (2017) observed

Figure 3 GSK-3β plays a paradoxical role in glioblastoma.
Full-size DOI: 10.7717/peerj.16635/fig-3
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that there is a significant enhancement in adult neurogenesis and cognitive functions.
In old mice, GSK-3β is needed for memory formation (Koike et al., 2021). These findings
suggest that inhibition of GSK-3β in neurological disorders may bring potential risk of
cognitive impairment. To some degree, these results also possibly explain the poor efficacy
of GSK-3β inhibitors in preserving memory capacity in AD patients.

GSK-3β has emerged as a pivotal molecule with multifaceted roles in various cellular
processes, extending from glycogen metabolism to critical signalling pathways, especially
those involving β-catenin and NF-κB. The intricate regulatory mechanisms of GSK-3β,
particularly through phosphorylation events, underscore its significance in both normal
cellular homeostasis and pathological conditions. In the context of glioblastoma (GBM),
the aberrant activation of the GSK3β/β-catenin pathway and the consequential modulation
of key proteins, such as c-Myc and c-Jun, highlight the potential of GSK-3β as a
therapeutic target. However, the role of GSK-3β in glioblastoma tumours is still
controversial. Considering the carcinogenic risk of GSK-3β in gliomas, GSK-3β inhibitors
should be used with caution as a treatment for glioblastoma. It is best to utilize an effective
GSK-3β inhibitor that does not cause any carcinogenic risk while having an ideal
anticancer effect through the appropriate dose range. Overall, the profound influence of
GSK-3β on GBM malignancy, especially its implications in GSC survival, warrants further
investigation to elucidate its complete role and pave the way for targeted therapeutic
strategies in GBM management.

Comprehensive investigations are imperative to elucidate the precise signalling
mechanisms regulated by GSK-3β and the mechanistic contributions of GSK-3β in the
development of brain diseases. Urgent efforts are required to expedite advancements in
substantiating the advantages of GSK-3β interventions and addressing the challenges
associated with their implementation as a therapeutic strategy for brain diseases. Despite
encouraging outcomes observed in preclinical studies utilizing GSK-3β inhibitors, caution
must be exercised prior to their utilization, necessitating further examinations to assess
both their beneficial effects and potential side effects during application. With the rapid
development of technologies that allow elucidation of the characteristics and pattern of
GSK-3β in brain diseases, the time has come to build on these findings to dissect the
complexity of organisms and exploit the optimal therapy method.

While many studies have contributed to the understanding of how GSK-3β is involved
in brain physiology and pathology, the recent development of conditional gene editing,
molecular imaging, and optogenetic tools allows a more precise determination of the
functional significance of these findings and application of them to improve the
understanding and treatment of neurological disorders. Combination therapeutic
strategies utilizing GSK-3β inhibitors hold great promise for the treatment of Alzheimer’s
disease (AD), Parkinson’s disease (PD), and bipolar disorder (BD). The activity of GSK-3β
is regulated by diverse stimuli, which can lead to its activation or inactivation. This
phenomenon is intricately associated with the complex characteristics and genetic
heterogeneity of brain disorders, particularly in the realm of brain tumours. Personalized
genomics and diverse omics methodologies hold promise in identifying patients who may
derive therapeutic benefits from GSK-3β inhibitor treatment. Ultimately, this knowledge
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can guide clinical practitioners in selecting the most appropriate therapy for each
individual patient.
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