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ABSTRACT
Pharmacological drug interactions are among the most common causes of medication
errors. Many different methods have been proposed to extract drug–drug interactions
from the literature to reduce medication errors over the last few years. However, the
performance of these methods can be further improved. In this paper, we present a
Pharmacological representation-based Long Short-Term Memory (LSTM) network
named Phar-LSTM. In this method, a novel embedding strategy is proposed to extract
pharmacological representations from the biomedical literature, and the information
related to the target drug is considered. Then, an LSTM-based multi-task learning
scheme is introduced to extract features from the different but related tasks according
to their corresponding pharmacological representations. Finally, the extracted features
are fed to the SoftMax classifier of the corresponding task. Experimental results on the
DDIExtraction 2011 and DDIExtraction 2013 corpuses show that the performance of
Phar-LSTM is competitive compared with other state-of-the-art methods. Our Python
implementation and the corresponding data of Phar-LSTM are available by using the
DOI 10.5281/zenodo.8249384.

Subjects Bioinformatics, Data Mining and Machine Learning
Keywords Pharmacological representation, Long short-term memory, Multi-task learning,
Drug–drug interaction extraction

INTRODUCTION
Identifying unknown drug interactions is of great benefit for the early detection of adverse
drug reactions. In Europe and the USA, adverse drug reactions cause about 300,000 deaths
annually (Zhang, Leng & Liu, 2020). A Drug–Drug Interaction (DDI) is a situation in
which the effects of one drug are changed by the presence of another drug, and it is an
important subset of adverse drug reactions (Brown &Winterstein, 2019; Lin et al., 2022;
Cao et al., 2021; Karbownik et al., 2020). Therefore, detecting DDIs from the biomedical
literature can be of great benefit for public health safety.

DDI extraction tasks can be typically divided into coarse-grained tasks and fine-
grained tasks. A coarse-grained task aims to predict whether a pair of target drugs has a
DDI, whereas a fine-grained task further distinguishes the specific type of the DDI. To
address the DDI extraction problem, several platforms, such as the DDIExtraction 2011
(coarse-grained task) (Segura-Bedmar, Martínez Fernández & Sánchez Cisneros, 2011) and
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DDIExtraction 2013 (fine-grained task) (Segura-Bedmar, Martínez Fernández & Herrero
Zazo, 2013) challenges have been proposed for evaluating the DDI extraction performance
of different methods.

In recent years, various methods (Asada, Miwa & Sasaki, 2017; Björne, Kaewphan &
Salakoski, 2013; Bobić, Fluck & Hofmann, 2013; Bokharaeian & Díaz, 2013; Chowdhury &
Lavelli, 2013; Sánchez Cisneros, 2013; Hailu, Hunter & Cohen, 2013; Huang et al., 2017;
Jiang, Gu & Jiang, 2017; Qian et al., 2022; Liu et al., 2016; Rastegar-Mojarad, Boyce &
Prasad, 2013; Sahu & Anand, 2018; Kim et al., 2015; Thomas et al., 2013; Zhao et al.,
2016; Chen et al., 2016b; Chen et al., 2016a; Chen et al., 2020; Peng et al., 2022) have been
developed for DDI extraction. These studies can be roughly divided into two periods: The
support vector machine (SVM) period and the deep learning period.

Before 2016, most methods were based on SVMs and focused on feature engineering
and kernel crafting (Björne, Kaewphan & Salakoski, 2013; Bobić, Fluck & Hofmann, 2013;
Bokharaeian & Díaz, 2013; Chowdhury & Lavelli, 2013; Sánchez Cisneros, 2013; Hailu,
Hunter & Cohen, 2013; Rastegar-Mojarad, Boyce & Prasad, 2013; Thomas et al., 2013). For
example, FBK-irst (Chowdhury & Lavelli, 2013) is a two-stage method that employs a
hybrid kernel to detect DDIs and then assign each of the DDIs to one of the four types,
wherein the hybrid kernel makes use of shallow linguistic information, a syntactic tree,
and manually defined features. Kim et al. (2015) proposed a two-stage method based on
a linear SVM that used rich features, such as a word feature, word-pair feature, parse-
tree feature, and noun phrase constrained on coordination feature. NLLSS (Chen et al.,
2016b) predicts potential synergistic drug combinations by integrating various types of
information, including known synergistic drug combinations, drug-target interactions, and
drug chemical structures, thereby enhancing treatment efficacy and reducing the need for
high drug dosages to mitigate toxicity. Chen et al. (2016a) explored the future directions of
network-based drug discovery and the network approach for personalized drug discovery
by summarizing databases and web servers involved in drug-target identification and drug
discovery processes. One main limitation of these methods is that their performance is
largely dependent on the choice of the features.

After 2016, many deep learning-based methods were proposed to automatically extract
the feature representations instead of manual feature engineering. Convolutional neural
networks (CNNs) and Long Short-TermMemory networks (LSTMs) have been extensively
applied by researchers. Representative CNN-based methods include naïve CNN (Liu et
al., 2016), two-stage syntactic CNN (Zhao et al., 2016), and Attention CNN (Asada, Miwa
& Sasaki, 2017). With respect to LSTM-based methods, many different models have been
proposed, such as joint AB-LSTM (Sahu & Anand, 2018), two-stage LSTM (Huang et
al., 2017), Skeleton-LSTM (Jiang, Gu & Jiang, 2017), and Attentive LSTM (Qian et al.,
2022). By reviewing four experimental techniques utilized in recent years to search for
small-molecule inhibitors of miRNAs, as well as three distinct models for predicting small
molecule-miRNA associations from various perspectives, Chen et al. (2020) explored
significant publicly accessible databases and web servers containing experimentally
validated or potential associations. DAESTB (Peng et al., 2022) introduces a cutting-edge
computational method for predicting associations between small molecules and miRNAs.
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This innovative approach integrates small molecule–small molecule similarity, miRNA–
miRNA similarity, and known smallmolecule–miRNAassociations into a high-dimensional
featurematrix, leveraging a deep autoencoder and a scalable tree boostingmodel. Generally,
these deep learning-basedmethods achieve higher performance than traditional SVM-based
methods while requiring fewer handcrafted features. Many of these methods adopt the
embedding strategy (i.e., map the text information to high-dimensional vectors) to obtain
the latent features from the biomedical literature, and this has been proved to be helpful
in improving the DDI extraction performance. For instance, AB-LSTM (Sahu & Anand,
2018) uses word and position embedding, and two-stage LSTM (Huang et al., 2017)
combines word embedding with part of speech tag embedding in the model. SCNN (Zhao
et al., 2016) proposed a syntax word embedding strategy, in which information about the
position and part of speech features was taken into account. However, these embedding
strategies typically ignore the information associated with the target drug, which would be
conductive for more accurate extraction of DDIs.

In this article, we present a novel pharmacological representation-based long short-term
memory network, named Phar-LSTM, for DDI extraction. The main contributions of this
article are summarized as follows:
(1) A newly defined embedding strategy is proposed to extract pharmacological

representations from the biomedical literature by combining word embedding
with target drug related information embedding (e.g., embedding the degree of the
correlation between the word and the target drug, the relative position information of
the target drug for each word) in our model.

(2) An LSTM-based multi-task learning scheme is introduced to jointly tackle the related
tasks of DDI extraction (i.e., determine whether the given document contains a DDI
and identify the specific DDI types) and capture the common features that would
benefit both tasks.

(3) We explore the DDI extraction performance of the models with 10 different LSTM
variants.

(4) Experiments on the DDIExtraction 2011 and DDIExtraction 2013 corpuses were
conducted to evaluate the performance of the proposed method, and the results show
that our method outperforms other state-of-the-art methods on both datasets.

MATERIALS AND METHODS
The overall process of our Phar-LSTM method is composed of three parts (illustrated
in Fig. 1): (1) Extracting the pharmacological representations from the datasets, which
consists of different but related tasks according to the newly defined embedding strategy;
(2) taking the pharmacological representations as the input, and extracting the common
features of the related tasks through the LSTM-based multi-task learning scheme; (3) the
shared features are fed to the corresponding classifier for each task, and the classification
results are regarded as the final output.
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DDIExtraction 2011 DDIExtraction 2013

train set 11 test set 11 train set 13 test set 13

Pharmacological representation

Phar-LSTM multi-task recurrent neural network scheme

classification result

Figure 1 Overall processing flow of our Phar-LSTM scheme.
Full-size DOI: 10.7717/peerj.16606/fig-1

Datasets
Text mining and natural language processing have recently benefitted the pharmacological
industry. The DDIExtraction 2011 (Segura-Bedmar, Martínez Fernández & Sánchez
Cisneros, 2011) and DDIExtraction 2013 (Segura-Bedmar, Martínez Fernández & Herrero
Zazo, 2013) challenge tasks are held to promote the research of DDI extraction by providing
benchmark datasets and enabling researchers to compare their methods fairly. The
DDIExtraction 2011 challenge focuses on the binary classification of DDIs, that is, deciding
whether the given document contains DDIs. For the DDIExtraction 2013 challenge,
researchers must identify five DDI types: ADVICE, EFFECT, MECHANISM, INT, and
NEGATIVE, which can be considered to be a multi-class classification problem.

The DDIExtraction 2011 dataset includes 579 documents about 14,949 drugs from
DrugBank. These DrugBank documents contain rich chemical and pharmaceutical
information. There are 5,806 sentences containing 3,160 DDIs (binary) in the
DDIExtraction 2011 dataset. The DDIExtraction 2013 dataset has 784 documents from
DrugBank and 233 abstract documents from MedLine, with a total of 5,021 DDIs (five
specific DDI types). We selected task 9.2 as the testing dataset. More details of the datasets,
including the training and testing information, can be found in Segura-Bedmar, Martínez
Fernández & Sánchez Cisneros (2011) and Segura-Bedmar, Martínez Fernández & Herrero
Zazo (2013).

Embedding based pharmacological representation
To obtain useful pharmacological information from the biomedical literature, we present
a newly defined embedding strategy to convert the raw input (biomedical documents) into
high-dimensional vectors, that is, the pharmacological representations. It should be noted
that a major difference between DDI extraction and other natural language processing tasks
is that the two target drug entities in the DDI instance should be fully considered since
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Figure 2 Pharmacological representation framework.
Full-size DOI: 10.7717/peerj.16606/fig-2

the target drug pair contains important pharmacological information. For a document
containing n drugs, there are C2

n DDI candidates. A document may contain more than
one DDI instance, and all DDI candidates in the same document are expected to differ
from each other. A common way to represent a DDI is ‘‘drug blinding’’, that is, replacing
the two target drugs with ‘‘drug1’’ and ‘‘drug2’’, and the other drugs in the document
are represented as ‘‘durg0’’ (Liu et al., 2016). However, this drug blinding strategy may
discard some valuable pharmacological information contained in the target drugs (e.g., the
distinguishing information between different target drugs).

The pharmacological representation framework is shown in Fig. 2. First, we tokenized
the documents into token sequences. It should be noted that different from the drug
blinding strategy, the target drugs are not replaced with the words ‘‘drug1’’ and ‘‘drug2’’.
Therefore, more pharmacological information is extracted. The t th token unit wasmapped
to the x(token)t using the word embedding strategy. We transformed each token into a d
dimensional vector through random encoding as inspired by Wieting & Kiela (2019),
wherein the values for each dimension are in

[
−1/
√
d,1/
√
d
]
. In practice, we set d = 400

in our experiments.
Second, to extract the target drug related information, a set of filters are introduced

to obtain the corresponding information in four aspects from the token sentence. The
target drug filter determines whether a token is a target drug or not (1: True; 0: False),
and the neighbor filter determines whether a token is a neighbor of the target drug (1:
True; 0: False). Whether a token exists between a pair of target drugs (1: True; 0: False)
is determined by the path filter. The importance filter measures the degree of the token
associated with the nearest target drug. The closer the distance, the higher the degree (i.e.,
more importance is attached).

We define the metric I = 1/(r+1)2, where r is the distance from the token to the nearest
target drug (e.g., if the token is the target drug, r = 0; if the token is located near to the
target drug, r = 1). Similar to the vector space model (Salton, Wong & Yang, 1975), we
characterize the target drug related information of the t th token as a four-dimensional
vector x(Phar)t .
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Figure 3 Architecture of our LSTM-based multi-task learning.
Full-size DOI: 10.7717/peerj.16606/fig-3

Finally, a given document D = (w0,w1,...,wm) with m words is represented
by D(input)

= ((x(token)0 ,x(Phar)0 ),(x(token)1 ,x(Phar)1 ),...,(x(token)n ,x(Phar)n )), which we call
pharmacological representation. Usually, n is larger than m because a document may
be tokenized by splitting using punctuation, such as ‘‘-’’ and ‘‘.’’.

LSTM-based multi-task learning
Most previous studies tackled two tasks (i.e., the coarse-grained task and fine-grained task)
separately. Because multi-task learning may learn the common features of the related tasks
that would benefit each task (Caruana, 1997), here, we present an LSTM-based multi-task
learning scheme as shown in Fig. 3 (flowing from the bottom up). The input layer converts
the raw input into the pharmacological representations. For the recurrent layer, we adopt
a special Recurrent Neural Network (RNN) structure (LSTM) (Van Houdt, Mosquera &
Nápoles, 2020), which can store the previous information for a long time in data processing.
Note that each recurrent block of the recurrent layer can be assigned a different LSTM
variant, which is illustrated in Fig. 4. Themulti-task output layer feeds the common features
extracted from the hidden layer into the corresponding SoftMax classifiers. We pretrain the
parameters of the neural network(except the multi-task output layer) and then fine-tune
in the classification stage.

The Phar-LSTM block contains four gates and a cell state, whose variation that we use
here (Fig. 4A) is formulated as

zt =
(
Ht−1,x

(token)
t

)
, (1)

Pt =
(
g
(
W Px(Phar)+bP

)
,zt
)
, (2)
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Figure 4 (A–K) Details of the 10 different LSTM variants.
Full-size DOI: 10.7717/peerj.16606/fig-4

Ct = g
(
W IPt +bI

)
◦Ct−1+g

(
W FPt +bF

)
◦h
(
W Cpt +bC

)
, (3)

Ot = g
(
WOPt +bO

)
, (4)

Ht =Ot ◦h(Ct ). (5)

In the above, x(token)t and x(Phar)t represent the corresponding vectors (i.e., the
pharmacological representation) generated by the t th token using the embedding strategy
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(see Embedding based pharmacological representation). W P , W C , W I , W F , and WO are
the weight matrices for the pharmacological gate, the cell state, the input gate, the forget
gate, and the output gate separately, and bP , bC , bI , bF , and bO, respectively, are the
corresponding bias units. The functions g and h are activation functions. The sigmoid
function is usually used as g for the four gates, and the tangent function is typically used as
h for the cell state. The ◦ denotes point-wise multiplication.

Other LSTM variants
Different structures of LSTM may influence the results; therefore, we studied the DDI
extraction performance of the models with different LSTM variants. The LSTM variants
can be derived by modifying the gates, activation function, and connections. The derived
10 variants are shown in Fig. 4, and the details are as follows:

(1) No pharmacological gate (NPG)
Graves & Schmidhuber (2005) originally proposed the LSTM, which is also known as

vanilla LSTM. Phar-LSTM can be transformed to the vanilla LSTM by removing the
pharmacological gate:

Ct = g
(
W I zt +bI

)
◦Ct−1+g

(
W F zt +bF

)
◦h
(
W Czt +bC

)
. (6)

(2) No input gate (NIG)
By removing the input gate, we obtain a lighter version ofCt .Ct conveys less information

to the next node:

Ct =Ct−1+g
(
W FPt +bF

)
◦h
(
W CPt +bC

)
. (7)

(3) No Input Activation Function (NIAF)
By removing the activation function of It , we obtain a ‘‘wilder’’ version of It since It is

no longer confined to [−1,1] by the sigmoid function:

Ct =
(
W IPt +bI

)
◦Ct−1+g

(
W FPt +bF

)
◦h
(
W CPt +bC

)
. (8)

(4) No forget gate (NFG)
Gers, Schmidhuber & Cummins (2000) first proposed a variant of LSTM by adding a

forget gate, which enabled the LSTM to better forget the history information. By removing
the forget gate, we obtain a lighter version of Ct . The Ct of NFG can remember more
information because the function of the forget gate is to restrain the useless information
from persisting in the history.

Ct = g
(
W IPt +bI

)
◦Ct−1+h

(
W CPt +bC

)
. (9)

(5) No forget activation function (NFAF)
Similar to the NIAF, we obtain a ‘‘wilder’’ version of Ft by removing the activation

function of Ft :

Ct = g
(
W IPt +bI

)
◦Ct−1+

(
W FPt +bF

)
◦h
(
W CPt +bC

)
. (10)

(6) No output gate (NOG)
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Similar to the NIG, by removing the output gate, we obtain a lighter version of Ht , and
Ct conveys less information to the next node:

Ht = h(Ct ). (11)

(7) No output activation function (NOAF)
Similar to the NIAF, by removing the activation function of Ot , we obtain a ‘‘wilder’’

version of Ot because Ot is no longer confined to [−1,1] by the sigmoid function:

Ot =WOPt +bO. (12)

(8) Coupled input and forget gate (CIFG)
Instead of separately calculating what should be forgotten andwhat should be inputted as

new information, the CIFG combines the two steps. The CIFG forgets only when inputting
something in its place and inputs new values to the state only when forgetting something
older:

Ct = g
(
W IPt +bI

)
◦Ct−1+

(
1−g

(
W IPt +bI

))
◦h
(
W CPt +bC

)
. (13)

(9) Peephole (P)
Gers & Schmidhuber (2000) argued that the cell state should control the gates in order

to learn precise timings. Therefore, we add connections from the cell to the gates in
Phar-LSTM, which are named as Peephole, to make precise timings easier to learn:

Ct = g
(
W I (Pt ,Ct−1)+bI

)
◦Ct−1+g

(
W F (Pt ,Ct−1)+bF

)
◦h
(
W CPt +bC

)
, (14)

Ot = g
(
WO(Pt ,Ct )+bO

)
. (15)

(10) Full gate recurrence (FGR)
The LSTM (Van Houdt, Mosquera & Nápoles, 2020) consists of cell state and input and

output gates and does not include the forget gate and peephole connections. A hybrid
of real-time recurrent learning (Robinson & Fallside, 1987) and backpropagation through
time (Werbos, 1988) is used for training. In this case, only the gradient of the cell state was
propagated back, and the gradient for the other recurrent connections was truncated. FGR
means that all the gates received recurrent inputs from the previous time step:

It = g

W I


Pt ,
It−1,
Ft−1,
Ot−1,

Ct−1

+bI
, (16)

Ft = g

W F


Pt ,
It−1,
Ft−1,
Ot−1,

Ct−1

+bF
, (17)
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Ot = g

WO


Pt ,
It−1,
Ft−1,
Ot−1,

Ct−1

+bO
. (18)

Classification and training
We use the SoftMax classifier for classification. Let k denote the number of DDI types. The
output o∈R|k| is the probabilities of each class to which S belongs.

y = argmax

 1
exp(WHn+b)


exp(W1Hn+b)
exp(W2Hn+b)

···

exp(WkHn+b)


. (19)

We use the cross-entropy (De Boer et al., 2005) cost function and ridge regularization
(Hoerl & Kennard, 1970) as the optimization objective. For the i th instance, y(i) denotes
the output. The cross-entropy cost is

J =−

(∑k

j=1
1
{
y(i)= j

}
log

exp
(
WjHn+b

)∑k
l=1exp(WHn+b)

)
+
λ

2
‖W ‖2, (20)

where 1{�} is the indicator function, such that 1{a true statement} = 1 and
1{a false statement} = 0. We optimize the parameters of the objective function J with
Rmsprop (Chowdhury & Lavelli, 2011), which is a variant of mini-batch stochastic gradient
descent. During each training step, the gradient of J is calculated. Then, all the parameters
are adjusted according to the gradient. After the end of training, we have a model that is
able to predict two drugs’ interactions when a sentence about these drugs is given.

RESULTS AND DISCUSSION
To evaluate the performance of our method for DDI extraction, extensive experiments
are conducted to compare the Phar-LSTM approach with different variants and other
state-of-art methods on the DDIExtraction 2011 and DDIExtraction 2013 datasets. The
setup of the experiments is designed to be as simple as possible to make the comparisons
fair.

Evaluation metrics
In this section, we describe the evaluation metrics used in our experiments. For the
DDIExtraction 2011 and DDIExtraction 2013 corpuses, Precision (P), Recall (R), F-score
(F), and Accuracy (Acc) are widely used as the evaluation metrics (Asada, Miwa & Sasaki,
2023). Since the DDIExtraction 2013 corpus is a multi-class classification problem, we
adopt the micro-average and macro-average strategy to score the overall performance on
the five classes.
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To obtain the F-score, the contingency table (or confusion matrix) is built first, in
which each row of the matrix represents the instances in a predicted class and each column
represents the instances in an actual class. The contingency table enables us to obtain the
true positive (TP), false positive (FP), false negative (FN), and true negative (TN). Based
on that, the precision, recall, F-score, and accuracy can be defined as follows:

P =
TP

TP+FP
, (21)

R=
TP

TP+FN
, (22)

F = 2×
P×R
P+R

, (23)

Acc=
TP+TN

TP+TN+FP+FN
. (24)

For the DDIExtraction 2013 corpus, there are five P, R, and F-score values for each class
since there are five different classes (the five DDI types: ADVICE, EFFECT, MECHANISM,
INT, and NEGATIVE). Each DDI type is evaluated separately. Moreover, to measure the
overall performance, two commonly used metrics, i.e.,micro-averaged F-score (CLA) and
macro-averaged F-scores (MAVG), are calculated. The CLA is calculated by constructing
a global contingency table and then calculating the precision and recall, and the MAVG
is calculated by first calculating the precision and recall for each type and then taking the
average of those results.

To evaluate the scalability of our method, we propose a metric to evaluate the
performance gap of the models between the two corpuses under the assumption that
if a model has good performance in scalability, it would not only have a high average
F-score but also have less variance. For instance, the F-scores of model A are 0.65 and 0.65
on the DDIExtraction 2011 and 2013 corpuses, respectively, and those of model B are 0.60
and 0.70. Although the average F-scores of model A and model B are both 0.65, model A
would be considered to have better scalability than model B. Based on this, the metric can
be defined using the 1-standard deviation of F-scores as

1−σ = 1−

√
1
2

(
F2011−

F2011+F2013
2

)2

+
1
2

(
F2013−

F2011+F2013
2

)2
. (25)

To evaluate the consistency, the training process for 200 epochs of each learning model
is shown as a boxplot, and Welch’s t -test at a significance level of alpha = 0.05 was used
to determine whether the mean test set performance of a learning model was significantly
different from that of Phar-LSTM.

To evaluate the reproducibility, we first ran the training process for 10 times using
different random seeds and obtained the boxplot of the overall training process to show the
gap between each run. Based on the boxplot, we further calculated the sum of the variance
of the F-scores of each epoch and the sum of the standard deviation of the F-scores of each
epoch to measure the differences among the 10 runs.
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Table 1 Scalability comparison of different methods on the DDIExtraction 2011 dataset (the bold indicating the best value on the correspond-
ing metric).

Method Evaluationmetrics

TP FP FN TN P R F Acc

WBI (Thomas et al., 2013) 543 354 212 5,914 0.6045 0.7192 0.6574 0.9194
LIMSI-FBK (Björne et al., 2011a) 532 376 223 5,895 0.5859 0.7046 0.6398 0.9147
FBK-HLT (Chowdhury et al., 2011) 529 377 226 5,894 0.5839 0.7007 0.6370 0.9142
Uturku (Björne, Kaewphan & Salakoski, 2013) 520 376 235 5,895 0.5804 0.6887 0.6299 0.9130
LIMSI-CNRS (Segura-Bedmar, Martínez Fernández &
Sánchez Cisneros, 2011)

490 398 265 5,873 0.5518 0.6490 0.5965 0.9056

BNBNLEL (Segura-Bedmar, Martínez Fernández & Sánchez
Cisneros, 2011)

420 266 335 6,005 0.6122 0.5563 0.5829 0.9145

Skeleton-LSTM (Jiang, Gu & Jiang, 2017) 550 320 205 5951 0.6322 0.7285 0.6769 0.9253
Phar-LSTM 559 311 196 5,960 0.6425 0.7404 0.6880 0.9278

Hyperparameter settings
Based on previous research and experience, the Phar-LSTMs were trained by an RMSprop
optimizer with a loss function of cross entropy and a learning rate of 0.001. Dropout layers
were added to each of the embedding layers and hidden layers with a ratio of 0.2. For
each run, the number of training epochs were 200 and the batch sizes were 32. All the
experiments were run on GeForce GTX-1080 and took 9.3 h on average to complete.

Scalability
To evaluate the scalability of our method, experiments were conducted on both the
DDIExtraction 2011 and DDIExtraction 2013 datasets. Before 2013, most studies were
evaluated on the DDIExtraction 2011 dataset. After 2013, most research has focused
on evaluating the methods on the DDIExtraction 2013 dataset. As far as we know, few
methods (Björne, Kaewphan & Salakoski, 2013; Jiang, Gu & Jiang, 2017; Thomas et al.,
2013) have been evaluated on both datasets.

We first compared the performance of our scheme with the traditional methods as
well as the deep learning-based method on the DDIExtraction 2011 dataset. The results
are shown in Table 1. The traditional methods are typically based on manually extracted
features or kernels. For example, Björne et al. (2011b) leveraged many syntactic-based
features, including tokens, dependency types, POS tags, text, and stems. Similarly, Thomas
et al. (2013) combined an all-path-graph kernel, a shallow linguistic kernel, and a k-band
shortest path spectrum kernel, which were all derived from syntactic analysis. Other
methods such as FBK-HLT (Chowdhury et al., 2011) and LIMSI-FBK (Björne et al., 2011a)
used either features or kernels or both.

These features and kernels are highly dependent on third-party tools such as syntactic
parsing, which makes the method sensitive to the quality of the parsing results and the
expertise of researchers in designing features or kernels. Therefore, although the heuristic
idea of using features and kernels can be helpful to other researchers, the models themselves
may not have good scalability.
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Table 2 Scalability comparison of Phar-LSTMwith other methods on the DDIExtraction 2013 dataset (the best value on eachmetric is high-
lighted in bold).

Method Evaluationmetrics

NEG MEC EFF ADV INT MAVG CLA

FBK-irst (Chowdhury & Lavelli, 2013) 0.8 0.679 0.628 0.692 0.547 0.648 0.651
NIL_UCM (Bokharaeian & Díaz, 2013) 0.588 0.515 0.489 0.613 0.427 0.535 0.517
SCAI (Bobić, Fluck & Hofmann, 2013) 0.683 0.441 0.440 0.559 0.021 0.448 0.452
UC3M (Sánchez Cisneros, 2013) 0.676 0.480 0.547 0.575 0.500 0.534 0.529
UCOLORADO SOM (Hailu, Hunter & Cohen, 2013) 0.504 0.361 0.311 0.381 0.333 0.407 0.334
Uturku (Björne, Kaewphan & Salakoski, 2013) 0.696 0.582 0.600 0.630 0.507 0.587 0.594
UWM-TRIADS (Rastegar-Mojarad, Boyce & Prasad, 2013) 0.599 0.446 0.449 0.532 0.421 0.472 0.470
WBI (Thomas et al., 2013) 0.736 0.602 0.604 0.618 0.516 0.588 0.599
Kim (Kim et al., 2015) 0.775 0.693 0.662 0.725 0.483 – 0.670
CNN (Liu et al., 2016) – – – – – – 0.698
Attention-CNN (Asada, Miwa & Sasaki, 2017) – 0.695 0.681 0.773 0.455 – 0.691
One-stage SCNN (Zhao et al., 2016) – – – – – – 0.670
Two-stage SCNN (Zhao et al., 2016) – – – – – – 0.686
SVM+LSTM (Huang et al., 2017) – 0.738 0.720 0.715 0.549 0.690 –
Skeleton-LSTM (Jiang, Gu & Jiang, 2017) 0.795 0.725 0.701 0.788 0.484 0.707 0.714
AB-LSTM (Sahu & Anand, 2018) – 0.681 0.683 0.697 0.542 0.650 –
Joint AB-LSTM (Sahu & Anand, 2018) – 0.723 0.655 0.803 0.441 0.655 –
Phar-LSTM 0.795 0.726 0.699 0.789 0.482 0.708 0.716

It can be observed from Table 1 that the Phar-LSTM scheme achieved the best
performance, with the F-score of 0.6880. Another deep learning-based method, Skeleton-
LSTM (Jiang, Gu & Jiang, 2017) (F-score: 0.6769), also performed significantly better than
other traditional methods, which illustrates the superiority of deep learning-based methods
for the coarse-grained task of DDI extraction.

Table 2 shows the results of our scheme in comparison with the baselines on the
DDIExtraction 2013 dataset. From Table 2, we can observe that Phar-LSTM achieved the
best performance in terms of MAVG and CLA (0.708 and 0.716, respectively). Skeleton-
LSTM (Jiang, Gu & Jiang, 2017) had similar performance as Phar-LSTM and performed
significantly better than other baselines. One posssible reason may be that Skeleton-LSTM
and Phar-LSTM both use the end-end-learning framework (i.e., feed the raw input into
the neural network and produce the output directly), which would capture some latent
features because the features are automatically extracted by the neural network rather than
by third-party tools.

To further evaluate the scalability of our scheme, three baselines were chosen for
comparing with our defined metric, and the results are shown in Table 3. Note that many
methods developed for addressing the coarse-grained DDI extraction task may not be
applicable for the fine-grained task of DDI extraction. It can be observed in Table 3 that the
Phar-LSTM scheme achieved the highest (1−σ ) value (0.986) among all methods, which
demonstrates the scalability of our method.
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Table 3 Scalability comparison of Phar-LSTMwith other methods on the two datasets (the bold de-
noting the best value on the corresponding metric).

Method Evaluationmetrics

F2011 F2013 1−σ

WBI (Thomas et al., 2013) 0.6574 0.599 0.9708
Uturku (Björne, Kaewphan & Salakoski, 2013) 0.6299 0.594 0.9821
Skeleton-LSTM (Jiang, Gu & Jiang, 2017) 0.6769 0.714 0.9810
Phar-LSTM 0.6880 0.716 0.9860

Figure 5 Consistency comparison of Phar-LSTMwith 10 variants at a significance level of alpha=
0.05 (Welch’s t -test) on the DDIExtraction 2011 dataset and DDIExtraction 2013 dataset.

Full-size DOI: 10.7717/peerj.16606/fig-5

Consistency
To evaluate the consistency of the Phar-LSTM scheme, we compared Phar-LSTM with 10
different variants of LSTM, in which the number of epochs for each variant were set to
200. Welch’s t -test at a significance level of alpha = 0.05 was used to determine whether
the performance of each variant was significantly different from another. A summary of
the results of the different methods with 200 epochs is shown in Fig. 5. The boxplots of the
variants that differ significantly from Phar-LSTM are highlighted in blue.

It can be observed from Fig. 5 that Phar-LSTM generally achieved the best performance
on both datasets. Moreover, the F-scores of Phar-LSTM for most epochs were relatively
stable, which indicates the consistency of our method. Another observation based on
Fig. 5 is that removing the output gate (NOG) or the activation functions (NOAF, NIAF,
and NFAF) significantly hurt the performance on the two datasets. The ability to output
information and the activation of the perceptron appear to be critical for the LSTM
architecture. This is probably because the output value of the hidden layers cannot be
constrained without the activation function and therefore fails to train the parameters.
If the output gate is removed from the LSTM unit, although x(token)t and x(Phar)t can be
integrated to the hidden layer Ht by Ct , the original information of and x(token)t and x(Phar)t

is diluted during the calculation of Ht . And then, the final SoftMax regression built on the
hidden layer of the last unit captures little information of the input, which leads to the
failure of training.

On the contrary, although removing the input gate (NIG) or forget gate (NFG) or
coupling them into one gate (CIFG) can decrease the F-score, comparing with the NOG,
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Figure 6 Reproducibility of Phar-LSTMwith different epochs for 10 runs on the DDIExtraction 2011
dataset and DDIExtraction 2013 dataset.

Full-size DOI: 10.7717/peerj.16606/fig-6

the input information is still integrated through the other gate (e.g., the forget gate for the
NIG and the input gate for the NFG). Therefore, the parameters can be trained successfully.

Similarly, removing the pharmacological gate (NPG) generally decreases the F-score
more than the NIG, NFG, and CIFG do. This illustrates that the pharmacological gate
contains important information to represent the DDI than other gates do. This proves that
the Phar-LSTM scheme indeed improved theDDI extraction performance by incorporating
the pharmacological gate.

Both adding the Peephole (P) and the full gate recurrence (FGR) decrease the
performance while increasing the computational complexity. We generally advise against
using them for DDI extraction.

Reproducibility
Due to the random seed mechanism and the implementation of the GPU training
architecture, the training process is usually unreproducible. To evaluate the reproducibility
of Phar-LSTM, we ran our scheme for many times to check the differences of the outputs.
The boxplots of Phar-LSTM’s performance for 10 runs with different epochs on the two
datasets are shown in Fig. 6, from which we can see that the performances of Phar-LSTM
for most epochs are close.

Some specific epochs can be observed for DDIExtraction 2011, such as the 19th, 37th,
55th, 56th, and 72th epochs. For these specific epochs, the performance of different runs
differed from each other. However, there were no such specific epochs for DDIExtraction
2013. One possible reasonmay be the data distribution. DDIExtraction 2011 is smaller, and
the annotation strategy is different from that of DDIExtraction 2013. Researchers should
be aware of these specific epochs. The best way to check the model is using a validation set.
By conducting experiments on the validation set and drawing the boxplot of the learning
curve of different runs, researchers can easily find these specific epochs and improve their
extraction system.

Another finding is that both the climb stages (0 < epoch < 10) of DDIExtraction
2011 and DDIExtraction 2013 blurred. The reason is that the initial random states of the
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parameters are different, which may cause the performances to differ during the climb
stage. However, after the climb stage, the performances with the following epochs are
much closer. This means that the Phar-LSTM scheme can adapt to different initial random
seeds.

To further compare the reproducibility of Phar-LSTM with other variants, we
summed the variance and the standard deviation of each epoch for the 10 runs. The
metrics (variance and standard deviation) can indicate the overall reproducibility.
From Table 4, we can see that Phar-LSTM, NOG, NIAF, and NFAF had better scores
than the other models, and the conclusion is consistent with Fig. 5. However, from
Fig. 5, we can see that the NOG, NIAF and NFAF had poor F-scores. Although the
results of the three models can be reproduced easily, the value of the three models
is low. Phar-LSTM reaches a good balance between high reproducibility and high
F-score.

CONCLUSIONS AND FUTURE WORK
In this study, we proposed a pharmacological representation-based LSTM network to
extract DDIs from the biomedical literature. Different from previous studies, we adopted a
new embedding strategy, in which the documents were represented as a sequence of word
embeddings and target drug relative information embeddings, called pharmacological
representations. An LSTM-based multi-task learning scheme was introduced to extract
features of the pharmacological representations from two related DDI extraction tasks
(i.e., the coarse-grained task and fine-grained task). Experimental results showed that
our scheme outperformed other state-of-the-art methods on both DDIExtraction 2011
(the coarse-grained task) and DDIExtraction 2013 (the fine-grained task). The scalability,
consistency, and reproducibility of our scheme were evaluated on both datasets, and
the results demonstrated the relatively superior performance of our method in these
aspects.

In our forthcoming work, we will address the existing issues to enhance the
prediction of DDI events. First, we will extend our method to other biomedical
relative extraction tasks, such as protein–protein interaction extraction and chemical–
disease interaction extraction. Second, there are insufficient interactions for certain
events, and we will explore data augmentation techniques to expand the event
dataset.
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Table 4 Reproducibility comparison of Phar-LSTMwith other methods on DDIExtraction 2013.

Metric Different approaches

Phar-LSTM NPG NOG NOAF NIG NIAF NFG NFAF CIFG P

Variance2011 0.2219 0.5625 0.1283 12.7918 0.4409 0.1380 0.3634 0.1752 0.3967 0.6529
Standard deviation2011 2.8032 5.6749 1.6493 150.108 4.1166 1.2839 3.4471 2.1577 4.5873 6.3908
Variance2013 0.0222 0.03979 0.0146 4.1293 0.0631 0.0164 0.0364 0.0193 0.0413 0.1695
Standard deviation2013 1.3934 2.7890 0.7589 48.3608 3.8259 0.7765 1.8223 0.8131 2.4978 3.6656
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