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ABSTRACT
Background: A critical aspect of in silico drug discovery involves the prediction of
drug-target affinity (DTA). Conducting wet lab experiments to determine affinity is
both expensive and time-consuming, making it necessary to find alternative
approaches. In recent years, deep learning has emerged as a promising technique for
DTA prediction, leveraging the substantial computational power of modern
computers.
Methods: We proposed a novel sequence-based approach, named KC-DTA, for
predicting drug-target affinity (DTA). In this approach, we converted the target
sequence into two distinct matrices, while representing the molecule compound as a
graph. The proposed method utilized k-mers analysis and Cartesian product
calculation to capture the interactions and evolutionary information among various
residues, enabling the creation of the two matrices for target sequence. For molecule,
it was represented by constructing a molecular graph where atoms serve as nodes and
chemical bonds serve as edges. Subsequently, the obtained target matrices and
molecule graph were utilized as inputs for convolutional neural networks (CNNs)
and graph neural networks (GNNs) to extract hidden features, which were further
used for the prediction of binding affinity.
Results: In order to evaluate the effectiveness of the proposed method, we conducted
several experiments and made a comprehensive comparison with the state-of-the-art
approaches using multiple evaluation metrics. The results of our experiments
demonstrated that the KC-DTA method achieves high performance in predicting
drug-target affinity (DTA). The findings of this research underscore the significance
of the KC-DTA method as a valuable tool in the field of in silico drug discovery,
offering promising opportunities for accelerating the drug development process.
All the data and code are available for access on https://github.com/syc2017/KCDTA.
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INTRODUCTION
Molecule screening plays a pivotal role in drug design by identifying small molecules that
have the potential to bind to target protein. However, traditional laboratory experiments
for molecule screening are expensive and time-consuming. To overcome these limitations,
computer-aided techniques, collectively known as virtual screening techniques, have
emeraged. One such technique is molecular docking (Li, Fu & Zhang, 2019). Molecular
docking employs a search algorithm to predict the three-dimensional complexes formed
by the target protein and its ligand. The search algorithm explores the conformational
space to identify the most favorable binding orientations and conformations of the ligand
within the protein’s binding site. Subsequently, a scoring function is applied to rank the
predicted complex structures based on the calculated binding energy. These methods
involve the calculation of structural information, thus categorizing them as structure-based
methods. However, structure-based methods have limitations as there are many proteins
without structures. To overcome the limitations of structure-based methods,
sequence-based methods have emerged as a solution. In sequence-based approaches, many
methods use SMILES (Weininger, 1988) to represent small molecules. The full name of
“SMILES” is “Simplified Molecular Input Line Entry System.” It is a standardized approach
that uses ASCII strings to explicitly describe molecular structures, enabling the conversion
of small molecule structures into corresponding string representations. Sequence-based
methods require further representation and feature extraction for proteins and small
molecules. Li et al. (2022b) has introduced a wide range of feature representations for small
molecules. Pahikkala et al. (2015) utilizes target-target and drug-drug similarity as features
and employs the Kronecker regularized least squares (KronRLS) algorithm to predict
drug-target affinity. It effectively captures the relationships between targets and drugs,
enabling accurate affinity predictions. Another method, SimBoost (He et al., 2017),
employs a simulation-based approach to train a gradient boosting machine. SimBoost
introduces three novel features that capture the nonlinear relationship between drug-target
features and affinities. The rapid proliferation of deep learning in diverse domains,
including image classification, natural language processing, and speech recognition, has
sparked a surge in its utilization for analyzing biological data as well. As an example,
DeepDTA (Öztürk, Özgür & Ozkirimli, 2018) employs an embedding layer to encode
molecule SMILES and protein sequence. The embeddings are then fed into two separate
convolutional networks to extract relevant features, and the extracted features are
integrated to achieve the affinity prediction. WideDTA (Öztürk, Ozkirimli & Özgür, 2019)
further improves DeepDTA, it enhances the performance by incorporating two additional
features for the small molecule and protein. GraphDTA (Nguyen et al., 2021) takes the
approach of representing small molecules as graphs and utilizes graph neural networks for
feature extraction, thus providing more structural information for affinity mining.
MDeePred (Rifaioglu et al., 2021), on the other hand, generates digital matrices that
represent the physical, chemical and biological properties of protein sequences, and ECFP4
fingerprint (Rogers & Hahn, 2010) is used for molecule representation. MGraphDTA
(Yang et al., 2022) employs a deep graph convolutional neural network to capture the
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chemical structure information of molecules, which enables the extraction of key structural
features for effective affinity prediction. MPS2IT-DTI (De Souza, Fernandes & de Melo
Barbosa, 2022) processes protein sequence and molecule using k-mers segmentation
(Compeau, Pevzner & Tesler, 2011; Melsted & Pritchard, 2011; Rizk, Lavenier & Chikhi,
2013), and subsequently converts them into images using feature frequency profiles (FFP)
(Sims et al., 2009) to represent protein and molecule, which reflects the advantage of
k-mers segmentation expression. BACPI (Li et al., 2022a) is an attention-based approach.
Processed representations of small molecules and proteins are separately fed into graph
neural networks and convolutional neural networks to extract features. The obtained
features are then input into a bidirectional attention neural network, which includes
attention mechanisms for atoms to protein and amino acids to compound, allowing for a
more accurate capture of local effective points for atoms and amino acids. SimCNN (Shim
et al., 2021) is a similarity-based approach that utilizes convolutional neural networks to
extract features from the outer product of column vectors representing drugs and targets
similarity matrices, for the prediction of drug-target affinity. NerLTR-DTA (Ru et al.,
2022) extracts features based on the similarity and sharing of neighboring drugs (or
proteins) and uses these features as input for learning to rank (LTR) algorithm. Through
the ranking framework, it can predict the priority order of affinity between query drugs
(proteins) and target proteins (drugs).

In some sequence-based approaches such like GraphDTA and DeepDTA, protein
sequences need to be truncated due to limitations in neural network inputs, resulting in the
loss of crucial information on long sequences. In this article, we proposed KC-DTA, a
sequence-based method that ensures the integrity of protein sequences for drug-target
affinity prediction. The protein sequences are mapped into matrices using the k-mers and
Cartesian product calculation to capture the hidden information of interactions among
residues, which offers a novel approach that could comprehensively represent protein
sequences. The proposed method was evaluated on several benchmarks using various
performance measures, and the results indicate that the KC-DTA has a high performance
on drug-target affinity prediction.

MATERIALS AND METHODS
Our approach, called KC-DTA, involves the mapping of the protein sequence into two
matrices using k-mers segmentation analysis and Cartesian product calculation. In the
prediction of drug-target binding affinity, it is common to consider the interaction between
small molecules and proteins. This interaction typically occurs in a specific region of the
protein, which is represented as a continuous segment in the protein’s amino acid
sequence. To acquire protein information more accurately, we employ the k-mers method,
which captures local segments of the protein, aiding in a deeper understanding of its
structure and function. Furthermore, we also utilize the Cartesian product method to
account for interactions between amino acids that are farther apart in the protein
sequence. Through the Cartesian product, we can obtain combinations of all amino acids
in the protein, facilitating the identification of effective positions within the protein and
thus a more comprehensive understanding of its function and interactions. Combining the
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k-mers method with the Cartesian product method and considering local segments and all
combinations of amino acids allows for a more comprehensive representation of protein
sequence features. In addition, we represent the molecule as a graph. The resulting protein
matrices and molecule graph are then fed into neural networks for feature extraction.
The complete model architecture is illustrated in Fig. 1.

Protein and molecule representation
The protein sequence is represented by two ways and two corresponding matrices are
generated. The first way to represent sequence is to count the occurrences of k-mers
segmentation for the target protein. For instance, assuming the residue symbol set of
protein is P = {A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, X, Y}, which each
element of P represents single-letter abbreviation of the residue (amino acid). Next, the
combinations of all three-residue are listed to form a combination set Paaa = {AAA, AAC,
…YYY}. And supposing the sequence of target protein S is “ACDAG”, then the sequence is
first applied by the k-mers (k = 3) segmentation with a step of 1,which results in a set
Ks = {ACD, CDA, DAG} for the target sequence S. Finally, the occurrences of the
segmentations in Ks is counted regardless of the order of the residues, which means that
“ACD” is considered equivalent to “ADC”, “ACD”, “CDA”, “CAD”, “DAC” and “DCA”,
and the results are mapped to the above combination set Paaa, thus, a three-dimension
matrix OK

s with a shape of L� L� L is established, which L is the length of P and the value
of L� L� L is the shape of Paaa. For the target protein in the example, the statistical
results for “ADC”, “ACD”, “CDA”, “CAD”, “DAC” and “DCA” are all the same, with the
k-mers analysis showing a value of 2 for each of them. Because the construction of the
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Figure 1 This figure illustrates the conversion of protein sequences into two-dimensional and three-dimensional matrix representations, as
well as the conversion of small molecule SMILES into graphs. These feature representations are then separately fed into their respective neural
networks to extract features and predict affinity values. Full-size DOI: 10.7717/peerj-16625/fig-1
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matrix ignores the order of three-residue combination, the resulting matrix OK
s is a

symmetric matrix. The detailed is illustrated in Fig. 2.
The second way to represent protein sequence is to transform sequence into another

matrix using Cartesian product calculation operation. In this approach, we employ the
Cartesian product to process protein sequence, which all possible combinations of two
residues in a protein sequence are represented, enabling a more accurate capture of the
protein features. For example, similar to the first way, at first, a set of symbols that can
represent all possible protein sequences is denoted as P = {A, C, D, E, F, G, H, I, K, L, M, N,
P, Q, R, S, T, V, W, X, Y}. But when form the full combination set, it is different from the
first way, which the set is established by listing all two-residue combinations and result in a
set Paa = {AA, AC, AD, . . . YY}. Then the set of all residues of the target sequence is
processed using a Cartesian product operation with itself, which the Cartesian product
operation on sequence S is defined as Cq = S� S = {<a, b>; a, b 2 S}, where a, b are residues
belong to sequences S. More specifically, if the sequence of the target protein S is
“ACDAG”, the Cartesian product operation on the sequence S could yield a set of
CS = {AA, AC, AD, AA, AG, CA, CC, CD, CA, CG, DA, DC, DD, DA, DG, AA, AC, AD,
AA, AG, GA, GC, GA, GA, GG}. After obtaining the set CS, the occurrences of all
two-residue combinations in it are counted with the order of the residues and further
mapped to Paa, which results in a two-dimension occurrence matrix OC

s with a shape of
L� L. Different from the first way of matrix construction, this matrix takes into account
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Figure 2 This figure illustrates the process of transforming protein sequence into a
three-dimensional matrix using the k-mers operation. Full-size DOI: 10.7717/peerj-16625/fig-2
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the order of two-residue combination, resulting in a non-symmetric matrix. and the
processing is shown in Fig. 3.

After applying the two aforementioned methods to process protein sequence, a 3D
matrix and a 2D matrix are obtained. These matrices contain rich evolution information
about target protein, enabling effective description of protein sequences and further
utilization in predicting binding affinity. Importantly, the generation of these two matrices
is straightforward and does not require assistance from other tools, making them adaptable
to any protein with a sequence and highly efficient for large-scale virtual screening
applications.

To represent the features of small molecules, we utilize a graph-based approach.
The SMILES of molecule is read by RDKit toolkit (Landrum, 2006), and it is transformed
into the corresponding graph. The graph is constructed with atom as node and chemical
bond as edge. In order to get the hidden structural information of the molecule, the graph
is further processed by the graph neural network, which a hidden feature is obtained. Then
the feature is used to predict the affinity with protein.
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matrix using the Cartesian product operation. Full-size DOI: 10.7717/peerj-16625/fig-3
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Model construction
Due to the two processing ways of the protein, there are two networks used for the protein
feature extraction. Thus, the whole model involves three entrances and three
corresponding networks, which two of them are used for protein feature mining and the
other one is used for molecule feature mining. Then, the three obtained hidden features are
concatenated to prediction the affinity. The whole model architecture is illustrated as
Fig. 4.

Because of the difference of the two processing ways for protein sequence, there are two
matrices generated with different shapes. The first processing is utilized with k-mers
segmentation with a k of 3 and the shape of the generated matrix OK

s is L� L� L.
The second processing handle sequence using Cartesian product calculation operation,
and it could result in a matrix OC

s with a shape of L� L. So, two convolutional neural
networks are involved for the protein, where the matrix generated by k-mers segmentation
is fed into a 3D convolutional neural network, and another 2D convolutional neural
network is used for the matrix generated by Cartesian product calculation.

Since the molecule is represented by graph, a graph neural network (GNN) is utilized
for its feature extraction. The model is utilized with five GNN layers and each layer is
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a fully connected neural network to predict drug-target affinity values.

Full-size DOI: 10.7717/peerj-16625/fig-4
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followed by a batch normalization layer. To find the best GNNmodel, we tried to establish
the GNN model with three different types of GNN layers: GCN (Graph Convolutional
Network), GAT (graph attention network), and GIN (Graph Isomorphism Network), and
the performance of different types of GNN layers was thoroughly discussed in the
experimental section.

The Graph Convolutional Network (GCN) (Kipf & Welling, 2016) is a specialized
neural network model designed for processing graph-structured data. It utilizes the
topological structure of the graph to perform convolutional operations at each node,
updating their representations by aggregating information from neighboring nodes.
By leveraging local information propagation and computation, GCN efficiently learns
feature representations of nodes in the graph. The calculation of GCN layer is as follows:

Hðlþ1Þ ¼ r D�1
2ÂD�1

2HðlÞWðlÞ
� �

(1)

where, Hðlþ1Þ represents the updated node feature matrix at layer l þ 1, r denotes the
activation function. D�1

2 is the diagonal degree matrix of the graph, where each diagonal
element is the inverse of the square root of the corresponding node’s degree. Â is the
adjacency matrix of the graph with self-loops added.HðlÞ is the node feature matrix at layer
l. WðlÞ denotes the weight matrix of the graph convolutional layer at layer l.

GAT (Veličković et al., 2017), short for Graph Attention Network, is a neural network
model that introduces attention mechanisms to dynamically attend to important
relationships among nodes, thereby facilitating more effective learning of graph-structured
data representations. The GAT layer takes the set of nodes in the graph as input and
applies a linear transformation to each node using a weight matrixW. For each input node
i in the graph, the attention coefficients eij between node i and its first-order neighbors are
computed as follows:

eij ¼ aðWxi;WxjÞ (2)

where a represents the attention function. This value signifies the significance of node j
with respect to node i. Subsequently, these attention coefficients undergo normalization
using the softmax function, aij are the normalized attention coefficients:

aij ¼ softmaxjðeijÞ ¼ eeijP
k2NðiÞ e

eik
(3)

Afterward, the output features hij for the nodes are computed using the following
equation:

hij ¼ r
X
j2NðiÞ

aijWxj

0
@

1
A (4)

And r is a non-linear activation function.
GIN (Xu et al., 2018), or Graph Isomorphism Network, is a deep learning model that is

specifically designed to handle data in graph structures. Graphs are complex data
structures where each node can have multiple neighbors, and the number and position of
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these neighbors can vary significantly between different graphs. This variability makes it
challenging for traditional neural networks to effectively process such structures. However,
GIN leverages the graph isomorphism assumption, which states that two graphs are
considered isomorphic if one can be transformed into another by relabeling their nodes.
By exploiting this property, GIN is able to effectively and efficiently process any graph
neural structure data, regardless of its size or complexity. This makes GIN a powerful tool
for a wide range of applications, including social network analysis, molecular chemistry,
and recommender system. The formula of GIN is as follows:

hðkÞv ¼ MLPðkÞ 1þ eðkÞ
� �

� hðk�1Þ
v þ

X
u2NðvÞ

hðk�1Þ
u

0
@

1
A (5)

Here, hðkÞv represents the feature vector of node v in layer k, NðvÞ represents the set of
neighboring nodes of node v, MLP kð Þ represents a multilayer perceptron, and eðkÞ is a
learnable bias vector.

Because different molecules have different number of atoms, the molecular graph could
be constructed with different number of nodes. So, a global pooling layer is added to ensure
that the hidden vectors extracted for different molecules could have the same dimension.
Finally, the two hidden features of protein and the hidden feature of molecule are
concatenated and put into a fully connected neural network to predict the affinity.

Datasets
Four benchmark datasets were utilized in this experiment, namely Davis (Davis et al.,
2011), KIBA (Tang et al., 2014), Metz (Metz et al., 2011), and PDBBind refined (Liu et al.,
2015). Among them, Davis and KIBA are two widely used datasets that can provide a more
objective evaluation of KC-DTA’s performance. Davis is a medium-sized dataset, while
KIBA is larger in scale. In addition, PDBBind refined is a smaller-scale dataset, and we have
also employed a dataset, Metz, of a similar scale to Davis to comprehensively assess the
performance of our method across datasets of varying sizes. The introduction of the
following datasets is as follows:

Davis dataset: The Davis dataset comprises selectivity assays of kinase protein families
and associated inhibitors, along with their respective dissociation constant (Kd) values,
which consists of the binding affinities of 68 inhibitors to 442 protein kinases in the human
protein kinase group and yields a total of 30,056 binding entities. For Davis dataset, the
same measure of SimBoost is used, which the affinities are transformed into log space,
defined as:

pKd ¼ �log10
Kd

1e9

� �
(6)

KIBA dataset: The KIBA dataset is developed using a technique called KIBA, which
integrates Ki, Kd , and IC50 by optimizing consistency among them. The processed KIBA
dataset comprises a total of 118,254 binding entities from 229 proteins and 2,111 small
molecules.
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Metz dataset: The Metz dataset is a significant public resource that aims to facilitate the
development of computer-aided drug design. It has gained widespread usage in the fields
of machine learning and drug discovery and is regarded as one of the most frequently
employed public datasets. In our experiment, the Metz dataset consists of 1,423 small
molecules, 170 proteins, and 35,259 binding entries.

PDBBind dataset: PDBBind dataset (Liu et al., 2015; Burley et al., 2017) is sourced from
the Protein Data Bank, and it is a valuable resource for predicting the binding affinity of
protein-ligand complexes. The dataset consists of three subsets, namely the general set, the
refined set, and the core set. The general set consists of complexes with generic mass, while
the refined set provides details on complexes with high structural resolution. Although the
core set is of the highest quality, the size is very small so that the set could not be used for
data mining. The PDBBind refined dataset (v.2015) is involved for the experiments, which
the number amounts to 3,047 protein-molecule pairs.

The numbers of proteins, molecules and binding affinity entities and the data sources
for each dataset are illustrated in Table 1.

RESULTS
In order to comprehensively measure the performance of the proposed model, some
experiments are carried out with several metrics. In this experiment, we chose PyTorch
2.0.0 (Paszke et al., 2019) to build our model. Our experiments were carried out on a server
equipped with 128 GB of memory and running the Ubuntu operating system. To expedite
the training process, we utilized two NVIDIA GeForce RTX 4090 graphics cards along
with cuda 11.8 (Sanders & Kandrot, 2010).

Metrics
The Concordance Index (CI) is widely used to evaluate the performance of regression
models and could be used as an evaluation measure of prediction accuracy. The CI for a set
of paired data is equal to the probability that two drug-target pairs with different label
values are predicted in the correct order, and a higher CI value indicates a better predictive
performance. The calculation of CI is defined as follows:

CI ¼ 1
N

X
ŷi . ŷj

h yi � yj
� �

(7)

Table 1 The numbers of interactions for each dataset.

Dataset Compounds Proteins Interactions Sources

Davis 68 442 30,056 https://github.com/hkmztrk/DeepDTA

KIBA 2,111 299 118,254 https://github.com/hkmztrk/DeepDTA

Metz 1,423 1,708 35,259 https://github.com/simonfqy/PADME

PDBBind (refined) 2,291 1,960 3,047 https://github.com/cansyl/MDeePred
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where yi and yj are the predicted values of larger affinity value ŷi and smaller affinity value
ŷj respectively, and N is a normalization constant representing the number of pairs in the
correct order, h xð Þ is the Heaviside step function, defined as:

hðxÞ ¼
1; x. 0
0:5; x ¼ 0
0; x, 0

8<
: (8)

MSE is the most popular metric for evaluating regression models and measures how
close the fitted line is to the actual data points. MSE is defined as the mean of the sum of
squares of the differences between the true value and the predicted value. So, a lower value
of MSE indicates a better predictive performance. The MSE calculation is defined as:

MSE ¼ 1
n

Xn
i¼1

ŷi � yi
� �2

(9)

where ŷi is the predicted value vector, yi is the actual value vector, n is the number of
samples, and MSE is the average of the sum of squares of the difference between the
predicted value and the actual value. The smaller the MSE value, the higher the efficiency
of the regression model. Root mean squared error (RMSE) is the square root of the root
mean square error, which is used in the PDBBind dataset in this experiment.

Another metric r2m (Roy, 2015) has been widely used to validate regression-based
quantitative structure-activity relationship (QSAR) models. r2m is a modified version of the
squared correlation coefficient, also known as the coefficient of determination ðr2Þ, used to
assess the external predictive potential of binding affinity models. If the value of the r2m
index is greater than 0.5 in the test set, the model is acceptable. Where r2 and r20 are the
square of the correlation coefficient with and without intercept, respectively. r2m is the
proportion of variables by which the variable predicts the described outcome. The formula
is shown in 10, and more details of the formula can be found in previous studies (Pratim
Roy et al., 2009; Roy et al., 2013).

r2m ¼ r2 � 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � r20

q� �
(10)

Ablation experiment
In order to obtain the best model for the drug-target affinity prediction, we employed nine
combinations for the model construction. For protein, we utilized three approaches of
model construction: a single 2D+CNN for the feature extraction on two-dimensional
matrix (2D) derived from Cartesian product calculation operation, a single 3D+CNN for
the feature extraction on three-dimensional matrix (3D) derived from k-mers analysis, and
both 2D+CNN and 3D+CNN involved for the two matrices. For molecule, three types of
GNNs are utilized, which involve GCN (Kipf & Welling, 2016), GAT (Veličković et al.,
2017), and GIN (Xu et al., 2018). Thus, a total of nine different combinations of model
architectures are used for the performance comparison, as presented in Tables 2 and 3.
We conducted five-fold cross-validation experiments on Davis and KIBA datasets to
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evaluate the performance of these nine combinations. The evaluation metrics used were
CI, MSE, and r2m.

From Table 2, it is evident that the 2D+3D representation consistently outperforms
using either 2D or 3D alone for the protein representation. Specifically, the MSE of 2D+3D
+GCN is 1.6% lower than that of 3D+GCN and 3.2% lower than that of 2D+GCN.
The MSE of 2D+3D+GAT is 2.0% lower than that of 3D+GAT and 2.4% lower than that of
2D+GAT. The MSE of 2D+3D+GIN is 8.2% lower than that of 3D+GIN and 2.9% lower
than that of 2D+GIN. This can be attributed to the ability of the 2D+3D combination to
capture protein sequence information more accurately, thus enhancing accurate
prediction. Among the 2D+3D combinations,

From Table 3, the combination of 2D+3D+GCN outperforms in all metrics. In terms of
MSE, 2D+3D+GCN is 10.1% lower than 2D+3D+GIN and 20.6% lower than 2D+3D
+GAT. Although 2D+3D+GIN exhibits the best performance on the Davis dataset, the
margin by which it surpasses 2D+3D+GCN is relatively small. Therefore, considering a
comprehensive assessment, we opt for the combination of 2D+3D+GCN for all subsequent
experiments.

Table 2 The performances of different combinations on Davis dataset.

Method Proteins Compounds CI (std) MSE (std) r2m (std)

2D+GCN 2DCNN GCN 0.885 (0.0013) 0.249 (0.0053) 0.644 (0.0161)

2D+GAT 2DCNN GAT 0.884 (0.0033) 0.246 (0.0052) 0.650 (0.0101)

2D+GIN 2DCNN GIN 0.885 (0.0033) 0.242 (0.0052) 0.659 (0.0100)

3D+GCN 3DCNN GCN 0.883 (0.0017) 0.245 (0.0045) 0.655 (0.0099)

3D+GAT 3DCNN GAT 0.886 (0.0020) 0.245 (0.0047) 0.656 (0.0074)

3D+GIN 3DCNN GIN 0.880 (0.0010) 0.256 (0.0024) 0.640 (0.0055)

2D+3D+GCN 2DCNN+3DCNN GCN 0.884 (0.0050) 0.241 (0.0036) 0.658 (0.0097)

2D+3D+GAT 2DCNN+3DCNN GAT 0.886 (0.0037) 0.240 (0.0040) 0.661 (0.0154)

2D+3D+GIN 2DCNN+3DCNN GIN 0.888 (0.0040) 0.235 (0.0033) 0.658 (0.0047)

Table 3 The performances of different combinations on KIBA dataset.

Method Proteins Compounds CI (std) MSE (std) r2m (std)

2D+GCN 2DCNN GCN 0.886 (0.0044) 0.146 (0.0035) 0.758 (0.0036)

2D+GAT 2DCNN GAT 0.862 (0.0032) 0.178 (0.0044) 0.703 (0.0118)

2D+GIN 2DCNN GIN 0.876 (0.0018) 0.160 (0.0016) 0.747 (0.0041)

3D+GCN 3DCNN GCN 0.887 (0.0031) 0.146 (0.0014) 0.761 (0.0080)

3D+GAT 3DCNN GAT 0.865 (0.0014) 0.176 (0.0033) 0.713 (0.0045)

3D+GIN 3DCNN GIN 0.873 (0.0017) 0.162 (0.0027) 0.745 (0.0061)

2D+3D+GCN 2DCNN+3DCNN GCN 0.890 (0.0013) 0.143 (0.0018) 0.759 (0.0057)

2D+3D+GAT 2DCNN+3DCNN GAT 0.861 (0.0016) 0.180 (0.0023) 0.702 (0.0060)

2D+3D+GIN 2DCNN+3DCNN GIN 0.877 (0.0013) 0.159 (0.0014) 0.751 (0.0067)
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Performance on Davis and KIBA datasets
For the Davis and KIBA datasets, we employ a five-fold cross-validation method applied in
DeepDTA (Öztürk, Özgür & Ozkirimli, 2018). This involves dividing the dataset into six
equal parts with one part being reserved for testing and the remaining five partitions used
as cross-validation sets. During each fold of cross-validation, one of the cross-validation
sets is designated as a validation set for model training while the other four are used for
actual training. After training on the training set, the model’s parameters are adjusted
based on its performance on the validation set. The best-performing model is then saved,
and its parameters are used to evaluate performance on the test set. The performance
evaluation uses CI, MSE, and r2m, which is consistent with the measures employed in
DeepDTA. Seven benchmarks including KronRLS (Pahikkala et al., 2015), SimBoost (He
et al., 2017), DeepCPI (Tsubaki, Tomii & Sese, 2019), DeepDTA (Öztürk, Özgür &
Ozkirimli, 2018), GANsDTA (Zhao et al., 2020), MPS2IT-DTI (De Souza, Fernandes & de
Melo Barbosa, 2022), WideDTA (Öztürk, Ozkirimli & Özgür, 2019) are involved for the
performance evaluation and the results are illustrated in Figs. 5 and 6.

Figures 5 and 6 present the performance evaluation of different methods on the Davis
and KIBA datasets, indicating that KC-DTA outperforms other methods on the datasets
with metrics of CI, MSE and r2m. The performance on Davis with MSE and r2m metrics is
slightly greater than the other methods, but when it comes to the KIBA dataset, the
performance improvement is significant for the KC-DTA, which the MSE of it could
achieve 0.143. Specifically, KC-DTA improves upon the second-ranked WideDTA by
1.71% in CI and 20.1% in MSE, and achieves an impressive 12.4% improvement in r2m over
the second-ranked GANsDTA on KIBA dataset.
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Figure 5 The performances of various methods on Davis dataset.
Full-size DOI: 10.7717/peerj-16625/fig-5
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Performance on Metz dataset
The same measure with MGraphDTA is utilized for this experiment, which the dataset is
randomly divided into five parts with a ratio of 4:1 and the four parts are used as the
training set and the last part is used as the test set. To ensure the robustness of the
proposed method, we performed the random division three times using different seeds,
resulting in three distinct experimental outcomes. The final experimental result was
obtained by computing the average of these three outcomes. There are three performance
metrics used by the Metz dataset, namely MSE, CI, r2m and all the results of the other
methods come from the relevant articles. The detailed experimental results are shown
in Fig. 7.

Figure 7 exhibits that the proposed method could achieve a good performance on the
dataset. The performance of KC-DTA with CI and r2m metrics on the Metz dataset is
slightly lower than the top performing method, but the performance of it with MSE could
reach a best result, which the MSE is 0.258. Compared with GraphDTA, although the
processing of small molecules is the same, KC-DTA’s performance is significantly
optimized owing to the use of k-mers segmentation and Cartesian product calculation for
protein representation that better reflect the completeness of protein sequence information
and thereby enhance the accuracy of drug-target affinity prediction.

Performance on PDBBind dataset
In this experiment, three methods were included for the performance comparison, which
are Affinity2Vec (Thafar et al., 2022), MoleculeNet (Mousavian & Masoudi-Nejad, 2014),
MDeePred (Rifaioglu et al., 2021) and the proposed method. PDBBind Refined dataset
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Figure 6 The performances of various methods on the KIBA dataset.
Full-size DOI: 10.7717/peerj-16625/fig-6
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(v.2015 dataset) is utilized in the experiment and a similar processing procedure to the
Affinity2Vec (Thafar et al., 2022) is employed. Specifically, the drug-target pairs in the
dataset that were published on or before 2011 as the training set, those published on 2012
as the validation set, and those published on or after 2013 as the test set. The dataset
comprised a total of 2,188, 312, and 547 pieces of data for the training, validation, and test
sets, respectively. In MoleculeNet, four methods including deep neural network (DNN),
random forest (RF), grid featurization (GridF) and extended connection fingerprint
(ECFP) were involved for the processing of molecule and protein. And Affinity2Vec
includes three different ways, which are embedding (Embed), Protein score (Pscore) and
Hybrid Protein Identification Scoring Algorithm (Hybrid). The experimental results are
illustrated in Fig. 8.

Figure 8 indicates that the proposed KC-DTA method is generally comparable to
MDeePred in terms of RMSE but slightly inferior to Affinity2Vec. Specifically, KC-DTA
exhibits a lower RMSE of approximately 3.8% compared to MDeePred, while CI shows a
slight improvement compared to most methods.

DISCUSSION
KC-DTA processes protein sequences using k-mers and Cartesian product, avoiding
truncation of protein sequences and preserving the integrity of important information.
Additionally, KC-DTA does not rely on complex algorithmic tools, allowing it to quickly
transform protein sequences. This simple, fast, and effective method can be easily applied
to large batches of protein and small molecule activity predictions. From experimental
results, KC-DTA performs better overall on the Davis, Metz, and KIBA datasets compared
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Figure 7 The performances of different combinations on the Metz dataset.
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to other methods. On the PDBBind dataset, our approach slightly lags behind
Affinity2Vec. The PDBBind dataset has only 2,188 training samples, and these limited data
may not be sufficient for the model to fully fit, thus preventing it from realizing its full
potential. In summary, KC-DTA excels on medium to large datasets and demonstrates
relative stability on small datasets, making it a promising deep learning approach.

In addition, our method has not yet been applied in practical cases, making it difficult to
verify its performance on larger datasets or in scenarios with more severe situation. In the
future, we will attempt experiments with a broader array of databases to ensure that the
model can adapt to a wide variety of situations, thereby enhancing the robustness of KC-
DTA.

CONCLUSIONS
The accurate prediction of drug-target affinity is essential for the development of effective
pharmaceuticals. While identifying whether a drug binds to its target is important, it is
equally crucial to predict the precise value of the drug-target affinity. In this study, we
propose a novel sequence-based method for predicting drug-target affinity using protein
sequence and drug SMILES. By leveraging k-mers analysis operation and Cartesian
product calculation methods, we convert protein sequences into two different matrices,
which could better capture the contact among residues and evolutionary information in
sequence. The proposed method is easily implementable and applicable to large-scale
virtual screening tasks.
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