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ABSTRACT
Background: Lung adenocarcinoma (LUAD) is a major pathological subtype of
malignant lung cancer with a poor prognosis. Necroptosis is a caspase-independent
programmed cell death mode that plays a pivotal role in cancer oncogenesis and
metastasis. Here, we explore the prognostic values of different necroptosis-related
genes (NRGs) in LUAD.
Methods:mRNA expression data and related clinical information for LUAD samples
were obtained from The Cancer Genome Atlas (TCGA) and Gene Expression
Omnibus databases. NRGs were identified using the GeneCards database. Least
absolute shrinkage and selection operator Cox regression and multivariate Cox
analysis were used to construct a prognostic risk model. Time-dependent receiver-
operating characteristic curves and a nomogram were constructed to validate the
predictive values of the prognostic signatures. A necroptosis-related protein–protein
interaction network was visualised using the STRING database and Cytoscape
software. Functional analyses, including Gene Ontology, Kyoto Encyclopaedia of
Genes and Genomes pathway enrichment, gene set enrichment, and gene set
variation analyses, were conducted to explore the underlying molecular mechanisms.
Finally, the mRNA expression of the prognostic signatures in LUAD cell lines was
assessed using reverse transcription-quantitative polymerase chain reaction (RT-
qPCR) analysis.
Results: A prognostic model was established for eight NRGs (CALM1, DDX17,
FPR1, OGT, PGLYRP1, PRDX1, TUFM, and CPSF3) based on TCGA-cohort data
and validated with the GSE68465 cohort. Patients with low-risk scores had better
survival outcomes than those with high-risk scores (p = 0.00013). The nomogram
was used to predict the prognosis of patients with LUAD. The prediction curves for
1-, 3-, and 5-year OS showed good predictive performance and the accuracy of the
nomograms increased over time. RT-qPCR results demonstrated that these eight
genes, especially CALM1, PRDX1, and PGLYRP1, were differentially expressed in
LUAD cells.
Conclusion: We constructed a reliable eight-NRG signature that provides new
insights for guiding clinical practice in the prognosis and treatment of LUAD.

How to cite this article Zhou X, Zhao M, Fan Y, Xu Y. 2024. Identification of a necroptosis-related gene signature for making clinical
predictions of the survival of patients with lung adenocarcinoma. PeerJ 12:e16616 DOI 10.7717/peerj.16616

Submitted 8 June 2023
Accepted 15 November 2023
Published 8 January 2024

Corresponding authors
Yingzi Fan, 506633834@qq.com
Ying Xu, yingxu825@126.com

Academic editor
Tokuko Haraguchi

Additional Information and
Declarations can be found on
page 22

DOI 10.7717/peerj.16616

Copyright
2024 Zhou et al.

Distributed under
Creative Commons CC-BY 4.0

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE68465
http://dx.doi.org/10.7717/peerj.16616
mailto:506633834@�qq.com
mailto:yingxu825@�126.com
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj.16616
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/


Subjects Bioinformatics, Cell Biology, Molecular Biology, Oncology, Respiratory Medicine
Keywords Lung adenocarcinoma, NRGs, Prognosis, ROC, Nomogram, Overall survival

INTRODUCTION
Lung cancer remains the leading cause of cancer-related deaths globally, with 1.8 million
related deaths occurring per year (Sung et al., 2021). Lung adenocarcinoma (LUAD) is the
major pathological subtype of lung cancer, accounting for approximately 40% of all lung
cancer cases (Zappa & Mousa, 2016). For patients with early LUAD, surgery with
chemoradiotherapy can significantly improve the 5-year survival rate, but patients who
present with advanced LUAD have very poor 5-year survival rates because of metastatic
lesions. Therefore, the identification of novel biomarkers that predict survival probability
and provide new therapeutic targets for LUAD is an urgent priority.

Necroptosis, a caspase-independent mode of programmed cell death that is mainly
regulated by the core RIPK3 and MLKL proteins (Cai & Liu, 2014), is characterised by
cell-membrane rupture, cytoplasmic adenosine triphosphate degradation, and the release
of damage-related molecular modules, cytokines, and chemokines. Necroptosis plays a
dual role in cancer, inhibiting and promoting oncogenesis and cancer progression, with its
specific role often depending on the tumour type and developmental stage. For example,
RIPK3 was not expressed in two-thirds of over 60 cancer cell lines examined in a previous
study (Gong et al., 2019), suggesting that tumours acquire resistance to necroptosis to
survive. However, necroptosis can also promote the genesis, development, invasion, and
metastasis of tumours by stimulating inflammatory reactions in the tumour
microenvironment. Moreover, many key molecules involved in necroptosis have been
identified as potential predictors of the overall survival (OS) of patients. Low RIPK3
expression is associated with a reduced OS in patients with colorectal (Feng et al., 2015)
and breast (Stoll et al., 2017) cancer. Low MLKL expression levels have been detected in
multiple cancer cell lines and several cancer types. Decreased MLKL expression is
associated with a poor prognosis for patients with gastric (Ertao et al., 2016), ovarian (He
et al., 2013) and colon (Li et al., 2017) cancer. Conversely, high levels of phosphorylated
MLKL were associated with decreased OS in patients with colon and oesophageal cancer
(Liu et al., 2016). The cylindromatosis protein is a key molecule that mediates necroptosis
in chronic lymphocytic leukaemia, and its downregulation is often indicative of a worse OS
for patients (Wu et al., 2014). However, data on whether necroptosis-related genes (NRGs)
are associated with the prognosis of LUAD are limited.

In this study, we identified prognostic NRG markers for LUAD and performed
functional enrichment analysis for the resulting gene set. We successfully constructed both
risk and prediction models using a training cohort, obtained from The Cancer Genome
Atlas (TCGA). Furthermore, the models were supported by verification using an external
validation cohort from Gene Expression Omnibus (GEO). We determined the expression
of select genes using reverse transcription-quantitative polymerase chain reaction (RT-
qPCR) analysis and utilised the clinical information of patients to establish a nomogram
for calculating their survival probabilities. The results of this study provide novel insights
into the prognosis and clinical management of patients with LUAD.
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MATERIALS AND METHODS
Data acquisition
We downloaded the expression matrix of the LUAD dataset (TCGA-LUAD) from TCGA
using the R package TCGAbiolinks (Colaprico et al., 2016) (https://portal.gdc.cancer.gov/).
We obtained the information on 523 LUAD samples (cancer group) and 55 paracancerous
samples (normal group). After excluding samples with incomplete clinical information,
RNA-seq data for 498 samples with complete clinical information were used as the training
dataset. All samples were included in this study and standardised to the fragments per
kilobase million format, while the corresponding clinical data were obtained from the
UCSC Xena database (Goldman et al., 2020) (http://genome.ucsc.edu). The count
sequencing data of the dataset (TCGA-LUAD) were standardised using the R package
limma (version 3.56.1). We also downloaded the LUAD dataset, GSE68465 from the GEO
database (Barrett et al., 2013) using the R package GEOquery (Davis & Meltzer, 2007).
All samples of GSE68465 were from Homo sapiens. The platform for data generation was
GPL96 [HG-U133A] Affinemetrix Human Genome U133A Array. GSE68465 includes
microarray gene expression profiles of 442 patient samples of LUAD and 20 normal
samples. The dataset probe name annotation uses the chip GPL platform file. All samples
were included in this study. Subsequently, 371 samples with prognostic information were
included in riskscore validation analysis. Immunohistochemical data were derived from
the Human Protein Atlas (HPA) database (https://www.proteinatlas.org/).

Constructing a risk and clinical prognostic model
To study the effect of necroptosis on the prognosis of patients with LUAD, we searched the
GeneCards database (https://www.genecards.org) for the keyword ‘necroptosis’ and
obtained 614 NRGs (Table S1). We also obtained an expression matrix for NRGs by
combining TCGA data in our analysis and used the least absolute shrinkage and selection
operator (LASSO) Cox regression to identify key genes related to the prognosis of LUAD
patients. Subsequently, we included the characteristic genes related to LUAD into the
regression model and acquired hazard ratio and 95% confidence interval data by
performing multivariate logistic regression. To construct a clinical prediction nomogram,
we used the R package rms to develop a risk score and characteristic gene model.
To quantitatively assess the differentiation performance of the nomogram, we generated a
calibration curve and used it to compare the values predicted by the nomogram with the
observed survival rate.

Biological function analysis
The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway analysis of NRGs were performed through the R ‘clusterProfiler’ package; gene set
enrichment analysis (GSEA) analysis was conducted with the same method. Data were
obtained from ‘c2.kegg.v7.4.symbols’ and ‘c5.go.v7.4.symbols’ gene sets in the MSigDB
database. The false-discovery rate and an adjusted P value (P.adjust) of <0.05 were used as
screening criteria.
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Gene Set Variation Analysis (GSVA) was used to explore the molecular and biological
differences with the R ‘GSVA’ package. The ‘c5.all.v7.4.symbols’ file was used as the
reference gene set. P.adjust < 0.05 were considered significant enrichment.

Constructing a protein–protein-interaction network
A protein-protein interaction (PPI) network of proteins encoded by NRGs was analysed
using the STRING database (https://string-db.org/). We used the MCODE plug-in unit of
the Cytoscape software (version: 3.9.1) to extract the PPI subnet. The PPI network was also
visualised using the Cytoscape software.

Cell culture
A human normal lung cell line (2B) and two LUAD cell lines (A549 and H1650) were
purchased from Beyotime Biotechnology (Procell, Wuhan, China) and cultured in RPMI-
1640 medium containing 10% foetal bovine serum at 37 �C in 5% CO2. All media and
supplements were purchased from Invitrogen (Carlsbad, CA, USA).

Total RNA extraction and RT-qPCR analysis
Total RNA was extracted from three cell lines (2B, A549, and H1650) using the Total RNA
Extraction Kit (Solarbio, Beijing, China). RNA was reverse-transcribed into
complementary DNA using the PrimeScriptTM RT Reagent Kit (Bio-Rad, Hercules, CA,
USA). The mRNA level of hub genes was determined with RT-qPCR using SYBR Green
Supermix (Bio-Rad, Hercules, CA, USA) on a CFX96 real-time system (Bio-Rad, Hercules,
CA, USA). The sequences of the synthesised primers (Shenggong, Shanghai, China) are
listed in Table 1.

Table 1 Primer sequences of hub genes.

Prime name Sequence

h-CALM1-F CGCTGCTGTGTCTCGTC

h-CALM1-R AGTATGCTGAGGGGTTCGT

h-TUFM-F CTGAGATGGTGGAACTGGTGGAAC

h-TUFM-R ACAGAGAGCAGAGCCTACGATGAC

h-CPSF3-F ACGTGAAGAGCGAGAAGCAAGATTC

h-CPSF3-R CCTGAGCCCTTCCAAGAGCAAAG

h-FPR1-F GCTGTATCTGCTGGCTATCTCTTCC

h-FPR1-R GGTAACTGATGGTGGTGACTGTGTG

h-OGT-F GTACGGGTTACCAGAAGATGCCATC

h-OGT-R ACGCAACAGCCAGAGTACACTATTG

h-PRDX1-F TGGTGCTTCTGTGGATTCTCACTTC

h-PRDX1-R CGCTTCGGGTCTGATACCAAAGG

h-DDX17-F CGTGGGCTAGATGTGGAAGATGTC

h-DDX17-R TTGTTGGTGCTACGGGCTGTTC

h-PGLYRP1-F AGCGGCTCAGGAGACAGAAGAC

h-PGLYRP1-R ATAGCGTAAGGGCAGGCTCAGG
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Statistical analyses
The statistical software package, R (version 4.0.2), was utilised for all statistical analyses.
When comparing two groups with continuous variables, we used the Student’s t-test and
the Mann–Whitney U test to analyse data with a normal distribution or a abnormal
distribution, respectively. The pROC R package was used to generate receiver-operating
characteristic (ROC) curves and calculate the area under the curve (AUC) to evaluate the
accuracy of the risk score in estimating the prognosis. P < 0.05 was considered to reflect a
statistically significant difference.

RESULTS
Construction of the necroptosis prognosis signature
Our study design is represented by the flowchart depicted in Fig. 1. We analysed RNA-seq
data from 498 primary LUAD samples in TCGA to identify the prognosis-related genes.
Subsequently, 614 genes were obtained from the GeneCards database with the term
‘necroptosis’. We built a proportional risk model based on the NRGs with P < 0.05 as the
screening criterion (Figs. 2A and 2B). Univariate and multivariate Cox regression analyses
were performed to screen for independent risk factors of necroptosis in LUAD, which
identified Calmodulin 1 (CALM1), DEAD-box RNA helicase 17 (DDX17), formyl peptide
receptor 1 (FPR1), O-GlcNAc transferase (OGT), peptidoglycan recognition protein
(PGLYRP1), peroxiredoxin 1 (PRDX1), Tu translation elongation factor, mitochondrial
(TUFM), and cleavage and polyadenylation-specific factor 3 (CPSF3). We drew a forest
plot based on these eight prognostic characteristic genes (Fig. 2D). Pearson correlation
analysis showed that the prognostic genes were expressed independently of each other,
providing further evidence of their potential role as independent risk factors for LUAD
(Fig. 2C). To clarify the impact of eight prognostic-related genes on OS of LUAD patients,
we identified the expression levels of eight genes in the disease group samples in
TCGA-LUAD dataset, divided the eight genes into the high- and low-expression groups
according to the median expression, and performed survival analysis for the eight
prognostic-related NRGs and plotted a Kaplan–Meier survival curve (Fig. 3). The results
indicated that four (CPSF3, OGT, PRDX1, and DDX17) of these eight genes were
significantly associated with the OS of patients, further confirming their prognostic value.

Next, to explore the differential expression of eight genes (CALM1, DDX17, FPR1,
OGT, PGLYRP1, PRDX1, TUFM, CPSF3) in the model, we stratified the LUAD group into
high-risk and low-risk groups based on the median risk core in the Cox model.
The differential expression of the eight genes was analyzed, and a scatter plot was drawn to
visualize the distribution. In the TCGA-LUAD dataset, the expression levels of CALM1,
FPR1, OGT, DDX17, and PGLYRP1 were significantly increased in the high-risk group,
whereas that of CPSF3 was significantly increased in the low-risk group. In the GSE68465
dataset, the expression levels of CALM1, FPR1, OGT, PRDX1, DDX17, and PGLYRP1
were significantly increased in the high-risk group, whereas that of CPSF3 was significantly
increased in the low-risk group. The results show that the expression trends of CPSF3,
CALM1, FPR1, OGT, DDX17, and PGLYRP1 were consistent and significant in the
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TCGA-LUAD and GSE68465 datasets (Fig. 4). In summary, these genes were differentially
expressed between the high- and low-risk groups, providing a basis for prognostic
evaluation.

Functional enrichment analysis
To further explore the functions of NRGs, we utilised the GO and KEGG databases to
perform functional enrichment analysis of differentially expressed genes in patients with a
high or low risk for LUAD. The differentially expressed genes of both groups were mainly
enriched for GO biological process (BP) terms such as programmed necrotic cell death,
NF-κB signalling pathway, and response to tumour necrosis factor (Fig. 5A). In terms of
cellular components (CCs), we observed significant enrichment for several GO terms such
as CD40 receptor complex, membrane microdomain, and focal adhesion (Fig. 5B).
In addition, several GO terms related to molecular functions (MFs) were significantly
enriched, such as ubiquitin protein ligase binding, protein folding chaperone, protease
binding, and tumour necrosis factor receptor binding (Fig. 5C).

KEGG-based enrichment analysis revealed several pathways significantly enriched
among the differentially expressed genes, including those associated with NOD-like
receptor signalling pathway, apoptosis, TNF signalling pathway, NF-κB signalling
pathway, necroptosis, lipid and atherosclerosis, influenza A, Kaposi sarcoma-associated
herpesvirus infection, C-type lectin receptor signalling pathway, and RIG-I-like receptor
signalling pathway (Fig. 5D). The functional enrichment analysis of differentially
expressed genes revealed the biological processes and pathways associated with NRGs.
These results helped us understand the function of these genes in LUAD.

Next, we performed GSEA to further explore the mechanism of NRGs in LUAD.
The results revealed that LUAD is mainly enriched in the extrinsic component of
membrane, lymphocyte differentiation, cell morphogenesis, I-κB kinase/NF-κB signalling,
and immune system process (Figs. 6A and 6B), as well as KEGG pathway terms such as

Figure 1 Flowchart illustrating the overall study design and analysis process.
Full-size DOI: 10.7717/peerj.16616/fig-1
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lysosome, rheumatoid arthritis, arrhythmogenic right ventricular cardiomyopathy,
adherens junction, and Staphylococcus aureus infection (Figs. 6C and 6D). These GSEA
results showed significant enrichment for biological functions related to cell morphology
changes, which supported the GO and KEGG data regarding the biological functions and
pathways associated with the NRGs. GSEA further revealed the biological processes and
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enriched pathways related to NRGs in different risk groups. This helped us gain a deeper
understanding of the roles of these genes.

GSVA was further used to study differentially expressed NRGs in the high- and low-risk
groups (Fig. 7A). We identified GO BP terms that were upregulated (e.g., positive
regulation of epithelial cell proliferation and regulation of epithelial cell apoptotic process
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function) and downregulated (e.g., regulation of cellular localisation, regulation of DNA
metabolic process, and regulation of chromosome organisation) in the high-risk group
(Figs. 7B and 7C). GSVA revealed the biological enrichment of these genes in the high- and
low-risk groups, further elucidating their role in LUAD.

NRG network construction
PPI analysis was conducted to further understand the MFs associated with differentially
expressed NRGs (Fig. 8A). The PPI network contained 120 NRGs and 732 associated lines,
and the mean local clustering coefficient was 0.672. Four key subnetworks were extracted
using the MCODE plug-in of Cytoscape software. We selected the top three key
subnetworks (consisting of 40 hub genes) for further analysis (Figs. 8B–8D). Through PPI
network analysis, we identified the interaction network of NRGs and identified hub genes.
This helped us understand the importance of these genes in protein interactions.

Assessment of the risk-scoring system
All patients were equally divided into a low- or high-risk group based on the median risk
score. The survival-time distribution indicated that patients in the high-risk group had a
higher mortality rate (Fig. 9A). The expression levels of eight NRGs are also shown in the
heat map in Fig. 9A. In addition, the Kaplan–Meier curves illustrated that patients with
lower risk scores had a better prognosis than did those with higher scores (Fig. 9B,
p = 0.00013). The AUCs of the time-dependent ROC were 0.51, 0.60, or 0.61 after survival
for 1, 3, or 5 years, respectively, which showed that the predictive power of the model
increased over time (Fig. 9C). Multivariate Cox analysis showed that metastasis, gender,
and risk scores had prognostic value for patients with LUAD (Fig. 9D). Multivariate Cox
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regression analysis identified eight independent risk genes and we established a
risk-scoring model. Survival analysis showed that the prognosis of patients in the high-risk
group was significantly worse than that in the low-risk group.

Validation of clinical prognostic value of the model
We integrated several clinical factors to develop a stable and reliable clinical prediction
model for LUAD. The results of multivariate Cox analysis indicated that metastasis and the
risk score were independent risk factors (Fig. 10A). We further explored the performance
of the model by conducting survival analysis and showed that both the M0 and M1 stages
of LUAD were significantly associated with the OS of LUAD patients (p < 0.05; Figs. 10B
and 10C). Moreover, we plotted time-dependent ROC curves to evaluate the performance
of the clinical predictive model. The AUCs were 0.58, 0.60, or 0.63 after 1, 3, or 5 years of
survival, respectively, for patients in the internal cohort (Fig. 10D), whereas those for
patients in the GSE68465 validation cohort were 0.61, 0.54, or 0.53, respectively (Fig. 10E).
We constructed a clinical prediction model for LUAD based on clinical factors and
evaluated its performance through internal and external validation. This model could be
used to predict the survival of patients.

Establishment and evaluation of the nomograms
We established nomograms with independent factors identified through multivariate Cox
regression analysis of the clinical prediction model (Fig. 11A). The prediction curves for 1-,
3-, and 5-year OS showed that the accuracy of the nomograms increased over time (Figs.
11B–11D). Therefore, the nomograms further confirmed the reliability and prospective
clinical applicability of the risk model.

Validation and assessment of NRG expression levels in LUAD tissues
To further evaluate the expression levels of NRGs in LUAD and normal lung tissues, we
obtained immunohistochemical staining images for each characteristic NRG in the HPA
Database. CALM1, CPSF3, FPR1, OGT, DDX17, and PGLYRP1 were expressed at
significantly different levels between LUAD and normal lung tissues (Fig. 12). Next, we
conducted RT-qPCR experiment to verify the mRNA expression levels of NRGs in cell
lines. As shown in Fig. 13, the mRNA expression levels of CALM1, PRDX1 and PGLYRP1
were markedly lower in normal 2B lung cells than in A549 and H1650 LUAD cells.
Through immunohistochemical analysis and RT-qPCR experiment, we demonstrated the
differential expression of prognostic-related NRGs in LUAD.

DISCUSSION
The major clinical challenges in treating LUAD are limited treatment options and the
frequent diagnosis at a late stage, which often lead to poor outcomes for patients. In cases
where patients are diagnosed with LUAD at an advanced stage, the opportunity for
surgical resection has usually passed. Currently, targeted therapies are some of the more
effective treatments for LUAD. Necroptosis plays an important role in the pathogenesis of
various tumours, such as leukaemia (Wu et al., 2014), melanoma (de Almagro et al., 2015),
and breast cancer (Stoll et al., 2017). Recent findings showed that targeting necroptosis
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with various drugs that can manipulate the necroptotic pathway may be a novel and viable
approach for anti-tumour therapy (Xu et al., 2017). In addition, the expression levels of
NRGs can affect the OS of patients with cancer.
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This study mainly focused on elucidating the potential mechanism of necroptosis and
establishing a corresponding prognostic model for LUAD. Previous studies have mainly
focused on single-analysis methods (Song et al., 2022). By contrast, we integrated
transcriptome data of large-scale LUAD samples from TCGA and employed various
analysis methods including GSVA, GO, KEGG, survival analysis, and experimental
validation to explore the role of NRGs in LUAD from multiple perspectives. Our study
could eventually help physicians to deploy new treatment targets and assess prognosis.

We identified NRGs and obtained mRNA expression data (and the associated clinical
information) for LUAD samples from the GeneCards database and TCGA, respectively,
and used LASSO Cox regression and multivariate Cox analysis to identify eight hub NRGs,
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which were used to construct a prognostic risk model. The model showed accurate
predictions with an internal test cohort and an external validation cohort. Moreover, a
nomogram was established to predict the probabilities of 1-, 3-, and 5-year OS.
Furthermore, the NRGs showed significant expression differences between LUAD cells
and normal lung cells in RT-qPCR validation experiments.

Eight NRGs (CALM1, DDX17, FPR1, OGT, PGLYRP1, PRDX1, TUFM, and CPSF3)
that were identified as independent prognostic indicators for patients with LUAD were
selected for the prognostic prediction model. CALM1 acts in the calcium
signal-transduction pathway (Kobayashi et al., 2015) that was differentially expressed

CALM1
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Figure 12 The protein-expression levels of eight NRGs in the HPA database based on
immunohistochemistry analysis. Full-size DOI: 10.7717/peerj.16616/fig-12
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owing to DNA methylation in multiple cancers. CALM1 downregulation has high
diagnostic and prognostic potentials for lung cancer (Yao et al., 2021).

DDX17 participates in multiple cellular processes as an RNA helicase, including
alternative splicing and microRNA processing (Terrone et al., 2022). Previous data showed
that DDX17 could regulate alternative splicing and produce oncogenic molecules that
promote hepatocellular carcinoma metastasis, indicating that DDX17 expression was
strongly associated with patient outcomes (Zhou et al., 2022).

FPR1 is a chemotactic factor produced by neutrophils involved in innate and adaptive
immunity (Kuley et al., 2021). The pharmacologic inhibition of FPR1 decreased T cell
migration and infiltration into tumour microenvironments in most patients with locally

Figure 13 The mRNA-expression levels of eight NRGs in LUAD cells and normal lung cells.
��p < 0.01, ���p < 0.001. Full-size DOI: 10.7717/peerj.16616/fig-13
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advanced rectal cancer harbouring the CC genotype (E346A) of FPR1 (Chiang et al., 2021),
highlighting it as an independent predictor.

Recent data implicated OGT as a key molecule for tumour metastasis and
chemoresistance (Shi et al., 2022), such as with breast (Liu et al., 2022) and ovarian (Zhou
et al., 2018) cancer. OGT is a potential therapeutic target for some cancers, including
small-cell lung cancer (Tang et al., 2022). A previous study showed that an OGT inhibitor
significantly inhibited breast cancer cell invasion and metastasis (Liu et al., 2022).

The PGLYRP1 protein regulates innate immunity and plays a central role in
antitumor-defence systems. Previous findings showed that PGLYRP1 could interact with
Hsp70 to form a stable complex that was cytotoxic against some tumour cell lines and
promoted apoptosis and necroptosis (Yashin et al., 2015). Walraven et al. (2021) showed
that PGLYRP1 expression was a potential biomarker of the platelet proteome markedly
upregulated after anticancer treatment.

Aberrant PRDX1 expression occurs in numerous cancers, particularly in breast,
oesophageal, and lung cancers (Ding, Fan & Wu, 2017). PRDX1 can promote the
epithelial–mesenchymal transition in head and neck squamous cell carcinoma after
entering the nucleus (Jiang et al., 2019). PRDX1 promotes cell proliferation by activating
Wnt–β-catenin signalling and is an independent prognostic factor for disease recurrence
and reduced survival in patients with non-small-cell lung carcinoma (Song et al., 2023).

TUFM downregulation can induce metastasis and proliferation of lung cancer cells via
the AMP-activated protein kinase signalling pathway (He et al., 2016; Ashrafizadeh et al.,
2021). TUFM collaborates with ubiquitin-specific peptidase five to regulate the growth of
colorectal cancer cells and can serve as a new prognostic indicator for colorectal carcinoma
(Shi et al., 2012; Xu et al., 2019).

CPSF3 plays an important role in inducing cell death (Zhu et al., 2009) and is associated
with patient prognosis and cancer recurrence in multiple cancers, including bladder cancer
(Xiong et al., 2022) and LUAD (Ning et al., 2019). These findings suggest that the NRGs
identified in this study play crucial roles in cancer necroptosis and are relevant to the
prognosis of patients with LUAD.

We divided patients with LUAD into low-risk and high-risk groups, based on the
median risk score. Patients in the low-risk group showed better outcomes. The predictive
performance of our model increased over time, as shown in time-dependent ROC
verification experiments. After incorporating the patient’s clinical information into our
model, multivariate Cox analysis showed that both metastasis and the risk score were
independent risk factors. The clinical prognosis model accurately predicted 1-, 3-, and
5-year survival rates of patients in the internal cohort (TCGA), as confirmed using an
external validation cohort (GSE68465). Subsequent quantitative analysis of nomograms
yielded consistent results. Our screening procedure differed from that of a previous study
(Song et al., 2022); thus, we identified a different NRG signature and drew different
conclusions. Although reports on NRGs in LUAD have been documented, the research
focuses of these studies vary. Zhao et al. (2022) and Liu et al. (2022) focused on the impact
of necrosis on the tumour microenvironment of LUAD, while Lu et al. (2022) focused on
the impact of necrotic transcriptome lncRNA on the prognosis of LUAD. Our research
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focused on using necrotic genes to construct prognostic and clinical predictive models for
LAUD. The study provides deeper insights that can help clinicians better predict patient
survival and guide treatment decisions. In summary, the proposed NRG signature suggests
novel targets for cancer treatment strategies, which merit further study.

To gain insight into the potential pathogenic roles of NRGs in LUAD, we mainly
focused on strong correlations between NRGs and the immune system or the NF-κB
signalling pathway, using GSEA, GO and KEGG analyses, and GSVA. Previous data
indicated that NF-κB signalling played a key role in coordinating the expression of genes
related to immune responses, consistent with our research results. Since NF-κB and related
factors can activate and regulate key molecules related to inflammation in cancer,
substantial research is ongoing to assess the potential of NF-κB and related proteins as
potential therapeutic targets in some cancers (Li & Verma, 2002). The results of a recent
study showed that some NF-κB antagonists might have good prospects for inhibiting lung
cancer (Rasmi, Sakthivel & Guruvayoorappan, 2020).

Finally, we verified the mRNA expression levels of all eight NRGs via RT-qPCR.
The mRNA expression levels of CALM1, PGLYRP1, and PRDX1 were higher in LUAD
cells than in normal lung cells. Our results confirmed that elevated PRDX1 expression in
patients with LUAD was associated with a low survival rate. In addition, previous data
revealed PRDX1 upregulation as an independent prognostic factor for disease recurrence
and a therapeutic target in lung cancer (Kim et al., 2007, 2008). This study represents the
first demonstration that CALM1 and PGLYRP1 were significantly overexpressed in LUAD
and that they might serve as important genes in future prognostic models. In addition,
CALM1 and PGLYRP1 might play crucial roles in the occurrence and development of
LUAD. Previous studies (Zhang et al., 2022;Wu et al., 2022) solely relied on bioinformatics
analysis. However, we performed RT-qPCR experimental validation, which confirmed our
findings from bioinformatics analysis, thus increasing the credibility of our results.

This study has some limitations. Our research was mainly based on information
deposited in two public databases; therefore, our findings require further validation in
prospective studies or multi-centre external evidence, including single-cell sequencing.
Although bioinformatics analysis of the biological characteristics and mechanism of NRGs
in regulating LUAD can provide new avenues for future research, such findings need to be
verified by conducting additional in vitro and in vivo experiments. In the future, we intend
to conduct further experiments to determine key LUAD biomarkers and their mechanisms
of action.

CONCLUSIONS
The NRG signature identified in this study provides new ideas for in-depth research and
long-term applications in LUAD treatment. CALM1, DDX17, FPR1, OGT, PGLYRP1,
PRDX1, TUFM, and CPSF3 are potential prognostic indicators for LUAD. However,
further investigation is needed to ascertain the effects of CALM1 and PGLYRP1 on LUAD.
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