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ABSTRACT
It is well known that PUFA impede the LPS-mediated activation of the transcription
factor NFkappaB. However, the underlying mode of action has not been clarified yet.
To address this issue in a comprehensive approach, we used the monocyte/macrophage
cell line RAW264.7 to investigate the consequences of a PUFA supplementation on
the TLR4 pathway with a focus on (i) the gene expression of TLR4 itself as well as of
its downstream mediators, (ii) the membrane microdomain localization of TLR4 and
CD14, (iii) the stimulation-induced interaction of TLR4 and CD14. Our data indicate
that the impairment of the TLR4-mediated cell activation by PUFA supplementation
is not due to changes in gene expression of mediator proteins of the signaling cascade.
Rather, our data provide evidence that the PUFA enrichment of macrophages affects
the TLR4 pathway at the membrane level. PUFA incorporation into membrane lipids
induces a reordering of membrane microdomains thereby affecting cellular signal
transduction. It is important to note that this remodeling of macrophage rafts has
no adverse effect on cell viability. Hence, microdomain disruption via macrophage
PUFA supplementation has a potential as non-toxic strategy to attenuate inflammatory
signaling.

Subjects Biochemistry, Cell Biology, Immunology, Nutrition
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INTRODUCTION
The binding of ligands, e.g., lipopolysaccharide (LPS) or the gram-negative bacterium
Pseudomonas aeruginosa, to the macrophage Toll-like receptor 4 (TLR4) activates the
TLR4 signaling cascade, which eventually results in the activation of the nuclear factor
kappa B (NFκB) (McIsaac, Stadnyk & Lin, 2012). The main steps of the TLR4 pathway
include the interaction of TLR4 with its co-receptor CD14, the activation of the adaptor
protein MyD88, the recruitment of the IL-1 receptor associated kinase 4 (IRAK-4)
to the TLR receptor complex, the phosphorylation-dependent activation of IRAK-
1, the association of IRAK-1 with the TNF receptor-associated factor 6 (TRAF6) and
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subsequently the activation of the I kappa B kinase complex (IKK complex) which leads
to the activation of NFκB (McIsaac, Stadnyk & Lin, 2012). As a result, the macrophage
polarizes into the inflammation-driving M1 phenotype (Sica & Mantovani, 2012). M1
macrophages are characterized by the synthesis and the release of pro-inflammatory
cytokines, such as IL-1β, IL-6 or TNF-α, and are able to develop a severe respiratory burst
thus contributing to the defense against microbial pathogens (Sica & Mantovani, 2012).
However, an excessive inflammatory response by M1 macrophages, which is a hallmark
of chronic infections with persistent pathogens, such as P. aeruginosa, is also reported to
cause tissue damage, to lead to functional restrictions and to favor secondary infections
(Park et al., 2007; Ambrozova, Pekarova & Lojek, 2010).

More recently a further functional phenotype of macrophages has been described: the
M2 macrophage (Sica & Mantovani, 2012). M2 macrophages are characterized by a high
phagocytic activity and the synthesis of anti-inflammatory cytokines (Sica & Mantovani,
2012). Macrophage polarization into the M2 type has been shown to be negatively
associated with the microbial activity of the immune cells (Sica & Mantovani, 2012). M2
macrophages are involved in tissue remodeling and immune regulation (Sica & Manto-
vani, 2012). In addition, due to their anti-inflammatory properties M2 macrophages are
believed to prevent detrimental M1 immune responses (Sica & Mantovani, 2012).

With the introduction of the lipid raft hypothesis the impact of the cellular membrane
lipid composition has moved into the focus of biomedical science. It is assumed that
membrane microdomains play a pivotal role in the initiation of signal transduction
processes (Ye et al., 2010; Zhang, Zhang & Sun, 2010). In previous investigations, we
already showed the membrane lipid composition to depend on the availability of fatty
acids (Schumann et al., 2011; Basiouni et al., 2012). Supplementation of macrophages (cell
line RAW264.7) with polyunsaturated fatty acids (PUFA) for 72 h in a concentration of
15 µM resulted in an incorporation of these fatty acids into both non-raft and lipid raft
membrane domains (Schumann et al., 2011). This PUFA integration altered the physical-
chemical properties of the membrane microdomains with the unsaturation index being
positively related to the number of double bonds of a supplemented fatty acid (Schumann
et al., 2011). Interestingly, a PUFA supplementation of cells has been shown by us and
others to lead to an impairment of the LPS-mediated stimulation of NFκB activity (Zhao
et al., 2005; Ren & Chung, 2007;Weldon et al., 2007; Chang et al., 2010;Mullen, Loscher
& Roche, 2010; Schumann & Fuhrmann, 2010). Accordingly, in a series of studies we
previously demonstrated that enrichment of macrophages with PUFA of both the n-3 and
the n-6 family (i) promotes the phagocytosis rate as well as the bactericidal capacity of
the immune cells (Adolph, Fuhrmann & Schumann, 2012), (ii) diminishes the activation-
induced respiratory burst (Adolph et al., 2012), and (iii) down-regulates the synthesis
of the pro-inflammatory cytokines IL-1β, IL-6 and TNF-α (Schoeniger et al., 2011). A
summarized presentation of the PUFA effects on macrophage cytokine synthesis can be
found in Fig. S1. All together, the data underline that the enrichment of macrophages
with PUFA leads to a polarization of the immune cells from the M1 type to the M2 type.

In the present study we aimed to elucidate the mechanisms underlying the PUFA
effects. We were able to show that the impairment of the TLR4-mediated cell activation
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due to PUFA supplementation is not based on a modulation of the gene expression of
mediator proteins of the signaling cascade. Rather, our data provide evidence that the
PUFA enrichment of macrophages affects the TLR4 pathway at the membrane level.

MATERIALS AND METHODS
Materials
All chemicals and reagents were obtained from Sigma-Aldrich (Taufkirchen, Ger-
many) unless noted otherwise. Cell culture flasks were purchased from Greiner Bio-
One (Frickenhausen, Germany). HEPES (25 mmol/L)-buffered RPMI 1640 culture
medium containing 300 mg/L L-glutamine was acquired from Pan-Biotech (Aidenbach,
Germany).

Cell culture, fatty acid supplementation and stimulation
The mouse monocyte/macrophage cell line RAW264.7 (ATCC number TIB-71) was
used. RAW264.7 were cultured in RPMI 1640 medium containing 4.5 g/L glucose, 5%
v/v FCS and 0.2% v/v ethanol (basic medium). The fatty acids alpha-linolenic acid
(LNA, C18:3n3), eicosapentaenoic acid (EPA, C20:5n3), docosahexaenoic acid (DHA,
C22:6n3), linoleic acid (LA, C18:2n6) or arachidonic acid (AA, C20:4n6) (all Biotrend,
Köln, Germany) were included in the culture medium in concentrations of 15 µmol/L
using ethanol as a vehicle (0.2% v/v final ethanol concentration). Cells were cultured in
the enriched media in 75 cm2 cell culture flasks totaling 72 h at 37 ◦C and 5% CO2 in a
humidified atmosphere. Stimulation of cells was performed in the last 24 h of fatty acid
supplementation by addition of LPS (1 µg/mL, from E. coli serotype 0111:B4) or viable
P. aeruginosa (ATCC 10145, growth restriction via gentamicin (10 µg/mL), bacterium/cell
ratio 1:1). Periods of supplementation and stimulation were chosen in accordance with
our previous investigations and were proven to result in a membrane fatty acid steady
state as well as reproducible effects on macrophage functionality.

Quantitative real-time PCR
RAW264.7 were cultured, supplemented and stimulated with LPS or P. aeruginosa
ATCC 10145 as described above. Gene expression was analyzed by a SYBR Green-based
quantitative real-time PCR. Total RNA was extracted using the RNeasy kit (Qiagen
GmbH, Hilden, Germany) with an on-column DNase digestion. 1 µg RNA was reverse
transcribed to cDNA using Oligo(dT)12−18Primers and SuperScript R© III Reverse Tran-
scriptase (Invitrogen GmbH, Darmstadt, Germany), and quantitative real-time PCR was
performed by means of suitable murine RT2 qPCR primer assays (SABiosciences, Hilden,
Germany) and the SensiMixTM SYBR Kit (Bioline, Luckenwalde, Germany). Genes of
interest amplified are TLR4, CD14, MyD88, IRAK-4 and TRAF6; housekeeping gene
amplified is CASC3. Positive controls (XpressRefTM Universal Total RNA, SABiosciences,
Frederick, USA) as well as negative controls (i.e., no template control) were performed in
each run. Thermal cycling was carried out on the Rotor-Gene 6000 real-time PCR system
(Qiagen GmbH, Hilden, Germany) at 95 ◦C for 10 min followed by 45 cycles of 95 ◦C for
15 s, 55 ◦C for 30 s and 72 ◦C for 15 s. Relative quantification was performed with the
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Rotor-Gene 6000 Series Software 1.7. The quantitative real-time PCR was performed in
triplicate of three independent RNA isolations.

Fluorescence microscopy
RAW264.7 were cultured on sterile coverslips in 12-well plates, supplemented and
stimulated with LPS or P. aeruginosa as described above. The cells were fixed in 4%
paraformaldehyde for 10 min, rinsed in PBS two times and permeabilized in 0.1% Triton-
X100 in PBS for 5 min. Non-specific binding sites were blocked by incubation in 1% BSA
in PBS for 1 h. Afterwards cells were incubated in a humidified chamber for 1 h at room
temperature with species-specific primary antibodies against GM1, TLR4 (both Biozol,
Eching, Germany) as well as CD14 (Santa Cruz Biotech., Heidelberg, Germany), rinsed in
PBS three times and incubated for 1 h in a humidified chamber at room temperature in the
dark with appropriate secondary antibodies conjugated to Alexa Fluor 350, Alexa Fluor 488
and Alexa Fluor 647 respectively (Invitrogen GmbH, Darmstadt, Germany). The coverslips
with the labeled cells were rinsed in PBS three times, mounted onto glass slides and
examined under a BZ-9000 fluorescence microscope (Keyence, Neu-Isenburg, Germany).
Microscopic images were analyzed using the public domain software ImageJ (Version
1.47n). Co-localization was quantified using Manders’ coefficient as previously described
(Manders, Verbeek & Aten, 1993). Four independent experiments were performed in
triplicates for each combination of PUFA supplementation and stimulation of cells.

Co-immunoprecipitation and Western blot
RAW264.7 were cultured, supplemented and stimulated with LPS or P. aeruginosa as
described above. The cells were lysed in ice-cold lysis buffer (50 mM Hepes, 100 mM
NaCl, 2 mM EDTA, 10% glycerol, 1% Igepal CA-630) in presence of the protease inhibitor
cocktail Mammalian Protease Arrest (VWR, Darmstadt, Germany) in a final concentration
of 0.2% v/v. Cell lysates with a total protein concentration of 100 µg/mL were incubated
with 1 µg of an anti-mouse CD14 antibody (Abnova, Heidelberg, Germany) at 4 ◦C for 1 h.
Immune complexes were captured with 20 µl Protein A/G Plus–Agarose beads (Santa Cruz
Biotech., Heidelberg, Germany) at 4 ◦C overnight and under constant rotation. Agarose
beads were washed 3 times with lysis buffer, resuspended in 35 µl Roti-Load 1 sample
buffer (Roth, Karlsruhe, Germany) and boiled for 10 min. Immunoprecipitated proteins
were separated by SDS-PAGE using the Amersham ECL Gel box and the Amersham ECL
Gel 4–12% (both VWR, Darmstadt, Germany), and subsequently blotted on a 0.22 µm
nitrocellulose membrane (Advansta, Menlo Park, USA) for Western blot analysis. The
membrane was blocked in PBS containing 0.05% Tween20 and 5% nonfat dry milk
and divided into two parts (upper part ranged from 170 kDa to 70 kDa, lower part
ranged from 70 kDa to 10 kDa). Immunostaining was performed overnight at 4 ◦C using
appropriated species-specific primary antibodies against TLR4 (=upper part, Invitrogen
GmbH, Darmstadt, Germany) and CD14 (=lower part, Santa Cruz Biotech., Heidelberg,
Germany), followed by a 2 h incubation at room temperature with appropriate horseradish
peroxidase conjugated secondary antibodies (Southern Biotech, Berlin, Germany and
Dianova, Hamburg, Germany respectively). Bands were visualized using the Clarity ECL
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western blotting substrate (Bio-Rad, München, Germany) according to the manufacturer’s
instructions. Band specificity was verified by performing IgG controls as well as by
checking protein size using the PageRuler prestained protein ladder (Thermo Fisher
Scientific Inc., Waltham, MA, USA). Band intensities were determined densitometrically
using the GeneTools image analysis software from Syngene (Version 4.01, Cambridge,
United Kingdom). Four independent experiments were performed in duplicate for each
combination of PUFA supplementation and stimulation of cells.

Statistical analysis
Data are shown asmean± standard deviation (S.D.). Two-way analysis of variance followed
by unpaired Students t test was used to identify significant differences between means. The
statistical analysis was carried out by means of the program GraphPad Prism 6 (GaphPad
Software, La Jolla, CA, USA). In all cases, p< 0.05 was considered to indicate significant
differences.

RESULTS AND DISCUSSION
It is well known that PUFA impede the LPS-mediated activation of the transcription
factor NFκB, however, the underlying mechanisms have not been elucidated yet.
Nevertheless, according to scientific literature there are two possible scenarios. On the
one hand unsaturated fatty acids are discussed to diminish the gene expression of the
TLR4 receptor (Lu et al., 2007; Liu et al., 2012). On the other hand PUFA are reported
to disrupt membrane microdomain composition (Parker et al., 2008; Wong et al., 2009;
Shaikh, Jolly & Chapkin, 2012), which might hamper the stimulation-induced initiation
of the TLR4 signaling cascade via blocking the TLR4-CD14 interaction in lipid rafts. To
address this issue in a comprehensive approach we investigated the consequences of a PUFA
supplementation on the TLR4 pathway with a focus on (i) the gene expression of TLR4
itself as well as of its downstream mediators, (ii) the membrane microdomain localization
of TLR4 and CD14, (iii) the stimulation-induced interaction of TLR4 and CD14 using the
monocyte/macrophage cell line RAW264.7. For the first time the effects of various fatty
acids differing in their family (n-3 versus n-6), chain length and number of double bonds,
were analyzed in parallel. Of note, PUFA concentration used for supplementation (15 µM)
matches physiological conditions (Corsetto et al., 2012). Biological relevance of gained
results was further improved by the use of the viable gram-negative pathogen P. aeruginosa
ATCC 10145 as stimulus. Supplementation and stimulation protocols were in accordance
with previous investigations of the working group. A supplementation period of 72 h is
needed to complete the incorporation of the fatty acids into the membrane of RAW264.7
cells. A stimulation period of 24 h is proven to result in macrophage (M1) activation, which
is characterized by an increase in reactive oxygen intermediates (Adolph et al., 2012) as well
as pro-inflammatory cytokines (Fig. S1) (Schoeniger et al., 2011).

PUFA have no effect on gene expression of downstream mediator
proteins of the TLR4 pathway
The impact of stimulation and/or PUFA supplementation on the expression of key
mediators of the TLR4 pathway was analyzed by quantitative real-time PCR.
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Figure 1 LPS- or PUFA-mediated modulation of gene expression of TLR4, CD14, MyD88, IRAK-4 and TRAF6 in RAW264.7 macrophages.
Gene expression was determined by quantitative real-time PCR of total RNA isolated from RAW264.7 macrophages using the housekeeping gene
CASC3 for normalization of mRNA expression levels. Data are expressed as mean± S.D. (N = 3, n = 3). Asterisks indicate a statistically signif-
icant difference compared with the unstimulated or unsupplemented controls (∗p < 0.05, ∗∗p < 0.01). (A) Cells were cultured in basic medium
(RPMI 1640 containing 4.5 g/L glucose, 5% v/v FCS, 0.2% v/v ethanol) and stimulated with LPS (1 µg/mL) for 24 h. (B) Cells were cultured in ba-
sic medium supplemented with alpha-linolenic acid (LNA), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), linoleic acid (LA) or arachi-
donic acid (AA) in a concentration of 15 µM for 72 h. Cell stimulation was performed by addition of LPS (1 µg/mL) to the culture medium in the
last 24 h of incubation.

Stimulation of RAW264.7 cultured in basic medium with LPS or viable P. aeruginosa
resulted in a moderate but significant decrease in the expression of the TLR4 gene
(Fig. 1A). Likewise, IRAK-4 gene expression was down-regulated upon RAW264.7
stimulation (Fig. 1A). There were no changes in the gene expression level of CD14,
MyD88 or TRAF6 following treatment of the macrophages with LPS and viable P.
aeruginosa respectively (Fig. 1A). Our results are in accordance with previous reports,
which indicate that LPS stimulation has an inhibitory effect on TLR4 gene expression
(Gabler et al., 2008; Hirayama et al., 2011). This response, seeming contradictory at first,
might be a self-protecting mechanism against excessive immune reactions, which may
contribute to the development of endotoxin tolerance by macrophages (Hirayama et al.,
2011). Moreover, our data provide evidence that, beside IRAK-4, downstream mediators
of the TLR4 signaling cascade are not involved in this adaptive process.

PUFA enrichment of the culture medium did not affect gene expression of CD14,
MyD88, IRAK-4 as well as TRAF6. Likewise, all PUFA tested, except DHA, failed to
modulate the expression of TLR4 (Fig. 1B). DHA supplementation of the RAW264.7,
however, resulted in a significant decrease in TLR4 gene expression (Fig. 1B). This effect
occurred in both unstimulated and stimulated cells (Fig. 1B). To our knowledge, the action
of PUFA on gene expression of downstream mediator proteins of the TLR4 pathway has
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not been investigated so far. Besides, conflicting results have been reported regarding the
PUFA impact on TLR4 gene expression. A recently described suppressive effect of DHA, AA
or fish oil on enterocytes and intestinal cells (Lu et al., 2007; Liu et al., 2012) could not been
confirmed in adipose stem cells as well as HEK cells (Hsueh et al., 2011; Murumalla et al.,
2012). Taking this into account and considering the data presented here it seems unlikely
that modulation of gene expression of the TLR4 receptor or it downstream mediators is
the driving force behind the observed inhibitory action of PUFA on LPS-stimulated NFκB
activation.

PUFA inhibit the stimulation-induced recruitment of TLR4 and CD14
into membrane rafts
The membrane microdomain localization of TLR4 and CD14 was assessed by fluorescence
microscopic analysis of receptor co-localization with the lipid raft marker ganglioside GM1
(Harder et al., 1998).

Stimulation of RAW264.7 cultured in basic medium with LPS or viable P. aeruginosa
resulted in an increased co-localization of both TLR4 (Figs. 2A and 2B; Figs. S2–S4) and
CD14 (Figs. 2C and 2D; Figs. S5–S7) with GM1. Receptor recruitment into membrane
rafts was slightly enhanced following LPS stimulation (Figs. 2B and 2D), but elevated
significantly, when viable P. aeruginosa were used as stimulus (Figs. 2B and 2D). It is well
known that the stimulation-induced interaction of TLR4 with its co-receptor CD14 takes
place in lipid rafts (Olsson & Sundler, 2006; Triantafilou et al., 2006; Parker et al., 2008;
Wong et al., 2009; Fessler & Parks, 2011). The selective concentration of receptors in these
specializedmembrane domains is believed to facilitate the assembly of the signaling complex
(Nicolau et al., 2006; Fessler & Parks, 2011). In fact, investigations on model membranes
have shown that the sequestration and accumulation of signal pathway components into
membrane rafts increases the probability of collisions between particular proteins (Nicolau
et al., 2006; Fessler & Parks, 2011). Consequently and in accordance to previous studies
(Olsson & Sundler, 2006; Wong et al., 2009) the stimulation-mediated localization of TLR4
and CD14 within lipid rafts described here may represent a prerequisite for activation
of the signaling cascade. Furthermore, it can be concluded from our data that complex
biological stimuli, such as viable P. aeruginosa, are more potent activators of the TLR4
signaling cascade than purified biological molecules, such as LPS.

PUFA supplementation of unstimulated RAW264.7 resulted in a significant increased
co-localization of both TLR4 (Figs. 2E and 2F; Figs. S8–S13) and CD14 (Figs. 2G and
2H; Figs. S14–S19) with GM1 with DHA having the most pronounced effect. To our
knowledge this is the first study investigating the impact of PUFA on TLR4 and CD14
membrane microdomain localization on unstimulated macrophages. Our data suggest that
the modulation of membrane lipid composition by n-3 or n-6 fatty acids is sufficient to
alter membrane receptor distribution even in absence of particular stimulants.

In contrast to macrophages cultured in basic medium, PUFA-supplemented RAW264.7
treated with either LPS or viable P. aeruginosa did not show enhanced co-localization levels
of TLR4 (Figs. 3A and 3B; Figs. S20–S25) or CD14 (Figs. 3C and 3D; Figs. S26–S31)
with GM1. Instead, a significant decrease in the co-localization of both TLR4
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Figure 2 Stimulus- or PUFA-mediated modulation of the co-localization of TLR4 or CD14 with the
raft marker GM1 on RAW264.7 macrophages. Co-localization of TLR4 or CD14 with the raft marker
GM1 on RAW264.7 macrophages was analyzed by indirect immunofluorescence microscopy. Cells were
cultured in basic medium (RPMI 1640 containing 4.5 g/L glucose, 5% v/v FCS, 0.2% v/v ethanol). Stim-
ulation was performed by supplementation of basic medium with LPS (1 µg/mL) or viable P. aeruginosa
(MOI 1) for 24 h. PUFA enrichment was performed by supplementation of basic medium with alpha-
linolenic acid (LNA), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), linoleic acid (LA) or
arachidonic acid (AA) in a concentration of 15 µM for 72 h. Cells, grown on coverslips, were fixed in 4%
paraformaldehyde, permeabilized in 0.1% Triton X-100 and subsequently immunostained using specific
primary antibodies against TLR4, CD14 and GM1, respectively, as well as (continued on next page. . . )
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Figure 2 (. . .continued)
Alexa Fluor-labeled secondary antibodies. Representative images from 4 independent experiments
were captured. GM1 is labeled in red; TLR4 and CD14 are labeled in green. Scale bar represents 20 µm.
Quantification of TLR4 or CD14 co-localization with GM1 was performed by calculating the Manders‘
(M1) coefficient using the JACoP plugin of ImageJ. Data are expressed as mean± S.D. (N = 4, n = 3).
Asterisks indicate a statistically significant difference compared with the unstimulated or unsupplemented
controls (∗p < 0.05, ∗∗p < 0.01). (A) Representative images showing the stimulus effects on TLR4-GM1
co-localization. High resolution images can be found in Figs. S2–S4. (B) Graph showing the stimulus
effects on TLR4-GM1 co-localization. (C) Representative images showing the stimulus effects on
CD14-GM1 co-localization. High resolution images can be found in Figs. S5–S7. (D) Graph showing the
stimulus effects on CD14-GM1 co-localization. (E) Representative images showing the PUFA effects on
TLR4-GM1 co-localization. High resolution images can be found in Figs. S8–S13. (F) Graph showing
the PUFA effects on TLR4-GM1 co-localization. (G) Representative images showing the PUFA effects on
CD14-GM1 co-localization. High resolution images can be found in Figs. S14–S19. (H) Graph showing
the PUFA effects on CD14-GM1 co-localization.

(Fig. 3B) and CD14 (Fig. 3D) with GM1 could partly be observed. A significant reduction
in the co-localization of TLR4 with GM1 was observed for LA-supplemented RAW264.7
stimulated with LPS as well as for DHA- or LA-supplemented RAW264.7 stimulated with
viable P. aeruginosa (Fig. 3B). The same applies for the co-localization of CD14 with GM1
in DHA- or LA-supplemented RAW264.7 stimulated with LPS or in DHA-, LA- or AA-
supplemented RAW264.7 stimulated with viable P. aeruginosa (Fig. 3D). Altogether, our
data indicate that the enrichment of the macrophage plasma membrane with unsaturated
fatty acids abolishes the stimulation-induced clustering of TLR4 and CD14 in lipid rafts.
Apparently the changes in the physical-chemical properties of themembranemicrodomains
going along with PUFA supplementation (Wassall & Stillwell, 2009; Turk & Chapkin, 2013)
disturb the segregation of the receptors between raft and non-raft membrane domains.
Since receptor sequestration in lipid rafts raises the possibility of intermolecular collisions
it may be assumed that an impaired TLR4 and CD14 clustering within the microdomains
interferes with receptor interaction and consequently prevents the initiation of the signaling
cascade in stimulated cells.

In a previous experiment it has already been shown that the n-3 PUFA DHA inhibits
the stimulation induced recruitment of TLR4 into lipid rafts (Wong et al., 2009). As an
extension to this study, we show that this effect does not only apply to DHA but also to
various PUFA from both the n-3 and the n-6 family.

It is important to note that the Manders’ (M1) coefficient used for analyzing the
microscopic data is not sensitive to differences in pixel intensities of an image (Manders,
Verbeek & Aten, 1993). For this reason, we are convinced that the co-localization coefficient
reflects biological reality and is not affected by differences in cellular receptor expression.

PUFA abate the stimulation-induced TLR4 receptor complex
formation
The interaction of TLR4 with its co-receptor CD14 being a prerequisite for the initiation
of the TLR4 signaling cascade (McIsaac, Stadnyk & Lin, 2012), was determined using a
co-immunoprecipitation assay.

There was a clear trend towards an increased association of TLR4 with CD14 due
to stimulation (Figs. 4A and 4B). Our findings are in accordance with previous studies
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Figure 3 Co-localization of TLR4 or CD14 with the raft marker GM1 on PUFA-enriched and stimulated RAW264.7 macrophages. Co-
localization of TLR4 or CD14 with the raft marker GM1 on RAW264.7 macrophages was analyzed by indirect immunofluorescence microscopy.
Cells were cultured in basic medium (RPMI 1640 containing 4.5 g/L glucose, 5% v/v FCS, 0.2% v/v ethanol) supplemented with alpha-linolenic
acid (LNA), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), linoleic acid (LA) or arachidonic acid (AA) in a concentration of
15 µM for 72 h. Cell stimulation was performed by addition of LPS (1 µg/mL) or viable P. aeruginosa (MOI 1) to the culture medium in the
last 24 h of incubation. Cells grown on coverslips were fixed in 4% paraformaldehyde, permeabilized in 0.1% Triton X-100 and subsequently
immunostained using specific primary antibodies against TLR4, CD14 and GM1, respectively, as well as Alexa Fluor-labeled secondary antibodies.
Representative images from 4 independent experiments were captured. GM1 is labeled in red; TLR4 and CD14 are labeled in green. Scale bar
represents 20 µm. Quantification of TLR4 or CD14 co-localization with GM1 was performed by calculating the Manders‘ (M1) coefficient using the
JACoP plugin of ImageJ. Data are expressed as mean± S.D. (N = 4, n= 3). Asterisks indicate a statistically significant difference compared with the
unstimulated controls (∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001). (A) Representative images showing the stimulus effects on TLR4-GM1 co-localization
of PUFA-supplemented RAW264.7. High resolution images can be found in Figs. S20–S25. (B) Graph showing the stimulus effects on TLR4-GM1
co-localization of PUFA-supplemented RAW264.7. (C) Representative images showing the stimulus effects on CD14-GM1 co-localization of
PUFA-supplemented RAW264.7. High resolution images can be found in Figs. S26–S31. (D) Graph showing the stimulus effects on CD14-GM1
co-localization of PUFA-supplemented RAW264.7.

reporting TLR4-CD14 complex formation after LPS stimulation (Parker et al., 2008; Pablo
Nicola et al., 2009). The importance of CD14 for LPS recognition and the initiation of the
TLR4 pathway is underlined by the fact, that cells expressing TLR4 but lacking CD14 are
not LPS responsive (Pablo Nicola et al., 2009).

PUFA supplementation of RAW264.7 resulted in distinct effects on TLR4-CD14
interaction. For unstimulated cells enriched with PUFA there was only a slight decrease
in TLR4-CD14 association (Figs. 4C and 4D). However, stimulation-induced TLR4-
CD14 complex formation was mostly attenuated by PUFA supplementation. After LPS
stimulation TLR4-CD14 interaction was abated by LNA, LA and AA (Figs. 4E and 4F).
After stimulation with P. aeruginosa all PUFA tested with the exception of AA were found
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Figure 4 Receptor association of TLR4 and CD14 of PUFA-enriched and stimulated RAW264.7
macrophages. Formation of TLR4-CD14 complexes was determined by co-immunoprecipitation (IP) and
visualized by Western blot (WB). Cells were cultured in basic medium (RPMI 1640 containing 4.5 g/L
glucose, 5% v/v FCS, 0.2% v/v ethanol) supplemented with alpha-linolenic acid (LNA), eicosapentaenoic
acid (EPA), docosahexaenoic acid (DHA), linoleic acid (LA) or arachidonic acid (AA) in a concentration
of 15 µM for 72 h. Cell stimulation was performed by addition of LPS (1 µg/mL) or viable P. aeruginosa
(MOI 1) to the culture medium in the last 24 h of incubation. TLR4-CD14 complexes from cell lysates
were co-immunoprecipitated using an appropriate anti-mouse CD14 (continued on next page. . . )
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Figure 4 (. . .continued)
antibody and immunoblotted using an appropriate anti-mouse TLR4 antibody. Band size was checked us-
ing a protein ladder, and band intensities were analyzed densiometrically. The IP:CD14/WB:CD14 blot
represents the lower part of the IP membrane and serves as loading control used for data normalization.
To account for inter-assay variability, the stimulation/supplementation conditions compared were run on
the same gel. Data from unstimulated (A) or unsupplemented (C+E+G) cells were set 100%, and values
from stimulated (A) or supplemented (C+E+G) cells were expressed relative to this control. Four inde-
pendent experiments were performed in duplicate for each combination of PUFA supplementation and
stimulation of cells (N = 4,n = 2). (A) Graph showing the stimulus effects on TLR4-CD14 association
of unsupplemented RAW264.7. (B) Representative Western blots showing the stimulus effects on TLR4-
CD14 association of unsupplemented RAW264.7. (C) Graph showing the PUFA effects on TLR4-CD14
association of unstimulated RAW264.7. (D) Representative Western blots showing the PUFA effects on
TLR4-CD14 association of unstimulated RAW264.7. (E) Graph showing the PUFA effects on TLR4-CD14
association of LPS-stimulated RAW264.7. (F) Representative Western blots showing the PUFA effects on
TLR4-CD14 association of LPS-stimulated RAW264.7. (G) Graph showing the PUFA effects on TLR4-
CD14 association of P. aeruginosa-stimulated RAW264.7. (H) Representative Western blots showing the
PUFA effects on TLR4-CD14 association of P. aeruginosa-stimulated RAW264.7.

to interfere with receptor-co-receptor formation (Figs. 4G and 4H). Our data support
findings from a previous study performed by (Lee et al., 2003) showing that DHA-induced
suppression of NFκB activation is mediated by interfering with the TLR4 receptor rather
than downstream effectors such as MyD88. Our results are also in line with other results of
this group demonstrating that the addition of a lipid raft inhibitor to RAW264.7 prevents
the LPS-mediated initiation of the TLR4 signaling cascade (Wong et al., 2009). The authors
claimed that the inhibitory target of unsaturated fatty acids is the TLR4 receptor itself
or its associated molecules and not downstream mediators of the signaling cascade (Lee
et al., 2003; Wong et al., 2009). In addition, they supposed that the absence of a cellular
response to LPS stimulation in presence of unsaturated fatty acids may be due to an
inhibition of raft formation going along with a reduction in interactions of TLR4 receptor
complex components (Wong et al., 2009). Our results clearly confirm this hypothesis
thereby providing first evidence of an impaired TLR4 receptor complex formation by
PUFA enrichment of macrophage lipid rafts. Of note, in our experimental setting PUFA
other than DHA seem to be even more effective in inhibiting stimulation-induced TLR4-
CD14 association. The fatty acid family (n-3 versus n-6), in any case, appears to be less
important for the observed effects of PUFA supplementation onmacrophage TLR4 receptor
complex formation.

CONCLUSIONS
Several studies show the central importance of membrane raft lipid remodeling for cellular
signaling (Fessler & Parks, 2011). Lipid rafts, under certain biophysical conditions, serve
as dynamic platforms for the assembly of specific proteins thereby facilitating receptor
complex formation. However, as shown by our results, slight changes in membrane lipid
composition, which modulate the physical-chemical properties of rafts (Schumann et
al., 2011), are sufficient to induce a reordering of membrane domains thereby leading to
altered cellular signal transduction. Hence, microdomain disruption viamacrophage PUFA
supplementation has a potential as non-toxic strategy to impede inflammatory signaling.
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