Germination of pecan seeds changes the microbial community (#88694)

First revision

Guidance from your Editor

Please submit by 23 Oct 2023 for the benefit of the authors .

Structure and Criteria

Please read the 'Structure and Criteria' page for general guidance.

Raw data check

Review the raw data.

Image check

Check that figures and images have not been inappropriately manipulated.

If this article is published your review will be made public. You can choose whether to sign your review. If uploading a PDF please remove any identifiable information (if you want to remain anonymous).

Files

Download and review all files from the <u>materials page</u>.

- 1 Tracked changes manuscript(s)
- 1 Rebuttal letter(s)
- 6 Figure file(s)
- 1 Table file(s)

i

Structure and Criteria

Structure your review

The review form is divided into 5 sections. Please consider these when composing your review:

- 1. BASIC REPORTING
- 2. EXPERIMENTAL DESIGN
- 3. VALIDITY OF THE FINDINGS
- 4. General comments
- 5. Confidential notes to the editor
- You can also annotate this PDF and upload it as part of your review

When ready submit online.

Editorial Criteria

Use these criteria points to structure your review. The full detailed editorial criteria is on your guidance page.

BASIC REPORTING

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context.
 Literature well referenced & relevant.
- Structure conforms to <u>PeerJ standards</u>, discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
- Raw data supplied (see <u>PeerJ policy</u>).

EXPERIMENTAL DESIGN

- Original primary research within Scope of the journal.
- Research question well defined, relevant & meaningful. It is stated how the research fills an identified knowledge gap.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.

VALIDITY OF THE FINDINGS

- Impact and novelty not assessed.

 Meaningful replication encouraged where rationale & benefit to literature is clearly stated.
- All underlying data have been provided; they are robust, statistically sound, & controlled.

Conclusions are well stated, linked to original research question & limited to supporting results.

Standout reviewing tips

The best reviewers use these techniques

Τ	p

Support criticisms with evidence from the text or from other sources

Give specific suggestions on how to improve the manuscript

Comment on language and grammar issues

Organize by importance of the issues, and number your points

Please provide constructive criticism, and avoid personal opinions

Comment on strengths (as well as weaknesses) of the manuscript

Example

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57-86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that an international audience can clearly understand your text. Some examples where the language could be improved include lines 23, 77, 121, 128 – the current phrasing makes comprehension difficult. I suggest you have a colleague who is proficient in English and familiar with the subject matter review your manuscript, or contact a professional editing service.

- 1. Your most important issue
- 2. The next most important item
- 3. ...
- 4. The least important points

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.

Germination of pecan seeds changes the microbial community

Jia Liu¹, Sumei Qiu², Liping Yang², Tingting Xue Corresp., 1, Yingdan Yuan Corresp. 2

Corresponding Authors: Tingting Xue, Yingdan Yuan Email address: xuetingting1991@outlook.com, yyd@yzu.edu.cn

Endophytes are core of the plant-associated microbiome, and seed endophytes are closely related to the plant growth and development. Seed germination is an important part of pecan's life activities, but the composition and changes of microbes during different germination processes have not yet been revealed in pecan seeds. In order to deeply explore the characteristics of endophytes during the germination process of pecan, highthroughput sequencing was performed on seeds at four different germination stages. The findings of present study was found that the diversity and composition of microorganisms were different in different germination stages, and the microbial richness and diversity were the highest in the seed endocarp break stage. It was speculated that the change of endophytes in pecan seeds was related to the germination stage. By evaluating the relationship between microbial communities, the core microbiota Cyanobacteria, Proteobacteria and Actinobacteria (bacteria) and Anthophyta and Ascomycota (fungal) core microbiota were identified in germinating pecan seeds. Finally, biomarkers in different germination processes of pecan seeds were identified by LEfSe analysis, among which Proteobacteria, Gamma proteobacteria and Cyanobacteria and Ascomycota and Sordariomycetes were most abundant. Thus, this study will help to explore the interaction mechanism between pecan seeds and endophytes in different germination processes, and provide materials for the research and development of pecan seed endophytes.

 $^{^{}f 1}$ Department of Civil and Architecture and Engineering, Chuzhou University, Anhui, China

² College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, China

Germination of pecan seeds changes the microbial community

Jia Liu¹, Sumei Qiu², Liping Yang², Tingting Xue^{1*}, Yingdan Yuan^{2*}

Department of Civil and Architecture and Engineering, Chuzhou University, Anhui, 239000, China;

²College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China;

Corresponding author: xuetingting1991@outlook.com (Tingting Xue); yyd@yzu.edu.cn (Yingdan Yuan)

Endophytes are core of the plant-associated microbiome, and seed endophytes are closely related to the plant growth and development. Seed germination is an important part of pecan's life activities, but the composition and changes of microbes during different germination processes have not yet been revealed in pecan seeds. In order to deeply explore the characteristics of endophytes during the germination process of pecan, high-throughput sequencing was performed on seeds at four different germination stages. The findings of present study was found that the diversity and composition of microorganisms were different in different germination stages, and the microbial richness and diversity were the highest in the seed endocarp break stage. It was speculated that the change of endophytes in pecan seeds was related to the germination stage. By evaluating the relationship between microbial communities, the core microbiota *Cyanobacteria*, *Proteobacteria* and *Actinobacteria* (bacteria) and *Anthophyta* and *Ascomycota* (fungal) core microbiota were identified in germinating pecan seeds. Finally, biomarkers in different germination processes of pecan seeds were identified by LEfSe analysis, among which *Proteobacteria*, *Gamma proteobacteria* and *Cyanobacteria* and *Ascomycota* and *Sordariomycetes* were most abundant. Thus, this study will help to explore the interaction mechanism between pecan seeds and endophytes in different germination processes, and provide materials for the research and development of pecan seed endophytes.

Keywords: pecan seeds, germination process, endophyte microbiota

INTRODUCTION

ABSTRACT

Seeds are the transmission medium of microorganisms from mother plants to their offsprings, passing beneficial microorganisms from generation to generation. Seed-borne microbes are present in different tissues of the plant and provide a range of benefits to the host plant (*Johnston-Monje & Raizada 2011*; *Lopez-Velasco et al. 2013*; *Shade et al. 2017*). Microorganisms in seeds are diverse, including taxa such as bacteria, fungi, and archaea (*Simonin et al. 2022*), and there are about 1-1000 species of bacteria and 1-150 species of fungi in a single seed, and the diversity varies greatly among samples across plant species (*Shearin et al. 2018*; *Truyens et al. 2015*). Numerous microorganisms exist in and on seeds, and these

37 microorganisms play important roles in seed storage (Qi et al. 2022a; Qi et al. 2022b), seed germination 38 (Goggin et al. 2015), seedling growth (Gao et al. 2020; Walsh et al. 2021) and plant health (Hu et al. 39 2020). Endophytes play a direct or indirect role in seed germination to promote the growth of the host 40 plant (Ahmad et al. 2020). Studies have shown that seed endophytes vary by plant species (Links et al. 41 2014), genotype(Adam et al. 2018), seed maturation process (Mano et al. 2006) and environmental 42 conditions (Klaedtke et al. 2016). Seed endophytes are derived from plant-associated endophytes that can 43 influence plant microbial community structure and function (Midha et al. 2016). 44 The dominant phyla of bacteria in seeds are *Proteobacteria*, *Actinobacteria*, *Firmicutes* and *Bacteroidetes*, 45 the dominant phyla of fungi are Ascomycota and Basidiomycota, and the dominant phyla of archaea are 46 Thaumarchaeota and Euryarchaeota (Simonin et al. 2022; Taffner et al. 2020). Microorganisms widely 47 present in seeds include Pantoea, Pseudomonas, Rhizobium, Dothideomycetes, Tremellomycetes and 48 Candidatus Nitrososphaera and other taxa. Some bacteria can parasitize plant seeds and they may be the 49 creators of rhizosphere or internal bacterial communities early in plant development. These seed 50 endophytes have been shown to have beneficial effects on the host plant, such as releasing seeds from 51 dormancy, promotes seed germination, defends against pathogens and promotes seedling growth (Khalaf 52 & Raizada 2018; Rahman et al. 2018). Cladosporium cladosporioides acts as a seed endophyte with 53 properties that promote seed germination and plant growth (Qin et al. 2016). Fan et al. isolated 54 Arthrobacter and Bacillus megaterium with growth-promoting ability, which can effectively improve the 55 germination rate of tomato seeds, seedling height, fresh weight and dry weight of plants. Moreover, after 56 inoculating rice with good functional strains screened, four strains were found to significantly increase the 57 root length, root weight, stem length and plant fresh weight of rice seedlings (Fan et al. 2016). Choi et al. 58 showed that Capsella bursa-pastoris seeds harbor bacterial endophytes that stimulate seedling growth, 59 thereby potentially affecting seedling establishment (Choi et al. 2022). Carya illinoinensis is an economic tree species of Juglandaceae (Juglandaceae), also known as American 60 61 hickory and long hickory. It is native to North America and is one of the world's famous dry fruit tree 62 species (Guo et al. 2020). As an important woody oil tree species, pecan nuts has high benefit and wide 63 application, and has a very high value of promotion and application (Guo et al. 2020). Its fruit is large, the 64 shell is thin, delicious and nutritious, and is deeply loved by consumers all over the world. It is well 65 known that pecan nuts have large seeds, thin shells and many nutrients with less astringency and can be eaten freshly. As a fruit, Pecan, which is also used as a seed, contains rich microbial resources that have 66 67 not been fully tapped so far (Wells 2017). At present, there are not many high-throughput sequencing on 68 the study of endophytes in walnuts, and most of them are limited to the isolation of endophytes. For 69 example, the isolation of endophytes in walnut fruits is used to ferment cotton stalks to hydrolyze sugar 70 liquid to produce oil (*Zhang et al. 2014a*; *Zhang et al. 2014b*). 71 We present the study on identifying the pecan seed microbiome during the germination process. The 72 microbiome niche differentiation of different germination process in pecan is evaluated in the present 73 study. We have focused here on two primary issues: (1) Which kinds of bacteria and fungi are responsible 74 for the germination process in pecan seeds? (2) What are the similarities and differences in the microbial 75 community composition of pecan germination process? By understanding the above two questions, we can 76 further select the excellent strains that can promote seed germination of plants and apply them to the 77 promotion and cultivation of pecan.

80

81

82

83

84

85

8687

88

89

90

91

MATERIALS AND METHODS

Sampling Procedure

Fresh pecan seeds were used in the present experiment, which were provided by the Jiang Tao Family Farm, Lai 'an County, Anhui Province, China in November 2022, and the cultivar is "Pawnee". The seeds were kept at a 30°C room temperature in Chuzhou University's Plant Physiology Laboratory. For ten days, pecan seeds were imbibed at room temperature. The seeds were then placed at a germination box covered with moist absorbent cotton and placed in a 30 °C constant temperature in full light incubator. The samples were taken four times: S1 (imbibed 10 days), S2 (after 5 days in the incubator), S3 (seed endocarp break) and S4 (seed radicle protrusion) during seed germination. At each stage of germination, we collected 5-10 seeds that germinated consistently and surface sterilized them with 2% NaClO (sodium hypochlorite) by shaking them for four minutes. In order to eliminate residues of NaClO that may interfere with the next steps, the seeds were rinsed five times in sterile MilliQ water. Finally, all samples were immediately frozen in liquid nitrogen. For microbial sequencing, the samples were stored at -80°C in a refrigerator.

929394

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

DNA extraction and amplification

CTAB (cetyl trimethylammonium bromide) technique was used to extracted total genome DNA from seed samples (Niemi et al. 2001). We have evaluated DNA content and purity of 1 % agarose gels, what's more, depending on the concentration, DNA was diluted to 1 ng·µL-1 with sterile water. To generate the bacterial libraries, we used the 799F (5'-AACMGGATTAGATACCCKG-3') and 1193R (5'-ACGTCATCCCCACCTTCC-3') primers set with the unique 6-nt barcode at 5' of the forward primer to amplify the V5-V7 region of the 16S rRNA gene for each sample. The construction of the fungal libraries was similar to the bacterial libraries, except that they were amplified using ITS1F (5'-CTTGGTCATTTAGAGGAAGTAA-3') and ITS2 (5'-GCTGCGTTCTTCATCGATGC-3') for the ITS2 region. All PCR reactions were performed using Phusion® High-Fidelity PCR Master Mix (New England Biolabs). One-load buffer (including SYB green) was mixed with PCR products at a 1:1 volume ratio, and electrophoretic detection was performed on 2% agarose gels. The PCR products were mixed in an equal density ratio. The mixed PCR products were then purified using the Oiagen Gel Extraction Kit (Oiagen, Germany). In accordance with the manufacturer's recommendations, sequencing libraries were generated using the Truseq® DNA PCR-Free Sample Preparation Kit (Illumina, USA). Index codes were also added to the libraries. A Qubit@ 2.0 Fluorometer (Thermo Scientific) and an Agilent Bioanalyzer 2100 system were used to evaluate the quality of the library. An Illumina MiSeq PE300 platform was used to sequence the libraries and generate paired reads.

111112113

114

115

116

117

DNA Sequence analysis

All raw data from the 16S V5-V7 bacterial region and the fungal ITS1 region was processed by QIIME for quality-controlled process (V1.9.1, http://qiime.org/scripts/split libraries fastq.html), and FLASH for paired reads (V1.2.7, http://ccb.jhu.edu/software/FLASH/) (Bolyen et al. 2019; Magoč & Salzberg 2011). For bacteria and fungi, annotation was done by matching the Silva sequences with the UCHIME algorithm

and Unite database (ITS: http://unite.ut.ee/) (UCHIME, http://www.drive5.com/usearch/manual/uchime algo.html) (*Koljalg et al. 2013*; *Quast et al. 2012*).

120121

122

123

124

125

126

127

118

119

Statistical analysis

For the analysis of Alpha Diversity, four indices of species diversity are applied, including Observed Species, Chao1, Shannon, and Simpson. These indices were calculated using QIIME (Version 1.9.1) and visualized using R package ggplot2 (Version 2.15.3). One-way ANOVA was used to determine significant differences at a *P*-value of 0.05; if significant differences were detected, Duncan's post hoc test was used to identify the values that differed from the others. A Beta diversity analysis was used to determine the differences in species complexity among samples, and Beta diversity on Bray-Curtis was calculated using QIIME software (version 1.9.1).

128129

130131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

RESULTS

Alpha and beta-diversity of pecan seed microbial communities

Pecan seeds were sequenced using the Illumina MiSeq high-throughput platform to determine the diversity of bacterial and fungal communities and their ASVs. The Good's coverage index of all samples was greater than 98.5%, indicating that the sequencing results could accurately reflect the true status of the bacterial and fungal communities within the samples. In terms of Shannon diversity index, bacteria had a higher diversity at S3 (seed endocarp break) stage of seed germination, whereas fungi had a higher diversity at S1 (imbibed 10 days) stage. Both the ACE index and the Chao1 index of seed endophyte microorganisms in the four stages have the same trend, and at S3 stage had the highest, indicating the most abundant species in the S3 stage. Additionally, the species richness at the S4 (seed radicle protrusion) stage in fungi was significantly lower than that of the other samples. It was found that the Pielou evenness index of bacteria was generally small, indicating that the species distribution of bacteria in pecan seeds was not uniform. However, the fungal index is close to 1, indicating that fungal species are equally distributed, and at the S1 stage, species distribution is the most uniform (Table 1). PCA is a two-dimension reduction ordination analysis method based on Bray-Curtis distance for assessing the similarities and differences between bacterial and fungal communities (Figure 1). In order to investigate the separation of different germination process, we performed PCA in our study.. In bacterial PCA, 36.49 % of PC1 and 20 % of the total variance were explained by PC2 (Figure 1a). In fungal PCA, PC1 accounted for 36.01 % and PC2 for 23.24 % of the overall variance (Figure 1b).

148149150

151

152

153

154

155

156

157

Microbial community composition in pecan seed germination process

According to the analysis of ASV annotation results, different germination stages of pecan seeds bacteria include 12 phyla, 18 classes, 38 orders, 60 families, 82 genera and 62 species (Figure 2). Among all sequences, the dominant bacterial phyla (relative abundance > 1%) were *Cyanobacteria*, *Proteobacteria*, *Firmicutes*, *Actinobacteria*, *Bacteroidetes*, *Acidobacteria*, *Euryarchaeota*, *Deniococcus-Thermus*, *Spirochaetes*, *Ignavibacteriae*, *Parcubacteria*. It can be seen from Figure 2a-e that the endophytic bacteria in the seeds at the S3 and S4 stages are different from those in the previous two stages. At the phylum level, the two main phylums have undergone major changes, and *Cyanobacteria* in the first two stages The

relative abundance of the first stage is relatively higher, and in the latter two stages, the relative abundance of **Proteobacteria** increases, while the abundance of **Cyanobacteria** decreases. The S3 and S4 stages represent two important stages of seed germination, respectively, and they require different metabolites at the bacterial community level. So, the present study was found that in these two stages, their bacterial communities at different levels have great differences and changes.

However, the changes in the fungal relative abundance of the major families during germination are shown in Figure 3. Pecan seeds fungi include 7 phyla, 14 classes, 23 orders, 30 families, 35 genera and 22 species. Among all sequences, the dominant fungal phyla (relative abundance > 1%) were *Anthophyta*, *Ascomycota*, *Basidiomycota*, *Cercozoa*, *Bacteroidetes*, *Chlorophyta*, *Chytridiomycota*, and *Mortierellomycota*. Among other species, we observed *Juglandaceae*, an endophyte closely related to pecan.

Core and specific microbiome of pecan seeds

In order to assess the relationship between bacterial and fungal communities, the ASVs shared by different germination stages of pecan seeds were presented as an UpSet plot in Figure 4a-b. UpSet plots are used for visualizing the number and overlap of different ASVs. As shown in Figure 4a, all samples shared the majority of bacterial ASVs. There were 40 ASVs shared by S1, S3, and S4, 17 ASVs shared by S1 and S3 and 24 ASVs shared by S2 and S4. S3 stage was found to have the most unique ASVs compared with the other three stages. In all four germination stages, a total of 180 fungal ASVs was found. 64 ASVs (35.6% of the total ASVs) were shared between them (Figure 4b) and the S3 stage shared highest number of fungal ASVs (37 OTUs, which is 20.6% of the total ASVs). However, the number of ASVs that were unique S1 and S3was low, only 4 ASVs for S1 (2.2% of total ASVs) and 3 ASVs for S4 (1.7%). To further analyze the core microbiome of the pecan seeds on the phylum level, the Venn network diagram was used because it can be more clearly to evaluate the distribution of ASVs among different stages. The common core bacterial microbiome of pecan seed consisted of members of *Cyanobacteria*, *Proteobacteria*, and *Actinobacteria* (Figure 4c). But in fungal communities, the common core microbiome is *Anthophyta* and *Ascomycota*.

To further explore the effects of different germination stages of pecan seed on microbial communities, analyzed bacterial and fungal communities using samples subjected to S1, S3 and S4 treatments, which affected bacterial and fungal versity most strongly. The ternary plot showed that high-abundance ASVs belonging to Proteobacteria and Actinobacteria phyla were detected upon S3 and S4 treatments, but the relative abundances of these ASVs in the S1 were extremely low. Moreover, comparing the relative abundances of most ASVs in S3 and S4 stages, S3 is lower than S4.(Figure 5a). Then, samples treated with S1, S3 and S4 was used to further study the fungal community changes. In the fungal community, ASVs from Ascomycota phylum was observed to have a high abundance in the S3 and S4 treatments, but the relative abundance of most ASVs in the S1 group was lower (Figure 5b).

Biomarkers changes in the relative abundances of different germination stages in pecan seeds

In study, linear discriminant analysis (LDA) and effect size (LEfSe) analysis was conducted to identify

199

200

201

202

203

204

205

bacterial and fungal communities as biomarkers (Figure 6). Compared to the seed bacterial community (2 classes, 5 orders, 6 families, 9 genera and 9 species), and found significantly richer biomarker species in the fungal communities (5 classes, 4 orders, 9 families, 10 genera and 12 species) of pecan seeds in different germination stages. All taxonomic levels of seed bacteria were associated with 10 taxa derived from S2, 29 taxa derived from S3, and 14 taxa derived from S4. Among them, Proteobacteria, Gamma proteobacteria and Cyanobacteria were identified as highly abundant biomarkers in the bacterial community. Among all taxonomic levels of seed fungi, 28 biomarkers were related to S1 and 18 were related to S2, 43 biomarkers were related to S3, 12 related to S4 germination stage. Ascomycota and Sordariomycetes were significantly abundant in the seed fungal community.

206 207 208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

DISCUSSION

The germination of pecan seeds affected the diversity and abundance of internal microorganisms. In this study, through the analysis of the microbial community diversity and community composition in four different germination stages of pecan seeds, found that the microbial richness and diversity were the highest in the S3 (seed endocarp break) stage. The diversity and abundance of bacteria and the abundance of fungi gradually increased from the water absorption stage to the endocarp rupture, and decreased when the radicle protruded, and speculated that this trend shift was related to the endocarp dehiscence. We speculated that this change of trend was related to the dehiscence of the endocarp. Previous studies have shown that the increase in the relative abundance of symbiotic microorganisms during seed germination and emergence is due to the spermosphere formed during seed germination providing efficient nutrients for the growth of microbial groups in seeds, which originally existed in dormant forms inside the seeds. Microbes, which break dormancy with nutrients released by germinating seeds (Barret et al. 2015; Kwan et al. 2015; Roberts et al. 2000; Torres-Cortés et al. 2018). Endophytic bacterial biomarkers such as Proteobacteria, Gamma proteobacteria and Cyanobacteria were identified at different germination stages of pecan seeds by LEfSe analysis, and we speculate that they play an important role in the seed germination process. Among them, Cyanobacteria and Proteobacteria have high abundance, which were similar to many research results (Chen et al. 2018; Liu et al. 2013; Zhang et al. 2012). During seed germination, Cyanobacteria and Proteobacteria constituted almost the entire bacterial community and were also identified as core and specific microbiomes. Although the relative abundance of Cyanobacteria decreased during S3 and S4, it always maintained the highest relative abundance. The relative abundance of Proteobacteria increased rapidly in the S3 stage and remained in the S4 stage. Cyanobacteria has been proven to be a beneficial microorganism that can improve plant nutrient uptake capacity, promote growth, and enhance plant tolerance to stress(Rady et al. 2018). In addition, Cyanobacteria also had a certain promotion effect on seed germination and growth. For example, Cvanobacteria to treat maize seeds and found that it has a good effect on promoting maize growth, photosynthesis and anti-Cd toxicity (Seifikalhor et al. 2020). Cyanobacteria treatment increased sunflower seed yield and growth (Abdel-Hafeez et al. 2019). However, the effects of bacteria

Endophytic fungal biomarkers (Ascomycota and Sordariomycetes) were identified at different germination stages of Pecan seeds. Sordariomycetes is a class belonging to the phylum Ascomycota, and its relative

Proteobacteria and Gamma proteobacteria from Proteobacteria on seed germination have been rarely

reported, and further research is needed.

abundance increases gradually after the seeds absorb water until the endocarp of pecan seeds ruptures. Therefore, speculate that *Sordariomycetes* and *Ascomycota* are played an important role in pecan seed germination. *Sordariomycetes* is the main dominant class of endophytic fungal communities in plants with antipathogenic activity (*Ettinger & Eisen 2020*; *Wang et al. 2019*; *Zhang et al. 2021*). *Ascomycota* is the most abundant phylum annotated among endophytic fungi at each stage of pecan seed germination, and it is also one of the core and specific microbiomes of endophytic fungi identified in this study. However, no studies have thoroughly elucidated the effects of the seed endophytic fungi Ascomycota and *Sordariomycetes* on germination.

Seed germination is a complex process in which initially dormant seeds undergo a series of active changes in physiological state (*Huang et al. 2018*). The abundant microorganisms inside the seeds improve the access to nutrients and enhance the ability of seeds to resist pathogens and abiotic stresses by interacting with seeds (*Dai et al. 2020*; *Morella et al. 2019*; *Seifikalhor et al. 2020*). These positive effects on various physiological activities of the host allow the host to adapt to changing environmental conditions, especially in early life stages (*War et al. 2023*). Seed endophytic microbes can promote seed germination and seedling growth, and the transition from seed to shoot is marked by changes in bacterial and fungal community composition and increased dominance (*Verma et al. 2019*; *Walitang et al. 2017*). Therefore, it is of great significance to explore the relationship between seed germination stages and endophytic microorganisms. In this study, high-throughput sequencing of pecan seeds at different germination stages was carried out, and the diversity and abundance changes of endophytic microorganisms in different germination stages of pecan seeds were studied by combining various analysis methods, and the core microorganisms and microbial markers in the seed germination process were found. It will help to explore the interaction mechanism between seeds and microorganisms at different germination stages in the future, and lay a foundation for the development and research of endophytes in pecan seeds in the future.

CONCLUSIONS

The diversity and composition of microorganisms were varies in different germination stages, and the microbial richness and diversity were the highest in the S3 (seed endocarp break) stage. It was speculated that the change of endophytes in pecan seeds was related to the germination stage. As well, we found the key microorganisms and microbial markers in the seed germination process, in addition to studying changes in endophytic microorganisms during different stages of seed germination.. Thus, this study will help to explore the interaction mechanism between pecan seeds and endophytes in different germination processes, and provide materials for the research and development of pecan seed endophytes.

ADDITIONAL INFORMATION AND DECLARATIONS

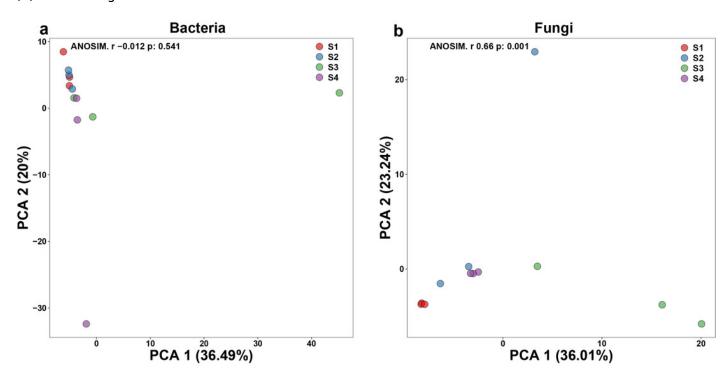
Ethics approval and consent to participate

Our plant materials were collected from the Jiang Tao Family Farm. These plants are not protected; therefore, permission is not required for sample collection. In addition, the place of sample collection is not a protected area, therefore no any legal authorization/license is required. All authors have participated the work and comply with the IUCN Policy Statement on Research Involving Species at Risk of Extinction and the Convention on the Trade in Endangered Species of Wild Fauna and Flora.

279	
280	Consent to publication
281	Not applicable.
282	
283	
284	Author contributions
285	Jia Liu: Conceptualization; Data curation; Investigation; Resources; Software; Visualization; Writing-
286	original draft; Writing-review & editing. Sumei Qiu & Liping Yang: Investigation; Software;
287	Visualization; Funding acquisition; Writing-review & editing. Tingting Xue& Yingdan Yuan:
288	Conceptualization; Resources; Supervision; Validation; Writing-review & editing. All the authors have
289	read and approved the study.
290	
291	
292	
293	REFERENCES
294	Abdel-Hafeez A, El-Mageed TAA, Rady MM. 2019. Impact of ascorbic acid foliar spray and seed treatment with
295	cyanobacteria on growth and yield component of sunflower plants under saline soil conditions. International
296	Letters of Natural Sciences 76.
297	Adam E, Bernhart M, Müller H, Winkler J, Berg G. 2018. The Cucurbita pepo seed microbiome: genotype-specific
298	composition and implications for breeding. <i>Plant and soil</i> 422:35-49.
299	Ahmad R, Khalid R, Aqeel M, Ameen F, Li C. 2020. Fungal endophytes trigger <i>Achnatherum inebrians</i> germination
300	ability against environmental stresses. South African Journal of Botany 134:230-236.
301	Barret M, Briand M, Bonneau S, Préveaux A, Valière S, Bouchez O, Hunault G, Simoneau P, Jacques M-A. 2015.
302303	Emergence shapes the structure of the seed microbiota. <i>Applied and environmental microbiology</i> 81:1257-1266.
304	Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, Alexander H, Alm EJ, Arumugam M,
305	and Asnicar F. 2019. Reproducible, interactive, scalable and extensible microbiome data science using
306	QIIME 2. Nature Biotechnology 37:852-857.
307	Chen H, Wu H, Yan B, Zhao H, Liu F, Zhang H, Sheng Q, Miao F, Liang Z. 2018. Core microbiome of medicinal
308	plant Salvia miltiorrhiza seed: a rich reservoir of beneficial microbes for secondary metabolism?
309	International journal of molecular sciences 19:672.
310	Choi B, Jeong S, Kim E. 2022. Variation of the seed endophytic bacteria among plant populations and their plant
311	growth-promoting activities in a wild mustard plant species, Capsella bursa-pastoris. Ecology Evolution
312	12:e8683.
313	Dai Y, Li XY, Wang Y, Li CX, He Y, Lin HH, Wang T, Ma XR. 2020. The differences and overlaps in the
314	seed-resident microbiome of four Leguminous and three Gramineous forages. Microbial Biotechnology
315	13:1461-1476.
316317	Ettinger CL, and Eisen JA. 2020. Fungi, bacteria oomycota opportunistically isolated from the seagrass, Zostera marina. <i>PloS one</i> 15:e0236135.
318	Fan P. Chen D. He V. Zhou O. Tian V. Gao L. 2016. Alleviating salt stress in tomato seedlings using Arthrobacter

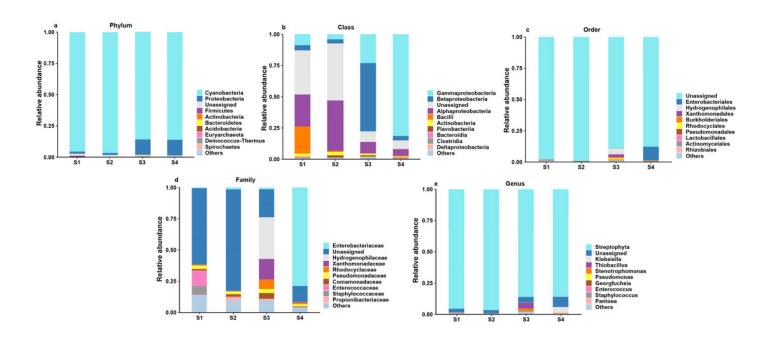
- and *Bacillus megaterium* isolated from the rhizosphere of wild plants grown on saline–alkaline lands. *International Journal of Phytoremediation* 18:1113-1121.
- Gao C, Montoya L, Xu L, Madera M, Hollingsworth J, Purdom E, Singan V, Vogel J, Hutmacher RB, Dahlberg JA.
 2020. Fungal community assembly in drought-stressed sorghum shows stochasticity, selection, and universal
 ecological dynamics. *Nature Communications* 11:34.
- Goggin DE, Emery RN, Kurepin LV, Powles SB. 2015. A potential role for endogenous microflora in dormancy release, cytokinin metabolism and the response to fluridone in *Lolium rigidum* seeds. *Annals of botany* 115:293-301.
- Guo W, Chen J, Li J, Huang J, Wang Z, Lim K-J. 2020. Portal of Juglandaceae: A comprehensive platform for Juglandaceae study. *Horticulture Research* 7.
- Hu J, Wei Z, Kowalchuk GA, Xu Y, Shen Q, Jousset A. 2020. Rhizosphere microbiome functional diversity and pathogen invasion resistance build up during plant development. *Environmental Microbiology* 22:5005-5018.
- Huang Y, Zhang M, Deng Z, Cao L. 2018. Evaluation of probiotic diversity from soybean (*Glycine max*) seeds and sprouts using Illumina-based sequencing method. *Probiotics and antimicrobial proteins* 10:293-298.
- Johnston-Monje D, Raizada MN. 2011. Conservation and diversity of seed associated endophytes in Zea across boundaries of evolution, ethnography and ecology. *Frontiers in Microbiology* 6:e20396.
- Khalaf EM, Raizada MN. 2018. Bacterial seed endophytes of domesticated cucurbits antagonize fungal and oomycete pathogens including powdery mildew. *Frontiers in Microbiology* 9:42.
- Klaedtke S, Jacques MA, Raggi L, Préveaux A, Bonneau S, Negri V, Chable V, Barret M. 2016. Terroir is a key driver
 of seed-associated microbial assemblages. *Environmental Microbiology* 18:1792-1804.
- Koljalg U, Nilsson RH, Abarenkov K, Tedersoo L, Taylor AF, Bahram M, Bates ST, Bruns TD, Bengtsson-Palme J,
 Callaghan TM, Douglas B, Drenkhan T, Eberhardt U, Duenas M, Grebenc T, Griffith GW, Hartmann M,
 Kirk PM, Kohout P, Larsson E, Lindahl BD, Lucking R, Martin MP, Matheny PB, Nguyen NH, Niskanen T,
 Oja J, Peay KG, Peintner U, Peterson M, Poldmaa K, Saag L, Saar I, Schussler A, Scott JA, Senes C, Smith
- ME, Suija A, Taylor DL, Telleria MT, Weiss M, Larsson KH. 2013. Towards a unified paradigm for sequence-based identification of fungi. *Mol Ecol* 22:5271-5277. 10.1111/mec.12481
- Kwan G, Pisithkul T, Amador-Noguez D, Barak J. 2015. De novo amino acid biosynthesis contributes to Salmonella enterica growth in alfalfa seedling exudates. *Applied and environmental microbiology* 81:861-873.
- Links MG, Demeke T, Gräfenhan T, Hill JE, Hemmingsen SM, Dumonceaux T. 2014. Simultaneous profiling of seed-associated bacteria and fungi reveals antagonistic interactions between microorganisms within a shared epiphytic microbiome on *Triticum* and *B rassica* seeds. *New Phytologist* 202:542-553.
- Liu Y, Zuo S, Zou Y, Wang J, Song W. 2013. Investigation on diversity and population succession dynamics of endophytic bacteria from seeds of maize (*Zea mays* L., *Nongda108*) at different growth stages. *Annals of microbiology* 63:71-79.
- Lopez-Velasco G, Carder PA, Welbaum GE, Ponder MA. 2013. Diversity of the spinach (*Spinacia oleracea*) spermosphere and phyllosphere bacterial communities. *FEMS microbiology letters* 346:146-154.
- Magoč T, Salzberg SL. 2011. FLASH: fast length adjustment of short reads to improve genome assemblies. *Bioinformatics* 27:2957-2963.
- Mano H, Tanaka F, Watanabe A, Kaga H, Okunishi S, Morisaki H. 2006. Culturable surface and endophytic bacterial flora of the maturing seeds of rice plants (*Oryza sativa*) cultivated in a paddy field. *Microbes Environments*

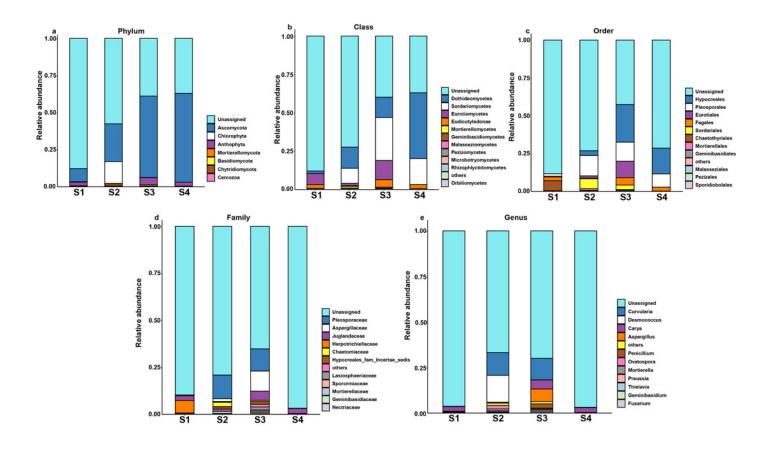
- 360 21:86-100.
- Midha S, Bansal K, Sharma S, Kumar N, Patil PP, Chaudhry V, Patil PB. 2016. Genomic resource of rice seed associated bacteria. *Frontiers in Microbiology* 6:1551.
- Morella NM, Zhang X, Koskella B. 2019. Tomato seed-associated bacteria confer protection of seedlings against foliar disease caused by *Pseudomonas syringae*. *Phytobiomes Journal* 3:177-190.
- Niemi RM, Heiskanen I, Wallenius K, Lindström K. 2001. Extraction and purification of DNA in rhizosphere soil samples for PCR-DGGE analysis of bacterial consortia. *Journal of microbiological methods* 45:155-165.
- Qi Z, Zhou X, Tian L, Zhang H, Cai L, Tang F. 2022a. Distribution of mycotoxin-producing fungi across major rice production areas of China. *Food Control* 134:108572.
- Qi Z, Zhou X, Tian L, Zhang H, Cai L, Tang F. 2022b. Temporal and spatial variation of microbial communities in stored rice grains from two major depots in China. *Food Research International* 152:110876.
- Qin Y, Pan X, Yuan Z. 2016. Seed endophytic microbiota in a coastal plant and phytobeneficial properties of the fungus Cladosporium cladosporioides. *Fungal Ecology* 24:53-60.
- Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO. 2012. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. *Nucleic Acids Research* 41:D590-D596.
- Rady MM, Taha SS, Kusvuran S. 2018. Integrative application of cyanobacteria and antioxidants improves common bean performance under saline conditions. *Scientia Horticulturae* 233:61-69.
- Rahman MM, Flory E, Koyro H-W, Abideen Z, Schikora A, Suarez C, Schnell S, Cardinale M. 2018. Consistent associations with beneficial bacteria in the seed endosphere of barley (*Hordeum vulgare* L.). *Systematic* 41:386-398.
- Roberts D, Dery P, Yucel I, Buyer J. 2000. Importance of pfkA for rapid growth of *Enterobacter cloacae* during colonization of crop seeds. *Applied and environmental microbiology* 66:87-91.
- Seifikalhor M, Hassani SB, Aliniaeifard S. 2020. Seed priming by cyanobacteria (*Spirulina platensis*) and salep gum enhances tolerance of maize plant against cadmium toxicity. *Journal of Plant Growth Regulation* 39:1009-1021.
- Shade A, Jacques M-A, Barret M. 2017. Ecological patterns of seed microbiome diversity, transmission, and assembly.
 Current opinion in microbiology 37:15-22.
- 388 Shearin ZR, Filipek M, Desai R, Bickford WA, Kowalski KP, Clay K. 2018. Fungal endophytes from seeds of invasive, non-native *Phragmites australis* and their potential role in germination and seedling growth. *Plant soil* 422:183-194.
- Simonin M, Briand M, Chesneau G, Rochefort A, Marais C, Sarniguet A, Barret M. 2022. Seed microbiota revealed by a large-scale meta-analysis including 50 plant species. *New Phytologist* 234:1448-1463.
- Taffner J, Bergna A, Cernava T, Berg G. 2020. Tomato-associated archaea show a cultivar-specific rhizosphere effect but an unspecific transmission by seeds. Hytobiomes Journal 4:133-141.
- Torres-Cortés G, Bonneau S, Bouchez O, Genthon C, Briand M, Jacques M-A, Barret M. 2018. Functional microbial features driving community assembly during seed germination and emergence. *Frontiers in plant science* 9:902.
- Truyens S, Weyens N, Cuypers A, Vangronsveld J. 2015. Bacterial seed endophytes: genera, vertical transmission and interaction with plants. *Environmental Microbiology Reports* 7:40-50.
- 400 Verma SK, Kharwar RN, White JF. 2019. The role of seed-vectored endophytes in seedling development and



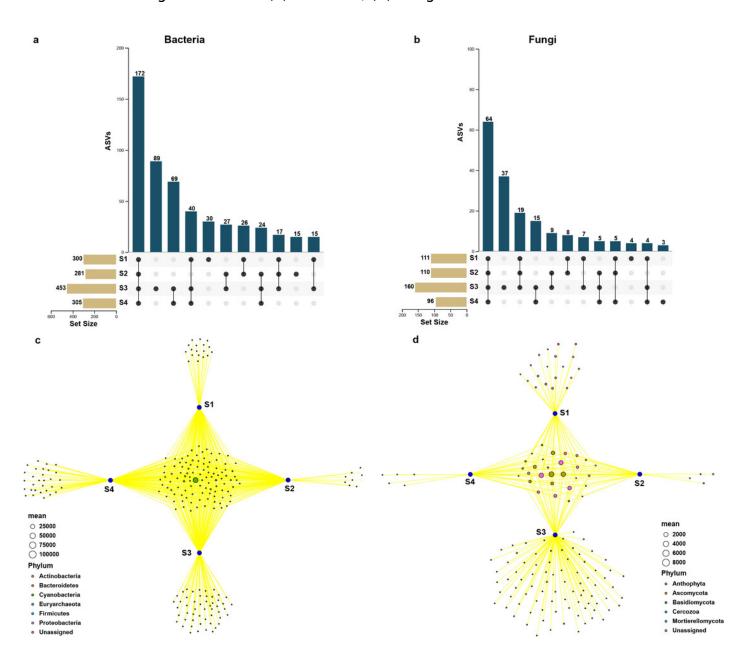
401	establishment. Symbiosis 78:107-113.
402	Walitang DI, Kim K, Madhaiyan M, Kim YK, Kang Y, Sa T. 2017. Characterizing endophytic competence and plan
403	growth promotion of bacterial endophytes inhabiting the seed endosphere of Rice. BMC microbiology 17:19
404	13.
405	Walsh CM, Becker-Uncapher I, Carlson M, Fierer N. 2021. Variable influences of soil and seed-associated bacteria
406	communities on the assembly of seedling microbiomes. The ISME Journal 15:2748-2762.
407	Wang Y, Zhang W, Ding C, Zhang B, Huang Q, Huang R, Su X. 2019. Endophytic communities of transgenic poplar
408	were determined by the environment and niche rather than by transgenic events. Frontiers in Microbiology
409	10:588.
410	War AF, Bashir I, Reshi ZA, Kardol P, Rashid I. 2023. Insights into the seed microbiome and its ecological
411	significance in plant life. Microbiological research: 127318.
412	Wells L. 2017. Pecan: America's Native Nut Tree: University of Alabama Press.
413	Zhang H, Wei T-P, Li L-Z, Luo M-Y, Jia W-Y, Zeng Y, Jiang Y-L, Tao G-C. 2021. Multigene phylogeny, diversity
414	and antimicrobial potential of endophytic Sordariomycetes from Rosa roxburghii. Frontiers in Microbiology
415	12:755919.
416	Zhang Q, Li Y, Xia L. 2014a. An oleaginous endophyte Bacillus subtilis HB1310 isolated from thin-shelled walnu
417	and its utilization of cotton stalk hydrolysate for lipid production. Biotechnology for biofuels 7:1-13.
418	Zhang Q, Li Y, Xia L, Liu Z. 2014b. Enhanced xylitol production from statistically optimized fermentation of cotton
419	stalk hydrolysate by immobilized Candida tropicalis. Chemical Biochemical Engineering Quarterly 28:87-
420	93.
421	Zhang X-Y, Bao J, Wang G-H, He F, Xu X-Y, Qi S-H. 2012. Diversity and antimicrobial activity of culturable fung
422	isolated from six species of the South China Sea gorgonians. Microbial ecology 64:617-627.
423	
424	

Beta-diversity in pecan seeds at different germination stage

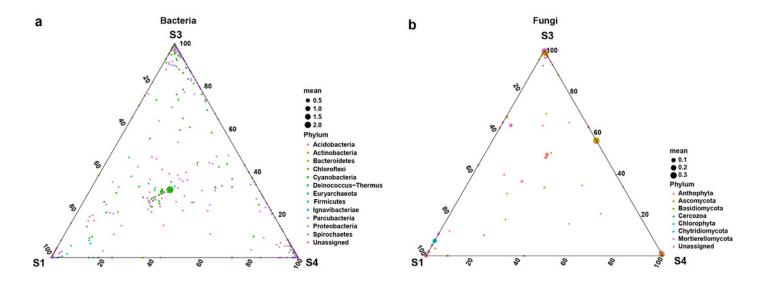

- (a) Principal Component analysis (PCA) of bacterial communities
- (b) PCA of fungal communities


Figure 2 □

Top 10 relative abundances of bacterial communities classified at different germination stages of pecan seeds as: (a) Phylum, (b) Class, (c) Order, (d) Family and (e) Genus.

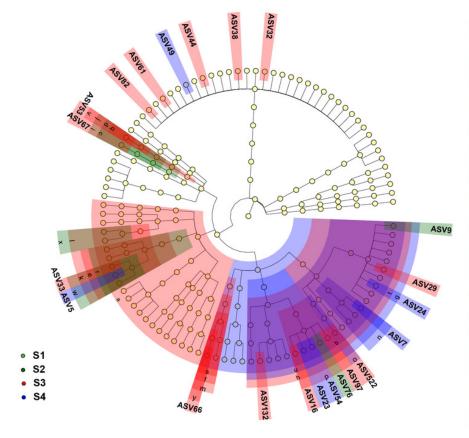

Top 10 relative abundances of fungal communities classified at different germination stages of pecan seeds as: (a) Phylum, (b) Class, (c) Order, (d) Family and (e) Genus.

Upset and Venn network diagram

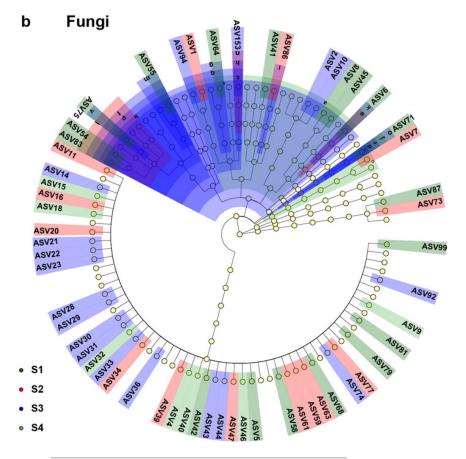

Upset diagram representing (a) Bacterial and (b) fungal by ASVs associated with the pecan seed microbiome; (c-d) Venn network diagram, with nodes (ASVs) colored according to each of the main ecological clusters: (c) Bacterial, (d) Fungal

Ternary plot of (a) bacterial ASV distribution for S1, S3, and S4 stages and (b) fungal ASV distribution for S1, S3, and S4 stages.

Each point corresponds to an ASV. The position represents the relative abundance with respect to each treatment, the size represents the average across all three treatments, and the color represents bacterial or fungal phylum.



Linear discriminant analysis eûect size (LEfSe) of the bacterial and fungal communities with an LDA score higher than 4.0 and P-values < 0.05.


- (a) Bacterial Communities
- (b) Fungal Communities

PeerJ

a Bacteria

а	Betaproteobacteria			
b	Gammaproteobacteria			
С	Bradyrhizobiaceae			
d	Sphingomonadaceae			
е	Hydrogenophilaceae			
f	Aeromonadaceae			
g	Enterobacteriaceae			
h	Xanthomonadaceae			
i	Bosea			
j	Sphingomonas			
k	Thiobacillus			
1	Georgfuchsia			
m	Aeromonas			
n	Klebsiella			
0	Pantoea			
р	Stenotrophomonas			
q	Sphingomonadales			
r	Hydrogenophilales			
s	Aeromonadales			
t	Enterobacteriales			
u	Xanthomonadales			
٧	Sphingomonas_panni			
w	Thiobacillus_thiophilus			
х	Georgfuchsia_toluolica			
у	Aeromonas_bestiarum			

а	Dothideomycetes				
b	Eurotiomycetes				
С	Sordariomycetes				
d	Geminibasidiomycetes				
е	Pleosporaceae				
f	Aspergillaceae				
g	Hypocreales_fam_Incertae_sedis				
h	Nectriaceae				
i	Sordariaceae				
j	Geminibasidiaceae				
k	Curvularia				
1	Aspergillus				
m	Penicillium				
n	Fusarium				
0	Geminibasidium				
р	Eurotiales				
q	Hypocreales				
r	Geminibasidiales				
s	Ascomycota				
t	Basidiomycota				
u	Chlorophyta				
v	Aspergillus_nomius_SH1537998.08FU				

Table 1(on next page)

Alpha-diversity estimates of samples

Microbia l	Sample ID	Shannon	Pielou evenness	Chao1	ACE
	Imbibed days	0.8 ± 0.15^a	0.16 ± 0.03^a	192.92 ± 20.15^{b}	193.59 ± 17.15^{b}
Bacteria	Incubator 5 days	0.77 ± 0.15^a	0.15 ± 0.03^a	197.94 ± 5.82^{ab}	190.23 ± 3.55^b
Dacteria	Seed endocarp break	1.38 ± 1.09^a	0.24 ± 0.18^a	284.55 ± 80.58^a	283.08 ± 80.87^a
	Seed radicle protrusion	1.18 ± 0.75^a	0.22 ± 0.13^a	235.55 ± 35.95^{ab}	236.39 ± 37.26^{ab}
	Imbibed days	3.54 ± 0.05^a	0.82 ± 0.03^a	83.34 ± 13.81^b	82.4 ± 11.26^b
Fungi	Incubator 5 days	2.66 ± 0.38^b	0.59 ± 0.09^b	103.47 ± 25.93^{ab}	105.83 ± 23.57^{ab}
ruligi	Seed endocarp break	2.67 ± 0.21^b	0.54 ± 0.05^b	149.59 ± 44.38^a	149.99 ± 42.97^a
	Seed radicle protrusion	1.43 ± 0.42^c	0.38 ± 0.1^c	55.91 ± 13.31^{b}	58.66 ± 11.88^{b}