
Submitted 3 March 2023
Accepted 16 November 2023
Published 2 January 2024

Corresponding author
Mark T. Holder, mtholder@ku.edu

Academic editor
Joseph Gillespie

Additional Information and
Declarations can be found on
page 24

DOI 10.7717/peerj.16624

Copyright
2024 Redelings and Holder

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Speeding up iterative applications of the
BUILD supertree algorithm
Benjamin D. Redelings1,2,3 and Mark T. Holder3,4

1Biology Department, Duke University, Durham, NC, United States of America
2Ronin Institute, Durham, NC, United States of America
3 Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, United States of America
4Biodiversity Institute, University of Kansas, Lawrence, KS, United States of America

ABSTRACT
The Open Tree of Life (OToL) project produces a supertree that summarizes phyloge-
netic knowledge from tree estimates published in the primary literature. The supertree
construction algorithm iteratively calls Aho’s Build algorithm thousands of times in
order to assess the compatability of different phylogenetic groupings. We describe an
incrementalized version of the Build algorithm that is able to share work between
successive calls to Build. We provide details that allow a programmer to implement
the incremental algorithm BuildInc, including pseudo-code and a description of data
structures. We assess the effect of BuildInc on our supertree algorithm by analyzing
simulated data and by analyzing a supertree problem taken from the OpenTree 13.4
synthesis tree.We find thatBuildInc provides up to 550-fold speedup for our supertree
algorithm.

Subjects Bioinformatics, Computational Biology, Evolutionary Studies
Keywords Supertree, Build algorithm, Optimization, Phylogenetics

INTRODUCTION
The Open Tree of Life (OToL) project summarizes phylogenetic knowledge from tree
estimates published in the primary literature. Curators for the project import published
trees, associate the tip labels of the trees to standardized taxonomic labels, and correct
errors in trees that occurred during the deposition of the trees into repositories. OToL
also produces a synthesis tree (Hinchliff et al., 2015) that combines hundreds of input
phylogenies with a comprehensive taxonomic tree from the Open Tree Taxonomy (Rees &
Cranston, 2017, OTT hereafter). This ‘‘synthetic tree’’ is a supertree—a tree that is produced
by combining multiple input trees, and having a leaf label-set that is the union of the leaf
label-sets of the input trees (Gordon, 1986).

Our supertree method is intended to summarize and transparently represent the
published input trees, not to produce a phylogeny estimate that is more accurate than the
inputs (Redelings & Holder, 2017). Each edge of the supertree corresponds to a supporting
branch in one of the input trees. The synthetic tree can be used as a comprehensive
phylogeny of living and extinct taxa. It can also be used as a means of navigating the OToL
curated collection of published input trees, and of exploring conflict between them. The

How to cite this article Redelings BD, Holder MT. 2024. Speeding up iterative applications of the BUILD supertree algorithm. PeerJ
12:e16624 http://doi.org/10.7717/peerj.16624

https://peerj.com
mailto:mtholder@ku.edu
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj.16624
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0
http://doi.org/10.7717/peerj.16624


OToL portal at https://tree.opentreeoflife.org allows browsing or downloading the latest
release of the synthetic tree. It also allows for uploading and curating input phylogenies.

The OToL synthetic tree is created by an algorithm that will add a grouping from an
input tree to the full tree if that grouping is compatible with the previously added groups.
More specifically, the supertree algorithm iterates over branches of input phylogenies to
determine if the groups subtending each internal branch can be added to the synthesis
tree (Redelings & Holder, 2017). The order in which input phylogenies are considered is an
input to the algorithm, and this order is provided by data curators for the OToL project.
The taxonomy tree is always the last phylogeny to be considered.

The current implementation of the supertree algorithm is fast enough to allow the full
supertree to be updated periodically. A faster implementation would allow users to explore
the effects of differing inputs, such as a different set of phylogenies or a different ranking
of trees. This would enable constructing alternative synthetic trees on demand via the
web-interface for a variety of users.

The core algorithm for determining compatibility of each potential grouping with
previously added groups is the classic Build (Aho et al., 1981) algorithm. Build is
invoked thousands of times during the construction of the supertree using OToL’s
pipeline (Redelings & Holder, 2017). Each invocation applies Build to the set of all
previously added groups (which are already known to be consistent) plus one new group.
Here we describe improvements to naively calling Build iteratively. Implementing the
incrementalized BuildInc algorithm has resulted in dramatic reductions in running times
for the key steps in the supertree pipeline. This new algorithm will allow the OToL project
to offer more frequent updates to the synthetic tree and explore features such as on-demand
supertree construction under the direct control of users of the project’s web-services.

While we focus on the use of Build within the OToL project, Build is an ingredient
that is used in a wide range of algorithms, such as computing a consensus of equally likely
trees (Sanderson, McMahon & Steel, 2011), inferring species trees from gene trees (Roch
& Warnow, 2015), determining orthology and paralogy relations between genes in a
gene family (Lafond & El-Mabrouk, 2014), and hierarchical clustering (Chatziafratis,
Niazadeh & Charikar, 2018). In order to determine what opportunities are opened up by
an incrementalized version of Build, researchers must examine each algorithm that uses
Build. However, we highlight two possiblities. First, an incrementalized Build might be
used to construct an online version of an existing algorithm—that is, an algorithm in which
input is added in batches and that produces a complete result after each batch. A batch
could represent a new data point, or it could represent the next gene in a genome-wide
scan. Second, an incrementalized Build might aid in discovering a compatible subset of
trees or bi-partitions instead of merely declaring failure when a given set is incompatible.
Thus, an incrementalized version of Build has implications beyond the OToL project.

Context for Build in the current OToL pipeline
The current pipeline divides the full supertree problem into subproblems as described
in Redelings & Holder (2017). These subproblems cover regions of the taxonomy tree in
such a way that adjacent sub-problems contain common nodes (higher taxa) but do not

Redelings and Holder (2024), PeerJ, DOI 10.7717/peerj.16624 2/26

https://peerj.com
https://tree.opentreeoflife.org
http://dx.doi.org/10.7717/peerj.16624


contain common edges. Each subproblem also contains the relevant region of any input
tree that coincides with the region of the taxonomy tree. Repeated calls to Build produce
a supertree solution to each subproblem. Solving the subproblems is a time-consuming
step for the entire pipeline. Increasing the speed of the subproblem-solver would speed up
the pipeline, but would also allow it to handle larger subproblems. Larger subproblems
occur when OToL curators add more input phylogenies to the pipeline and this large set
of inputs conflict with more groupings found in the taxonomy. Larger subproblems also
occur when the final location of an incertae sedis taxon is far from its initial location in
the taxonomy (see Redelings & Holder, 2019 for a discussion of the handling of incertae
sedis taxa). The increased speed might eliminate the need for decomposing the supertree
problem into subproblems.

METHODS
We will begin the methods description with a review of the Build algorithm and the
description of the new optimizations to the algorithm that are the focus of this paper. After
the algorithmic discussion, the simulation study to evaluate performance will be explained.

Overview of the Build algorithm
The Build algorithm is a recursive algorithm that determines if a set of rooted triplets of
the form x,y| • z are jointly compatible (Aho et al., 1981). Here, we use the symbol • to
stand for the root of the tree to emphasize the rooting of the triple. If they are compatible
it constructs a tree that displays all the triplets.

The algorithm works by creating a graph for each recursive level. If the graph forms a
single connected component, then the Build algorithm has detected an incompatibility
between the set of triplets. The graph contains a node corresponding to each leaf that is
relevant to the current recursion level. At the root-most level of the recursion every leaf is
relevant. A rooted triple is relevant to a recursion level only if each of the three leaves is
relevant at that level. For each relevant triple x,y| • z an edge is added between x and y .
Since the leaves in the more closely related pair {x,y} are sometimes called the ‘‘cluster’’ of
the triple, the resulting graph is called the ‘‘cluster graph’’ for the given set of triplets.

If no triplets are incompatible on a level, then the procedure applies Build to each
connected component of the cluster graph. This is the recursive aspect of the algorithm.
The nodes that form a connected component at one level will constitute the relevant nodes
for the next recursive call. Thus the relevant leaf set is partitioned at each level. However, the
edges between nodes are not passed to the next recursive level. Instead they are constructed
from the set of relevant triplets at each level. A rooted triple that is relevant at one level
may not be relevant at a subsequent recursion level. Thus, not all rooted triplets have a
corresponding edge at the next level. A set of triplets is jointly compatible only if the Build
algorithm finds no incompatibility at any recursive level.

Rooted splits
The Build algorithm was originally designed to work on sets of rooted triplets. However,
when working with evolutionary trees, it is more convenient to work with sets of rooted

Redelings and Holder (2024), PeerJ, DOI 10.7717/peerj.16624 3/26

https://peerj.com
http://dx.doi.org/10.7717/peerj.16624


1One might even say ‘‘incrementally’’.

splits because each branch corresponds to a rooted split. A rooted split σ on taxon set T is
written σ = σ1|•σ2, where σ1 and σ2 are non-overlapping subsets of T . We refer to σ1 as
the include group or ‘‘cluster’’, and σ2 as the exclude group. The root of the tree is on the
side of the exclude group. Note that σ1∪σ2 may be smaller than T .

It is straightforward to extend Build to operate on a set of rooted splits by treating each
rooted split as shorthand for all the rooted triplets that it implies. So Build is commonly
modified to take a set of rooted splits 6 instead of a set of rooted triplets.

The relationship of the current optimizations to previous work
Previous approaches to speed up Build have tried to improve the order of computation
for the analysis at each recursive level. Deng & Fernández-Baca (2018) decreased the order
toO(M log2M ) for a set of phylogenies withM = (number of edges) + (number of leaves).
This is accomplished by decreasing the time for the analysis on each recursive level from
O(M 2) toO(log2M ). It also involves sharing work between different levels of the recursive
algorithm by retaining a graph between successive levels instead of creating a new graph
from scratch on each level.

Our approach differs from previous work because we attempt to share work between
successive calls to Build. When calling Buildwith one set of splits followed by calling Build
again with one additional split, we seek to reuse work from the first call while performing
the second. This requires saving work from the first call in an object that represents the
solution to Build, and passing that solution object as input to the second call. We do not
attempt to decrease the order of the computation as a function of the number of leaves or
edges. Instead we base our incremental approach on a naive algorithm that has total cost
O(M 3). It may be possible to create an algorithm that is both incremental and has a more
favorable order of computation for largeM , but we do not attempt that here.

Data structures used to explain implementations of Build
In order to explain our incremental Build algorithm in an understandable manner, we seek
to introduce the full complexity of the algorithm in stages.1 We thus begin by describing a
version of the traditional Build algorithm that saves its work in a solution data structure.
This will allow us to focus on changes to the algorithm instead of changes to the data
structures when we introduce the first incremental version of the algorithm at a later stage.
Our version of the Build algorithm constructs the connected components of the cluster
graph without explicitly constructing the cluster graph. That is, our algorithm does not
directly represent the edges of the cluster graph in memory.

We begin by introducing the Solution and Component record types that we will
use to store temporary work during the algorithm. Using the terminology common to
object-oriented programming, we will refer to an instance of these record types residing in
a computer’s memory as an ‘‘object.’’ The following sections will describe the distinct steps
in Build using some common programming notational conventions: (1) parentheses after
the name of an algorithm denote the arguments supplied to that algorithm and (2) the
period (or ‘‘dot’’) notation after the name of a data object is used to refer to a field within
that record.

Redelings and Holder (2024), PeerJ, DOI 10.7717/peerj.16624 4/26

https://peerj.com
http://dx.doi.org/10.7717/peerj.16624


A Solution object S contains the following fields:

S.T: an array of taxon identifiers relevant to the solution level.

S.C : an array of Component objects - one for each non-trivial connected component of the relevant
taxa for this level of BUILD.

S.M: an array that maps a leaf index to the component that it is assigned to.

S.I: an array of “implied splits”. These are splits σ where σ2 does not intersect S.T.

A Component object C contains the following fields:

C.T: a linked list of taxon identifiers for every taxon assigned to this component.

C.∆Σ: an array of splits relevant to the component.

C.S: either NULL (if no solution is possible) or a Solution object for the component.

C.O: an array of pointers to original Solution objects subsumed by this component.

Figure 1 Definitions for the Solution and Component record types. The field C.O is not used by non-
incremental Build.

Full-size DOI: 10.7717/peerj.16624/fig-1

An initial Solution object can be created before applying the Build algorithm. Upon
termination, the result of the algorithmwill be emitted by storing it in that Solution object.
As mentioned above in the overview of the algorithm, each level of Build’s recursion starts
with a set of taxa and a set of relevant splits. Connected components of taxa are created
and merged as each input split is considered. In our object-oriented description of the
algorithm, this corresponds to creation of a Solution object for the current level of
recursion. That Solution object will hold a set of Component objects –each of which
will store information about the connected components created during the algorithm.
Each Component represents a sub-problem that needs to be solved. If no incompatibility is
detected at the current level, then the algorithm recursively calls Build to create a Solution
object for each Component.

Thus the Solution object forms a tree by indirect recursion to mirror the recursive
structure of Build: each Solution object can contain some Component objects, and each
Component object contains a Solution object (see Section B.2 of the Supplementary
Information File). We refer to the tree associated with a Solution object as a ‘‘solution
data structure’’.

The solution and component objects for a level of Build
The definition of the Solution and Component record types is given in Fig. 1. Creating a
new Solution object is done with a procedure referred to as CreateBlankSolution(T ),
where T is a collection of taxon identifiers. A new solution object, S, has only its S.T
field initialized; That field holds a copy of the taxon identifiers; thus initialization has
computational complexity O(|T |).

Redelings and Holder (2024), PeerJ, DOI 10.7717/peerj.16624 5/26

https://peerj.com
https://doi.org/10.7717/peerj.16624/fig-1
http://dx.doi.org/10.7717/peerj.16624#supp-8
http://dx.doi.org/10.7717/peerj.16624#supp-8
http://dx.doi.org/10.7717/peerj.16624


Defining the Build algorithm
To start the algorithm, an initial Solution object can be created and initialized by filling its
S.T field with the complete taxon set, T . All other fields of the solution object are initially
empty. We can think of the entire Build algorithm as taking a taxon set T and set of rooted
splits, 6. The full Build algorithm consists of the following steps:
1. initialize a Solution object, S to contain the taxon set T . We will refer to this set of

operation as a function: CreateBlankSolution(T );
2. call a helper algorithm BuildA(S, 6); and
3. return the result stored in object S.
The BuildA algorithm describes the set of operations to be performed at a single level

of recursion as well as how to call the next levels of recursion.

Dissecting the operations required at each level of BuildA
The operations performed in BuildA(S, 6) can be separated in several steps:
1. RemoveIrrelevantSplits(S, 6) to remove splits from 6 that are not relevant at the

current level. Splits that are removed here as irrelevant are also implied by the split S.T|
•(T-S.I) and are recorded on the solution in field S.I.

2. MergeComponents(S, 6) to find the connected components of the cluster graph by
merging any two components that overlap the include group (‘‘cluster’’) of a split in
6.

3. Fail(S). Return Failure if there is only one connected component.
4. AssignSplitsToComponents(S, 6) to the single component on the next recursive

level where they may be relevant.
5. Iterate. For each non-trivial component C ∈S.C:

(a) use CreateBlankSolution(C.T) to create a new solution object for each
Component object and store this in C.S.

(b) Recurse. Call BuildA(C.S, C.16) on the sub-problem for each non-trivial
component C, Return Failure if that call fails.

The RemoveIrrelevantSplits, MergeComponents, and AssignSplitsToCompo-
nents steps all have the form of a for-loop that iterates over splits in 6 and modifies S.
This fact will be used later, when we seek to incrementalize these steps. It suggests a naive
incrementalization strategy of simply iterating over any newly added splits16 to add their
effects to S.

The RemoveIrrelevantSplits(S, 6) step
We assume that each split in6 has an include group fully contained in S.T. This means that
a split is relevant at this recursive level if and only if its exclude set intersects the relevant
taxon set (S.T).

This procedure examines each split σ in 6. If σ is not relevant, then σ is added to
the collection S.I of implied splits and removed from 6. Splits removed in this step were
relevant at previous recursion levels, but are irrelevant for the solution at or below the
recursive level S because they do not separate any taxa in S.T from other taxa in S.T.
Determining which splits to remove has computational complexity O(V ×E) where
V = |T | and E = |6|.

Redelings and Holder (2024), PeerJ, DOI 10.7717/peerj.16624 6/26

https://peerj.com
http://dx.doi.org/10.7717/peerj.16624


2The worst case is when you have a perfectly
balanced merger tree for the components.

Although this is not central to the operation of the algorithm, we note the splits in S.I
are implied by the branch of the solution tree leading to S. Thus the solution tree implies
all the splits in 6, and split σ is recorded on the branch that implies it.

It is not necessary to perform this step at the root level of the recursion, as all tips are
inside of T for that solution object.

The MergeComponents(S, 6) step
The MergeComponents step partitions taxa according to which connected component
of the cluster graph they are in. This step can also be thought of as partitioning taxa in
T according to an equivalence relation, where taxa are equivalent if they are in the same
connected component of the cluster graph. Note in this version of Build we construct the
connected components of the cluster graph without constructing the graph.

To perform the partitioning, we begin by assigning each taxon t ∈T to its own connected
component {t }. This corresponds to a graph with no edges. We then consider each split
σ ∈6 and merge any components that overlap σ1 into a single connected component.
This is equivalent to adding edges to the cluster graph connecting all taxa in σ1.

Our implementation represents the components as two related maps between
components and elements: (1) the linked list of taxon identifiers included in each
component (the C.T field of the component C), and (2) the array that maps each taxon to
its component (stored in S.M).

Detecting mergers requires considering every taxon in every include group, and has
order O(|6|× |T |). There can be at most |T | mergers. The cost of merging linked lists
is just O(|T |) since merging linked lists is an O(1) operation. Unfortunately, when
we merge two components C1 and C2 where C2 is smaller, we must also rewrite the
array entry for taxa in C2. The cost per taxon is the number of times that taxon is
part of a merger where it is in the smaller component. Since this can happen up to
log2|T | times per taxon in the worst case,2 the cost is |T |log|T |. The total cost is thus
O(|6|× |T |+ |T |log|T |). If we define M = |6|+ |T | following Deng & Fernández-Baca
(2018), then this is O(M 2

+M logM )=O(M 2).

The Fail(S) step
Fail can be done in O(1) by having an array S.C of active non-trivial components, and
checking the size of that array. If the size is 1, and the taxon set for the single component
has the same size as S.T, then the operation fails.

The AssignSplitsToComponents(S, 6) step
For each split σ ∈6 we have a guarantee that all the taxa in σ1 are in the same component
by definition of the cluster graph. We refer to the component that contains the include
group of σ as its ‘‘corresponding component’’. We can determine the corresponding
component of any split σ by simply looking up the component for the first element of σ1
in S.M. We implement the assignment of a split σ to a component C by placing a reference
to σ into C.16.

Redelings and Holder (2024), PeerJ, DOI 10.7717/peerj.16624 7/26

https://peerj.com
http://dx.doi.org/10.7717/peerj.16624


Figure 2 The Solution object S1 returned by calling Build ([A1,A2,B],{A1A2|•B}). Solution objects
have rounded edges and a pink border. Component objects have rectangular edges and a blue border. The
temporary values C1.16 and C1.O are shown with the values they contain before being cleared. Solid ar-
rows indicate pointers. Dashed arrows show the correspondence between Solution objects and nodes on
the solution tree.

Full-size DOI: 10.7717/peerj.16624/fig-2

Simple optimization: trivial and non-trivial components
In a solution object S, we store an array S.M of pointers to components. We also implement
S.T as an array, so that if t =T [i] then taxon t belongs to component S.M [i].

Trivial components are defined as components that contain only one taxon. An
optimization to improve memory usage and speed is to simply use a Null reference
in the S.M array to indicate that the corresponding taxon is in a trivial component, rather
than creating a component object for every trivial component. This requires only minor
tweaks to the MergeComponents step to create a new Component object on-the-fly
whenever a set of trivial components are merged into each other with no non-trivial
component involved in the merger.

Example #1: creating a solution
Consider calling Build (T ,6) with taxa T = {A1,A2,B} and splits 6= {A1A2| •B}. This
creates a solution data structure shown in Fig. 2. Build begins by creating a Solution
object S1 where S1.T = [A1,A2,B] and then calling BuildA(S1, 6).

The BuildA creates a single non-trivial component C1 containing {A1,A2} and a single
trivial component containing B. BuildA does not fail, because there is more than one
component. The single split A1A2|•B is assigned to C1. BuildA then creates a new solution
C1.S where C1.S.T = [A1,A2] and then calls BuildA(C1.S, C1.16).

Redelings and Holder (2024), PeerJ, DOI 10.7717/peerj.16624 8/26

https://peerj.com
https://doi.org/10.7717/peerj.16624/fig-2
http://dx.doi.org/10.7717/peerj.16624


The second-level BuildA removes the split A1A2|•B from C1.16 and adds it to C1.S.I.
It then callsMergeComponents, Fail, and AssignSplitsToComponentswith no effects.
No non-trivial components are created, and the call to BuildA succeeds because it contains
the trivial components {A1} and {A2}. Since there are no non-trivial components, another
round of recursion is not performed.

Stepwise construction of BuildInc
The goal of the incrementalized algorithm is to reuse previous work from computing
Build (T ,6) when computing Build (T ,6+16). The incrementalized algorithm has
the signature BuildInc (S,16). Although the taxon set T and the previously added splits
6 are not explicitly present in the signature of BuildInc, they are contained within S. S
may also contain intermediate results from a previous BuildInc call, so that BuildInc can
reuse previous work. If BuildInc(S, 16) succeeds, then S is modified in-place to contain
the new splits 16 in addition to 6. However, if BuildInc fails, then S is unmodified.

In order to simplify the description of the incrementalized algorithm BuildInc, we
first introduce two partially-incrementalized algorithms BuildInc′ and BuildInc′′. This
allows us to simplify the explanation of BuildInc by introducing concepts in a step-wise
fashion. The BuildInc′ and BuildInc′′ algorithms both mutate the solution object even
when the algorithm returns False. The fully incrementalized algorithm BuildInc adds
the ability to track changes that are made to the solution object, and then roll them back if
the algorithm ultimately returns False. We now describe key difference in the steps of the
first incrementalized algorithm BuildInc′. We will use the ′and ′′symbols to decorate the
names of algorithms based on whether they are used in BuildInc′ or BuildInc′′.

The incrementalized algorithm allows adding input splits either one-at-a-time, or in
larger batches. We assume that the input splits have been partitioned into a series of
non-overlapping subsets 16i according to some strategy that is chosen in advance. Each
subset constitutes a batch. The simplest strategy is to set 16i= {σi} for some split σi, so
that splits are added one-at-a-time. However, it is possible to incorporate input splits into
the solution object in larger batches, and we explore this option in the Results section
below.

Given a partition of the input splits, the general structure for all of the incrementalized
algorithms is:
1. initialize a Solution object, S, to contain the taxon set T . We will refer to this set of

operation as a function: CreateBlankSolution(T );
2. BuildIncA (S,∅)
3. for each subset 16i

(a) call BuildIncA (S,16i)
4. return the result stored in object S.
In the descriptions that follow, 6 will be used to denote the set of splits that have been

added in previous increments of BuildInc′ without failing. Thus, 6+16 would be the
set of splits included if the current round of BuildInc′ succeeds, and16 is the set of splits
that are new to the current increment of BuildInc′.

Redelings and Holder (2024), PeerJ, DOI 10.7717/peerj.16624 9/26

https://peerj.com
http://dx.doi.org/10.7717/peerj.16624


BuildIncA′(S, 16): RemoveIrrelevantSplits′(S, 16) step
This is identical to RemoveIrrelevantSplits except that (for reasons described below)
S.I may already contain some splits before this step begins.

BuildIncA′: MergeComponents′(S, 16) step
We seek to construct the connected components of the cluster graph for the splits
6(S)+16 from the connected components for 6(S). We will refer to connected
components under the cluster graph for 6(S) as ‘‘original’’ components. The addition of
the splits 16 may add edges to the cluster graph, but it cannot remove any. Therefore,
the addition of 16 may merge original components, but it cannot split them. In order to
compute the new connected components, we simply need to iterate over splits in 16 and
continue merging components.

Characterizing how the components for6+16 are related to any original components
is central to our approach. The non-trivial components for 6+16 can be characterized
as new, modified, or unmodified.

• new (a component composed entirely of previously-trivial components)
• unmodified (a non-trivial component present in the original S.C)
• modified (a non-trivial component that contains at least one original non-trivial
component)

If S is initially empty, then all non-trivial components will be new. If S is not initially
empty, then all three types of non-trivial components can occur. If an original component
C′ is a subset of a component C, then we say that C′ is subsumed by C. We now describe how
these three classes of non-trivial components retain original solutions.

A new (non-trivial) component C will have an empty solution C.S. There is no original
solution to retain, since all its subsumed components are trivial.

For unmodified (non-trivial) components, we retain the single original Solution object
in the field C.S. We will modify the retained solution if any splits from 16 are assigned to
C.

Modified (non-trivial) components have a taxonomic set C.T that was not a connected
component in the previous iteration of BuildIncA′. However, the Component object does
not need to be created de novo; instead, we repurpose the Component object from one of
the subsumed non-trivial components to represent the new, larger equivalence class. The
previous solution in C.S is not the solution for the enlarged taxon set. However, we retain
all the solutions for all subsumed non-trivial components in an additional field for in the
component data structure, C.O.

BuildIncA′: AssignSplitsToComponents′(S, 16) step
Splits in 16 must be assigned to their corresponding components by placing them in
C.16, just as in BuildIncA. However, splits in 6 are treated differently depending on
which original component they were previously assigned to.

Splits from 6(S) that were assigned to an unmodified component C are still associated
with that component. This is because they were contained in C.S, and it has been retained.

Redelings and Holder (2024), PeerJ, DOI 10.7717/peerj.16624 10/26

https://peerj.com
http://dx.doi.org/10.7717/peerj.16624


Splits from6(S) that were assigned to a modified component C are no longer associated
with C because C.S has been discarded.We therefore iterate over original components C′ that
were subsumed by C and append their splits to C.16 (see Section B.2 of the Supplementary
Information File).

New components cannot contain any splits from6(S), so we do not need to do anything
extra for them.

BuildIncA′: recursive call to BuildIncA′step
We seek to construct a solution for each of the components C ∈ S.C using BuildIncA′. In
all cases we do this by calling BuildIncA′(C.S, C.16) to add splits in C.16 to the solution
C.S. For unmodified components, C.S is the original solution for C, so previous work is
re-used. Any corresponding splits from 16 are added to this original solution.

For modified components, C.S is a Null reference indicating that no solution has been
calculated. We construct an empty Solution with taxa C.T. The set C.16 contains splits
corresponding to C from both 6(S) and 16. Therefore, despite the existence of previous
work in C.O, we do not manage to re-use any of it.

For new components, C.S is also Null. We also construct an empty Solution with taxa
C.T. The set C.16 contains only splits from 16. There is no previous work that could be
re-used here.

Example #2: adding a split to an unmodified component
When incrementally adding a split that resolves a node below the top level,
BuildIncA′ passes the split down the tree until it reaches the level of the resolved node.
At levels higher than the resolved node, the split is assigned to one of the components, but
does not modify it. At the resolved node, the split either modifies components or causes
the creation of a new non-trivial component.

To see this, let us consider incrementally adding the split σ2= a1a2|•a3 to a Solution
object that contains σ1= a1a2a3|•b (Fig. 3). Here the split σ2 resolves a node in the original
solution data structure.

Running BuildIncA′(S1, {σ2} leaves the only non-trivial Component C1 at the top level
unchanged. σ2 is Assigned to C1 and ends up in C1.16.

This leads to a call to BuildIncA′(S2, {σ2}). σ2 is not removed, so S2.I is unchanged.
However, σ2 leads to the creation of a new non-trivial component C2 in Merge. σ2 is
Assigned to C2 and ends up in C2.6.

Finally, we get a call to BuildIncA′(S3, {σ3}). Here σ2 is finally removed, and placed
into S3.I. No non-trivial components are created, so we are done.

Example #3: merging two components
When incrementally adding a split that groups two children of a node in the solution tree,
the components that correspond to the grouped children tend to re-emerge at a lower
level. However, BuildIncA′ is not able to recognize this, and so must solve each of these
re-emergent components from scratch.

To see this, let us consider incrementally adding the split a1b1| • c to a Solution

object that contains a1a2| • b1 and b1b2| • c (Fig. 4). The new split merges the original

Redelings and Holder (2024), PeerJ, DOI 10.7717/peerj.16624 11/26

https://peerj.com
http://dx.doi.org/10.7717/peerj.16624#supp-8
http://dx.doi.org/10.7717/peerj.16624#supp-8
http://dx.doi.org/10.7717/peerj.16624


Figure 3 Adding a split to an unmodified component. Top: the result of adding the split A1A2A3| • B.
Bottom: the result of incrementally adding the split A1A2|•A3, starting with the top Solution.

Full-size DOI: 10.7717/peerj.16624/fig-3

Redelings and Holder (2024), PeerJ, DOI 10.7717/peerj.16624 12/26

https://peerj.com
https://doi.org/10.7717/peerj.16624/fig-3
http://dx.doi.org/10.7717/peerj.16624


(a) Original solution

(b) BUILDINCA′ (c) BUILDINCA′′

Figure 4 Merging two components. (A) The initial solution contains the splits A1A2| • B1 and B1B2| •

C . In both (B) and (C), when A1B1| • C is incrementally added, the original components C1 and C2 are
merged and stored in the modified Component object for C1.The original component {A1,A2} re-emerges
at a lower level as C3. (B) In BuildIncA′, C1.16 contains all three splits, and not just the incrementally
added split. The re-emergent component {A1,A2} is solved from scratch. (C) In BuildIncA′′, C1.16 con-
tains only the new split A1B2| •C . The original solution S3 is punctured, and its split B1B2| •C is added to
S4.I. However, the original solution S2 for {A1,A2} is passed down to C3 and can be re-used, saving work.

Full-size DOI: 10.7717/peerj.16624/fig-4

components C1 (containing and {A1,A2}) and C2 (containing {B1,B2}). The new component
{A1,A2,B1,B2} is then stored in the modified Component object for C1.

The BuildIncA handles merged components by extracting the splits from subsumed
solutions. Therefore, C1.16 contains all three splits, and not just the incrementally added
split. We can see that the original component {A1,A2} re-emerges at a lower level as C3.
However, BuildIncA′ solves it from scratch. The component {B1,B2} does not re-emerge

Redelings and Holder (2024), PeerJ, DOI 10.7717/peerj.16624 13/26

https://peerj.com
https://doi.org/10.7717/peerj.16624/fig-4
http://dx.doi.org/10.7717/peerj.16624


at a lower level. This is because the split b1b2|• c can be satisfied on the same level, and is
not passed down.

THE PARTIALLY INCREMENTALIZED ALGORITHM
BUILDINC′′
The BuildInc′ algorithm can only reuse work for unmodified components; modified
components must be recomputed from scratch. Figuring out how to re-use previous work
for modified components was one of the most difficult steps in designing BuildInc. The
key insight is that a solution data structure can be regarded as a collection of splits (see
section ??). Thus, instead of extracting the splits from original solutions that were subsumed
by a modified component, we may simply pass down the original solutions themselves.

Performing operations such as MergeComponents, AssignSplitsToComponents,
and RemoveIrrelevantSplits turns out to be more efficient when the input splits
are packaged in original solutions. These operations frequently do not break apart the
collections of splits.

Most importantly, passing down original solutions can sometimes allow us to reuse
solutions instead of recomputing them from scratch. When an original component C′ is
subsumed by merging, it may sometimes re-emerge deeper in the recursion stack as a
descendant of the merged component. If the original solution S manages to percolate down
the tree to the new location of C′ then we can re-use S. However, if any of the splits in6(S)
is satisfied at an earlier recursion level, then S must be broken up and cannot be re-used.
This will be described in further detail below and illustrated in Example #4.

We therefore modify the signature of BuildIncA′(S, 16) to BuildIncA′′(S, 16, O),
where O is a set of original solutions. The call BuildIncA′(S, 16, O) indicates an attempt
to add both splits in 16 and splits in O to the splits in S. We will write 6(O) to indicate
the splits contained in O, where

6(O)=
⋃
S′∈O

6(S′)

These original solutions in O satisfy three properties that we will prove in Section A of
the Supplementary Information File:
1. If O is non-empty, then S contains no splits.
2. Each original solution in O has a taxon set that is a subset of S.T.
3. All the original solutions in O have non-overlapping taxon sets.

BuildIncA′′: MergeComponents′′(S, 16, O) step
We seek to construct the connected components of the cluster graph for the splits
6(S)∪16∪6(O) from the connected components for 6(S). In addition to iterating
over 16 and merging components, BuildIncA′′ must additionally handle splits in 6(O).
One possible approach would be to iterate over splits in 6(O) and merge components that
overlap each split. However, it turns out that there is a more efficient way.

We note that each original solution S′ ∈ O is a connected component of the original
cluster graph for some higher recursive level. Additionally, the taxa in S′.T are connected

Redelings and Holder (2024), PeerJ, DOI 10.7717/peerj.16624 14/26

https://peerj.com
http://dx.doi.org/10.7717/peerj.16624#supp-8
http://dx.doi.org/10.7717/peerj.16624


solely by edges corresponding to splits in 6(S′) (see Section ??). This is because any split
whose include group overlaps the component is assigned to (and only relevant to) that
component. Therefore, the effect of the splits 6(S′) is only to connect the taxa in S′.T. We
may therefore iterate over original solutions S′ ∈ O and merge any two components that
both overlap S′.T. This makes it unnecessary to extract the splits σ ∈ S′.

BuildIncA′′: AssignSplitsToComponents′′(S, 16, O) step
The BuildIncA′′ needs to assign splits in 6(S), 16, and 6(O) to their corresponding
components. Each split in16 is assigned to a component C and stored in C.16, just as as
in BuildA and BuildIncA′. However, there are two major differences from BuildIncA′.

First, BuildIncA′′ does not need to do anything for splits in 6(S), because they are
already assigned to their correct component. BuildIncA′ needed to extract splits from C.O
and add them to16 if C was a merged component. However, BuildIncA′ passes C.O down
to the next recursive level directly, so this is unnecessary. Note that since BuildIncA′′ no
longer assigns splits from 6(S) to C.16, C.16 will consist only of splits from 16.

Second, BuildIncA′ must assign splits in 6(O) that were recieved from the previous
recursive level to their corresponding component. However, all splits for a subsolution S′

∈O have to end up in the same component. This is because S′.Tmust be entirely contained
in one component. The splits of S′ must then be in the same component. Therefore, we
may simply assign original solutions S′ to components in their entirety. We can determine
which component a solution S′ goes to by looking up the component for any element in
S′.T.

BuildIncA′′: recursive call to BuildIncA′′
As before, BuildIncA′′(S, 16, O) must iterate over the non-trivial components C
∈ S.C and construct a solution C.S for each of them. In all cases this is done by calling
BuildIncA′′(C.S, C.16, C.O). Passing original solutions from modified components
down the tree in C.O allows us to reuse previous work, as described in the section on
RemoveIrrelevantSplits′ below. The only difference from BuildIncA′ is the third
argument, the set of original solutions, O.

BuildIncA′′: RemoveIrrelevantSplits′′(S, 16, O) step
There are two differences between BuildIncA′(S, 16) and BuildIncA′′(S, 16, O). First,
Omight contain a solution S′ to the problem we are trying to solve. In that case, we would
like to reuse that solution. Second, when checking for implied splits, we need to check
inside each original solution S′ ∈ O as well as inside 16. We now discuss these differences
in greater detail.

Reusing previous work in BuildIncA′′(S, 16, O)
Suppose that O contains a solution S′ with the same taxon set as S. In that case, we would
like to re-use the previous work in S′ instead of solving the problem from scratch.

We first note that 6(S) must be empty, since O was non-empty, so it is safe to discard S
and use S′ instead. Second, O is empty after removing S′. This is because S′ contains all the
taxa in S.T and there are no remaining taxa in S.T for any other solutions to contain.

Redelings and Holder (2024), PeerJ, DOI 10.7717/peerj.16624 15/26

https://peerj.com
http://dx.doi.org/10.7717/peerj.16624


We therefore replace the call to BuildIncA′′(S, 16, O) with BuildIncA′′(S′, 16,∅).
This preserves the invariant that S and O cannot both be non-empty.

Removing implied splits from original solutions
Recall that a split σ should be placed into S.I if and only if σ2 does not intersect S.T. For
an original solution S′ ∈ O, we claim that only splits in S′.I can satisfy this condition. If a
split σ from S′ is not in S′.I, then σ2 must intersect S′.T. But S′.T is a subset of S.T, so σ2
intersects S.T as well and cannot go into S.I. Therefore, for each original solution S′, we
only need to check the splits in S′.I.

If any split in S′.I meets the criterion, then we remove it from S′.I (conceptually) and
move it to S.I. However, if one of the splits is removed from a solution, then the solution
no longer has the property that its splits are all in the same connected component. It is no
longer a solution. In such a case, we say that the solution is ‘‘punctured’’.

In order to retain our invariants, we remove punctured solutions from O. However, we
must retain the splits that they contain. For each punctured original solution S′, we copy
the splits in S′.I that were not moved to S.I into the set 16. We move the child solutions
S′. Ci.S into O. In this way, all the splits of S′ are retained—some in S.I, some in 16, and
some in O.

Original solutions in O that are not punctured may be retained unmodified.
Note that replacing an original solution S′ ∈O with its child solutions retains the

invariants that solutions in O (i) have non-overlapping taxon sets and (ii) are contained
within S.T. The taxon sets of child solutions to a solution S′ are contained within S′.T and
are non-overlapping. Since S′.T is contained within S.T and does not overlap with any other
solutions in O, its child solutions must also be contained within S.T and not overlap any
other solutions in O.

Example #4: merging two components and re-using original solutions
When incrementally adding a split that groups two children of a node, the components
that correspond to the grouped children tend to re-emerge at a lower level. While
BuildIncA′ solves the solutions from scratch, BuildIncA′′ is able to re-use the original
solutions to these components.

To see this, we show how BuildIncA′′ solves the same problem that BuildIncA′ solved
in Example #3 (Fig. 4). Unlike BuildIncA′, BuildIncA′′ leads to C1.16 containing only
the single incrementally-added split A1B1| •C . Instead of extracting the splits A1A2| •B1
and B1B2|•C from the original solutions S2 and S3, BuildIncA′ passes down the original
solutions themselves.

The original component {A1,A2} re-emerges at a lowever level, and is solved by re-using
the original solution S2. The other original solution S 3 is punctured, and its split B1B2|•A
is added to S4.I.

THE FULLY INCREMENTALIZED ALGORITHM BUILDINC
The BuildInc′ and BuildInc′ algorithms modify the original solution data structure as
they execute. When these algorithms discover that the additional splits are incompatible

Redelings and Holder (2024), PeerJ, DOI 10.7717/peerj.16624 16/26

https://peerj.com
http://dx.doi.org/10.7717/peerj.16624


A RollbackInfo object r contains the following fields:

r.S: a pointer to the Solution object that this rollback info is about.

r.n old implied splits: the previous number of implied splits S.I.

r.merge rollback info: the sequence of MergeRollbackInfo objects

r.n orig components: the original number of components

r.old components: the array of pointers to components after merging but before removing empty
components.

A MergeRollbackInfo object m contains the following fields:

m.component1 = pointer to C1

m.component2 = pointer to C2, or NULL if C2 is trivial.

m.component2 first = pointer to the first element of C2.T, or NULL if C2 is trivial.

m.orig solution = pointer to the original solution C1.S.

Figure 5 Definitions for the RollbackInfo and MergeRollbackInfo.
Full-size DOI: 10.7717/peerj.16624/fig-5

with the previous solution, we cannot simply revert to the previous solution, because it
has been modified. We must therefore recreate the previous solution data structure from
scratch, discarding all of the saved work.

We address this problem by extending BuildInc′′ to record any change that it makes to
the original solution. We can then reverse these changes in the case of failure. We call the
extended algorithm BuildInc. Much of the description of BuildInc thus boils down to (i)
specifying just what informationmust be recorded to reverse changes made by BuildIncA′′

and (ii) some optimizations that avoid spending time recording information that will never
be used.

An overview of the rollback approach
All modifications to each Solution object S are complete before any modifications are
made to its children.We can therefore representmodifications to the solution data structure
as a sequence R of modifications to individual Solution objects. If BuildIncA returns
failure at the top level, we can then walk this sequence in reverse order, and roll back the
changes that it describes. We create the record type RollbackInfo to record modifications
made to an individual Solution object (Fig. 5).

Component mergers are the most interesting type of modifications that BuildIncA′

makes to Solution objects. We can represent component mergers for each Solution

object as a sequence of individual mergers of two components. For each component
merger, we record enough information about the two original components to reverse the
merger. It is then possible to reverse the mergers by walking the sequence in reverse order,
and undoing eachmerger in turn.We create the record type MergeRollbackInfo to record
modifications made to an individual Solution object (Fig. 5).

Redelings and Holder (2024), PeerJ, DOI 10.7717/peerj.16624 17/26

https://peerj.com
https://doi.org/10.7717/peerj.16624/fig-5
http://dx.doi.org/10.7717/peerj.16624


Mergers are of two types: mergers of two non-trivial components, or mergers of a non-
trivial component with a trivial component. We handle mergers of two trivial components,
by creating an empty ‘‘non-trivial component’’ data structure, and merging it with each
trivial component in turn.

Details of rollback info
The RollbackInfo record type
Changes that occur to S during BuildIncA(S, 16) include (i) appending additional
implied splits to S.I, (ii) modifying the component list S.C, and (iii) merging components.
We can therefore record the changes that occur to S in terms of (i) the original set of
implied splits S.I, (ii) the original list of components S.C, and (iii) a sequence of records
that describe individual merges of two components. We note that implied splits are only
ever appended to the end of S.I. Therefore, as an additional optimization we can simply
record the original length of S.I, and revert to the original version by truncating the array
to that length.

The MergeRollbackInfo record type
When merging two non-trivial components C1 and C2, let us assume that C2 is the smaller
component. The modifications that occur to C1, C2, and S are the following:

• S.M[t ] is set to C1 for each taxon t ∈C2.T.
• the elements of C2.T are removed and appended to C1.T.
• C1.S is set to Null.

We can restore C1.S from the saved reference. The pointer to the first element of C2.T
allows us to split the linked list C1.T in two at the proper place, and return the latter half to
C2.T. We can then walk the restored elements of C2.T and set S.M [t]=C2 for each t ∈C2.T.

Sometimes wemerge a non-trivial component Cwith a trivial component containing the
taxon t . In such cases, there is no non-trivial component C2. We indicate such cases in the
RollbackInfo object by setting component2 = Null. Such mergers can be rolled back by
removing the last element of C1.T, setting S.M[t ] =Null and setting C1.S= orig_solution.

Optimizations
Recording and replaying rollback info allows us to avoid discarding saved work. However,
both recording and replaying rollback info also have a cost. In order to achieve the optimum
speedup from rollback info, we must avoid paying this cost when we do not need to.

Optimization #1
We only need to undo changes to a Solution object if it was part of the previous solution
data structure. In order to determine if a Solution object S is part of the previous solution
data structure, we initialize a counter S.visits to 0 when creating a new Solution object.
We then increment the counter each time the Solution object is visited by BuildIncA.
We then avoid appending the rollback info for S to the sequence of changes R if S.visits
= 0.

Redelings and Holder (2024), PeerJ, DOI 10.7717/peerj.16624 18/26

https://peerj.com
http://dx.doi.org/10.7717/peerj.16624


Optimization #2
Sometimes an original Solution object contains only trivial components. In such a case,
we do not need to walk the list of merge records in reverse, undoing each component
merger. We can simply clear the component list, and set all the entries of S.M to Null.

Optimization #3
If the number of original components is 0, then we will either not record the rollback
info r at all (optimization #1), or we will record r but not look at the merge records
(optimization #2). In that case, creating the sequence of merge records is a waste of time.
We therefore pass a flag to MergeComponentWithTrivial and MergeComponents
indicating whether or not to record merge records.

This optimization is essential because it avoids creating merge records for cases where
they will not be used. One of those cases is when implementing Build (6) by calling
BuildIncA (S,6) for a blank Solution S. In order for BuildInc not to be slower than
Build, we must avoid creating merge records in this case.

Modifications to BuildIncA
In order to record rollback info, we must make a few modifications to BuildIncA.
In RemoveIrrelevantSplits, we record the original number of implied splits. In
MergeComponents we record (i) the original number of components, (ii) a merge-record
for each component merger, and (iii) a copy of C after new components are added, but
before empty components are removed.

Rollback(S,r)
After running BuildIncA, BuildInc must run RollbackAll(S, R) in case of failure. This
consists of running RollbackOne(S, r) on individual RollbackInfo objects r .
1. Truncate S.I to its previous length r.n_orig_implied_splits.
2. If r.n_orig_components is equal to 0, then clear S. C and set S.M [t] = Null for each

taxon t .
3. If r.n_orig_components is more than 0, walk the list of merge records in reverse order,

and undo each one.
4. If we recorded the original components vector S0.C then

(a) swap(S.C, S0.C).
(b) Truncate S.C to r.n_orig_components.
This process seems simple enough, but one aspect of it that is tricky. Some components

are created during merging that (i) are not original components, and also (ii) end up being
empty. So they are not final components. We need these components to survive (i.e not
be deallocated) so that we can temporarily add elements to them during rollback. We will
then move these elements out of them into original components.

BATCHING + ORACLE
Batching
Recall that our supertree algorithm works by considering an ordered list of trees. We seek
to construct the set of splits from these trees that are jointly compatible.

Redelings and Holder (2024), PeerJ, DOI 10.7717/peerj.16624 19/26

https://peerj.com
http://dx.doi.org/10.7717/peerj.16624


The batching approach works by batch-adding the splits for the each tree in order. To
batch-add a group of splits, we try and add the whole group of splits. If that succeeds,
then we keep the whole group. If it fails, and the group has one split then we are done.
If it fails, and the group has more than one split, then we batch-add the first half of the
group, followed by the second half of the group. This ends up being both simpler and more
efficient than trying fixed-size batches because we do not need to figure out the ideal batch
size and it has exponential back-off.

Batching improves efficiency when 6 is large because the cost of determining the
compatibility of 6+16 does not increase much as the size of 16 increases. If all the
splits in 16 will be accepted, it is thus substantially more efficient to add them in one
batch.

Oracle
The oracle first runs conflict analysis on each input phylogeny T to identify branches
of T that conflict with the tree of currently accepted splits. We then batch-add splits
corresponding to the non-conflicting branches of T . This makes batching more efficient
by making it more likely that large batches do not contain any conflicting splits.

Unfortunately, the oracle cannot filter splits for the taxonomy tree if there are any
incertae sedis taxa. This is because taxonomy branches may correspond to partial splits in
the presence of incertae sedis taxa. Our current conflict analysis does not handle partial
splits.

Simulation experiments
The simulations script (gen_subproblem.py) can be found in the otcetera repository
on GitHub (https://github.com/OpenTreeOfLife/otcetera and via DOI: https://zenodo.org/
doi/10.5281/zenodo.10041275). The user of the script specifies: (a) a number of leaves
in the full tree, (b) a number of phylogenetic input trees to simulate, (c) a tip inclusion
probability for each phylogenetic input, (d) a number of edge-contract-refine (ECR)moves
to conduct on each input tree, and (e) an edge contraction probability for the taxonomy.
For each replicate, the script uses DendroPy (Sukumaran & Holder, 2010) to generate a
pure birth (Yule) tree with the specified number of leaves as the true(model) full tree for
that replicate. The specified number of phylogenetic inputs are created by sub-sampling the
full tree (using the tip-inclusion probability to assess whether a tip remains in the sampled
input); if all tips are deleted a new phylogenetic input is drawn, rather than emitting an
empty tree. Then the specified number of ECR moves are applied to the tree to mimic
phylogenetic estimation noise. The last tree emitted for each replicate is designed to mimic
the taxonomic input in the problems used by the Open Tree of Life project. The taxonomic
input is complete (lacks any sub-sampling based on taxon inclusion probabilities). In
addition to having errors introduced by ECR moves, the taxonomic input undergoes
branch collapsing (using the user-supplied edge-contraction probability on each internal
edge independently) to mimic the unresolved character of most taxonomies.

We simulated a collection of supertree problems containing 50-1000 taxa, all with 20
phylo-inputs.

Redelings and Holder (2024), PeerJ, DOI 10.7717/peerj.16624 20/26

https://peerj.com
https://github.com/OpenTreeOfLife/otcetera
https://zenodo.org/doi/10.5281/zenodo.10041275
https://zenodo.org/doi/10.5281/zenodo.10041275
http://dx.doi.org/10.7717/peerj.16624


  0.1

  1.0

 10.0

100.0

100 300 1000
Number of OTUs (with 20 phylos)

E
la

ps
ed

 ti
m

e 
(s

ec
on

ds
)

20

40

60

250 500 750 1000
Number of OTUs (with 20 phylos)

E
la

ps
ed

 ti
m

e 
(s

ec
on

ds
)

−oracle

+oracle

−batching

+batching

Figure 6 Effect of oracle and batch optimizations on run time. The left panel is log-scaled, whereas the
right panel is not. Run time versus number of OTUs where each sample data set has 20 phylogenetic trees
as inputs.

Full-size DOI: 10.7717/peerj.16624/fig-6

Each OTU was included in the phylogeny inputs with probability 0.5. Each edge in the
taxonomy was collapsed with probability 0.75. We introduced two ECR errors per tree. For
each simulation condition, we determined the run time by averaging across 15 simulated
data sets.

RESULTS
We examined the effect of different optimizations by looking at their run time on simulated
data sets and one real data set. Run times are for an Intel i7-5820K CPU with 32 Gb RAM
running Linux.

Simulated data
We first examined the effect of the batching and oracle optimizations on simulated data
sets as the number of taxa increased (Fig. 6). Batching yields a speedup that increases from
1.6-fold at 50 taxa to 17-fold at 1,000 taxa. Using the oracle to eliminate inconsistent splits
shows no speedup when not paired with batching.

However, when combined with batching, the oracle yields an additional speedup that
increases from 1.3-fold at 50 taxa to 2.4-fold at 1,000 taxa. This indicates that the oracle
allows larger batch sizes to succeed.

Given that our simulation protocol performs two ECR edits to each phylogeny, we expect
about four splits to be inconsistent with the underlying tree per phylo-input. Therefore
larger trees have a smaller fraction of inconsistent splits. That may explain why larger trees
recieve a bigger speedup from batching.

Incrementalizing Build yields a larger speedup than the oracle+batch optimization (Fig.
7). The speedup increases from 20-fold at 50 taxa to 398-fold at 1000 taxa. This represents
an additional 9.9-fold speedup over batching + oracle at 1000 taxa. Much of this speedup
relies on the abilty to save work via rollback: the incremental algorithm achieves only a
116-fold speedup at 1,000 taxa. Rollback ability thus provides a speedup of 3.4-fold for
BuildInc over BuildInc′′.

Redelings and Holder (2024), PeerJ, DOI 10.7717/peerj.16624 21/26

https://peerj.com
https://doi.org/10.7717/peerj.16624/fig-6
http://dx.doi.org/10.7717/peerj.16624


  0.01

  0.10

  1.00

 10.00

100.00

100 300 1000
Number of OTUs (with 20 phylos)

E
la

ps
ed

 ti
m

e 
(s

ec
on

ds
)

0

1

2

3

4

250 500 750 1000
Number of OTUs (with 20 phylos)

E
la

ps
ed

 ti
m

e 
(s

ec
on

ds
) −incremental

+incremental, −rollback

+incremental, +rollback

−batch, −oracle

+batch, −oracle

+batch, +oracle

Figure 7 Comparison of incremental BUILD and batch+oracle optimizations. The left panel is log-
scaled, whereas the right panel is not. Run time versus number of OTUs where each sample data set has 20
phylogenetic trees as inputs.

Full-size DOI: 10.7717/peerj.16624/fig-7

It is possible to combine the batching and oracle optimizations with BuildInc. This is
because BuildInc allows16 to include a batch of splits instead of just adding one split at
a time. Adding batching to BuildInc yields a slight speedup of 27% over BuildInc alone
at 1,000 taxa. However adding batching + oracle yields a 2.1-fold slowdown.

OpenTree data
We also examined a data set taken from the OToL synthesis release 13.4. As mentioned
above, the OToL project normally divides the full supertree problem into subproblems
after taxonomy-only taxa are removed (Redelings & Holder, 2017). Here we consider the
effect of optimizations on running the full supertree problem without dividing it. This is a
much larger scale than the simulated data sets, which are designed to be similar to a single
subproblem.

The data set includes 1,223 non-empty trees in addition to the taxonomy. The taxonomy
tree has 94,028 leaves. To give an idea of the size of the input trees, the three largest input
trees contain 11,217, 8,369, and 7,160 leaves respectively. All but 80 trees contain fewer
than 331 leaves.

The total run time without optimization is 3,323 min= 55 h 23 min (Table 1). Batching
+ oracle decreases the runtime to 345 min, which is a 9.6-fold decrease. BuildInc decreases
the runtime further to 5 min 44s. This is a 60-fold speedup over batching + oracle, and a
579-fold speedup overall. Surprisingly, if we disable rollback, the runtime is 527min, which
is even slower than batching + oracle. This indicates that the OToL supertree problem
contains more conflicting splits than the simulated data set above. Additionally, BuildInc
+ batching + oracle achieves an additional 1.95-fold speedup over BuildInc. This is
different than in the simulations above, where BuildInc + batching + oracle was slower
than BuildInc.

When using the naive Build algorithm, our supertree algorithm considers a total of
183,850 splits and calls Build 183,850 times. Of these splits, 160,682 are accepted. So,
87.4% of splits are accepted and 12.6% are rejected.

Redelings and Holder (2024), PeerJ, DOI 10.7717/peerj.16624 22/26

https://peerj.com
https://doi.org/10.7717/peerj.16624/fig-7
http://dx.doi.org/10.7717/peerj.16624


Table 1 Run times for handling the OToL 13.4 data set without subproblem decomposition.

Batch Oracle Incremental Rollback Time

0 0 0 0 3,323 m
1 1 0 0 345 m
0 0 1 0 527 m
1 1 1 0 271 m
0 0 1 1 5 m 44 s
1 1 1 1 2 m 56 s

    1

  100

10000

1e+02 1e+03 1e+04 1e+05
Number of splits accepted

E
la

ps
ed

 ti
m

e 
(s

ec
on

ds
)

0

5000

10000

15000

20000

40000 80000 120000 160000
Number of splits accepted

E
la

ps
ed

 ti
m

e 
(s

ec
on

ds
)

−batch, −oracle

+batch, +oracle

−incremental

+incremental, −rollback

+incremental, +rollback

    1

  100

10000

1 10 100 1000
Number of input trees

E
la

ps
ed

 ti
m

e 
(s

ec
on

ds
)

0

5000

10000

15000

20000

300 600 900 1200
Number of input trees

E
la

ps
ed

 ti
m

e 
(s

ec
on

ds
)

interaction(incr, rollback)

−incremental

+incremental, −rollback

+incremental, −rollback

interaction(batch, oracle)

−batch, −oracle

+batch, +oracle

Figure 8 Time taken versus number of input splits accepted (top) or input trees processed (bottom).
The left panel is log-scaled, whereas the right panel is not.

Full-size DOI: 10.7717/peerj.16624/fig-8

When the oracle is enabled, 162,517 splits are considered. This lowers the fraction of
rejected splits to 1.1%. When using the oracle + batch optimizations, Build is called only
14,481 times.

Figure 8 shows that some phylo-inputs take a lot more time than others. Processing splits
from the taxonomy tree takes a large fraction of the total time. However, when graphed
against the number of accepted splits, the relationship is more linear, indicating that the
effect of large trees is at least partly driven by the fact that large trees have a large number
of splits.

Redelings and Holder (2024), PeerJ, DOI 10.7717/peerj.16624 23/26

https://peerj.com
https://doi.org/10.7717/peerj.16624/fig-8
http://dx.doi.org/10.7717/peerj.16624


DISCUSSION
We set out to improve the speed of our supertree algorithm that calls Buildmany times in
a row. By using an incremental algorithm that re-uses work from previous calls to Build
we were able to achieve a speedup of up to 579-fold in practice.

Incrementalizing faster version of Build
Our current approach uses a naive approach to Build that achieves O(M 3) time. Future
research should consider whether it is possible to modify our incremental algorithm
to incorporate recent improvements to Build that decrease the order, such as Deng &
Fernández-Baca (2018). In fact, their algorithm relies on another incremental algorithm
–incremental graph connectivity–which identifies new connected components that appear
as edges are deleted or added (Holm, de Lichtenberg & Thorup, 2001). One approach might
therefore be to replace our map of taxa to Component objects at each level with a graph
that supports incremental connectivity queries. This would involve incrementally adding
any required edges at each recursive level and identifying connected components that are
merged.

One difficulty with this strategy is that we assume the data structures used to find
connected components on each recursive level are separate. In constrast,Deng & Fernández-
Baca (2018) construct a single graph at the beginning of the algorithm, and then remove
additional edges from the single, shared graph at each recursive level. It might be possible to
adapt this approach by saving a copy of the relevant portion of the graph at each recursive
level to preserve a snapshot of previous work that is unmodified by work at deeper levels.
However, even if this is feasible, it is not yet clear howmuch this would change the running
time of the algorithm.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work was supported by the National Science Foundation of the United States of
America (Division of Biological Infrastructure Award No. 1759838). The funders had no
role in study design, data collection and analysis, decision to publish, or preparation of the
manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
The National Science Foundation of the United States of America (Division of Biological
Infrastructure ): 1759838.

Competing Interests
The authors declare there are no competing interests.

Redelings and Holder (2024), PeerJ, DOI 10.7717/peerj.16624 24/26

https://peerj.com
http://dx.doi.org/10.7717/peerj.16624


Author Contributions
• Benjamin D. Redelings conceived and designed the experiments, performed the
experiments, analyzed the data, prepared figures and/or tables, authored or reviewed
drafts of the article, and approved the final draft.
• Mark T. Holder conceived and designed the experiments, performed the experiments,
authored or reviewed drafts of the article, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The data for the timing results depicted in figures are available in the Supplemental
Files.

The otcetera code is available in the Supplemental File and at Zenodo: Redelings, B.,
& Holder, M. (2023). otcetera commit 2287cefc4d12d328c4d9a4272b10aa25b38abbcd.
Zenodo. https://doi.org/10.5281/zenodo.10041276.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj.16624#supplemental-information.

REFERENCES
Aho AV, Sagiv Y, Szymanski TG, Ullman JD. 1981. Inferring a tree from lowest common

ancestors with an application to the optimization of relational expressions. SIAM
Journal on Computing 10(3):405–421 DOI 10.1137/0210030.

Chatziafratis V, Niazadeh R, Charikar M. 2018.Hierarchical clustering with structural
constraints. In: Proceedings of the 35th international conference on machine learning.
The Proceedings of Machine Learning, 774–783.

Deng Y, Fernández-Baca D. 2018. Fast compatibility testing for rooted phylogenetic
trees. Algorithmica 80(8):2453–2477 DOI 10.1007/s00453-017-0330-4.

Gordon A. 1986. Consensus supertrees: the synthesis of rooted trees contain-
ing overlapping sets of labeled leaves. Journal of Classification 3(2):335–348
DOI 10.1007/BF01894195.

Hinchliff CE, Smith SA, Allman JF, Burleigh JG, Chaudhary R, Coghill LM, Crandall
KA, Deng J, Drew BT, Gazis R, Gude K, Hibbett DS, Katz LA, Laughinghouse
HD,McTavish EJ, Midford PE, Owen CL, Ree RH, Rees JA, Soltis DE,Williams T,
Cranston KA. 2015. Synthesis of phylogeny and taxonomy into a comprehensive tree
of life. Proceedings of the National Academy of Sciences of the United States of America
112(41):12764–12769 DOI 10.1073/pnas.1423041112.

Holm J, de Lichtenberg K, ThorupM. 2001. Poly-logarithmic deterministic fully-
dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and bicon-
nectivity. Journal of the ACM 48(4):723–760 DOI 10.1145/502090.502095.

LafondM, El-Mabrouk N. 2014. Orthology and paralogy constraints: satisfiability and
consistency. BMC Genomics 15(6):S12 DOI 10.1186/1471-2164-15-S6-S12.

Redelings and Holder (2024), PeerJ, DOI 10.7717/peerj.16624 25/26

https://peerj.com
http://dx.doi.org/10.7717/peerj.16624#supplemental-information
http://dx.doi.org/10.7717/peerj.16624#supplemental-information
https://doi.org/10.5281/zenodo.10041276
http://dx.doi.org/10.7717/peerj.16624#supplemental-information
http://dx.doi.org/10.7717/peerj.16624#supplemental-information
http://dx.doi.org/10.1137/0210030
http://dx.doi.org/10.1007/s00453-017-0330-4
http://dx.doi.org/10.1007/BF01894195
http://dx.doi.org/10.1073/pnas.1423041112
http://dx.doi.org/10.1145/502090.502095
http://dx.doi.org/10.1186/1471-2164-15-S6-S12
http://dx.doi.org/10.7717/peerj.16624


Redelings BD, Holder MT. 2017. A supertree pipeline for summarizing phylo-
genetic and taxonomic information for millions of species. PeerJ 5:e3058
DOI 10.7717/peerj.3058.

Redelings BD, Holder MT. 2019. Taxonomic supertree construction with incertae sedis
taxa. In: Warnow T, ed. Bioinformatics and phylogenetics. Cham: Springer, 151–173.

Rees J, Cranston K. 2017. Automated assembly of a reference taxonomy for phylogenetic
data synthesis. Biodiversity Data Journal 5:e12581 DOI 10.3897/BDJ.5.e12581.

Roch S,Warnow T. 2015. On the robustness to gene tree estimation error (or lack
thereof) of coalescent-based species tree methods. Systematic Biology 64(4):663–676
DOI 10.1093/sysbio/syv016.

SandersonMJ, McMahonMM, Steel M. 2011. Terraces in phylogenetic tree space.
Science 333(6041):448–450 DOI 10.1126/science.1206357.

Sukumaran J, Holder MT. 2010. DendroPy: a Python library for phylogenetic comput-
ing. Bioinformatics 26(12):1569–1571.

Redelings and Holder (2024), PeerJ, DOI 10.7717/peerj.16624 26/26

https://peerj.com
http://dx.doi.org/10.7717/peerj.3058
http://dx.doi.org/10.3897/BDJ.5.e12581
http://dx.doi.org/10.1093/sysbio/syv016
http://dx.doi.org/10.1126/science.1206357
http://dx.doi.org/10.7717/peerj.16624

