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Abstract 15 

Mountains are highly diverse in areal spread, geological and climatic context, ecosystems and 16 

human activity. As such, mountain environments worldwide are particularly sensitive to the 17 

effects of anthropogenic climate change (global warming) as a result of their unique heat balance 18 

properties and the presence of climatically-sensitive snow, ice, permafrost and ecosystems. 19 

Consequently, mountain systems – in particular cryospheric ones – are currently undergoing 20 

unprecedented changes in the Anthropocene. This study identifies and discusses four of the 21 

major properties of mountains upon which climate change can impact, and indeed is already 22 

doing so. These properties are: the changing mountain cryosphere of glaciers and permafrost; 23 

mountain hazards and risk; mountain ecosystems and their services; and mountain communities 24 

and infrastructure. It is notable that changes in these different mountain properties do not follow 25 

a predictable trajectory of evolution in response to climate forcing. This demonstrates that 26 

different elements of mountain systems exhibit different sensitivities to forcing. The 27 

interconnections between these different properties highlight that mountains should be 28 

considered as integrated biophysical systems, of which human activity is part. Interrelationships 29 

between these mountain properties are therefore discussed through a model of mountain socio-30 

biophysical systems, which provides a framework for examining climate impacts and 31 

vulnerabilities. Managing the risks associated with ongoing climate change in mountains requires 32 

an integrated approach to climate change impacts monitoring and management. 33 

 34 

Introduction 35 

There is increasing concern about Earth’s biophysical systems and sustainability in the light of 36 

ongoing anthropogenic climate change (global warming). To this end, world scientists have sent 37 

a Warning to Humanity regarding the impacts of climate change on different physical systems 38 

and environments (e.g., Ripple et al., 2017; Finlayson et al., 2019; Albert et al., 2021). This 39 
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paper contributes to this debate by sending a Warning to Humanity on the impacts of 40 

anthropogenic climate change on mountain environments globally and the multifaceted, 41 

interlinked and long-lasting nature of these effects on both physical environments and on people 42 

and communities. This Warning to Humanity confirms and extends the findings of the IPCC 43 

Special Report on the cryosphere that shows that, in mountains, there is high confidence that 44 

human activities have contributed to decreased snowcover, glacier mass balance and permafrost 45 

area (Hock et al., 2019b). In addition, IPCC Assessment Report 6 evaluates climate change 46 

impacts on mountains, and states with high confidence that climate change has “observable and 47 

serious consequences” for mountain ecosystems and communities (Adler et al., 2022).  48 

 49 

Mountains represent an important physical environment, with 15.38% of the global land surface 50 

lying above 1000 m asl, and 7.67% lying above 2500 m asl (calculated from Owens & 51 

Slaymaker, 2004, their Table 1.3). The presence of snow and ice has an important role in the 52 

regional heat balance of mountains through albedo feedbacks (Knight & Harrison, 2022). 53 

Decreased snow cover and increased supraglacial debris, however, can dramatically increase the 54 

rate of mountain warming, especially where snowline elevation is rising (You et al., 2020). This 55 

climate amplification found in mountains, known as elevation-dependent warming, has been 56 

identified in many mountain blocks worldwide. For example, in the Tibetan Plateau, warming 57 

from the 1950s onwards across a range of stations averages 0.31
o
C/decade

-1
 with values from the 58 

1980s onwards between 0.50–0.67
o
C/decade

-1
 (Kuang & Jiao, 2016). This compares with 59 

averaged global surface temperature increases from the 1980s onwards of 0.18
o
C/decade

-1
 60 

(NOAA, 2022), meaning climate change is amplified by around a factor of three in mountains. 61 

Such rapid anthropogenic warming in turn has implications for mountain hazards, ecosystems 62 

and human activity.  63 

 64 

Mountains also represent important scenic and heritage landscapes because of the common 65 

presence of rare ecosystems, endemic species, and indigenous communities and cultural 66 

practices (Debarbieux & Price, 2008, 2012; Rasul & Molden, 2019; Chakraborty, 2021; 67 

Thornton et al., 2021). The close genetic relationship between these properties means that 68 

mountains can be considered as integrated biosystems, describing the interplay of climate, 69 

physical processes, ecosystems and people (e.g., Nowak et al., 2014; Stanisci et al., 2016; 70 

Allegrezza et al., 2017). Globally, these biosystems are now operating beyond their natural 71 

planetary boundaries because of their sensitivity to radiative forcing and their land surface 72 

feedbacks in response to the changes? (Nogués-Bravo et al., 2007; Pepin & Lundquist, 2008; 73 

Huggel et al., 2010). Recognising this, the United Nations’ “International Year of the 74 

Mountains” was declared in 2002 (Ives & Messerli, 1999), and the “International Year of 75 

Sustainable Mountain Development” was declared in 2022 (Romeo et al., 2022).  76 

 77 

Globally, mountain systems are currently undergoing rapid, significant and likely permanent 78 

change (Gerrard, 1991; Marston, 2008; Messerli, 2012; Hock et al., 2019b; Thornton et al., 79 
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2021). These changes are manifested in the physical properties of mountains and their dynamic 94 

behaviour, including mountain climate, geomorphology and ecosystems. This provides the driver 95 

for changes in the human environment. In particular, decreases in mountain glacier volume and 96 

extent over the last decades are unprecedented in the wider context of the late Holocene (Zemp et 97 

al., 2015; Cogley, 2016; Beniston et al., 2018; Veettil & Kamp, 2019), with associated impacts 98 

on the sustainability of the mountain biosphere and human activity (Muccione et al., 2016; Klein 99 

et al., 2019).  100 

 101 

Various lines of evidence from mountain blocks worldwide reveal the impacts of climate change 102 

on mountain processes, properties and communities. This study presents a Warning to Humanity 103 

on the negative and likely irreversible impacts of anthropogenic climate change on mountain 104 

environments worldwide. This is informed by evidence of contemporary and past changes in 105 

mountain systems, and by climate model outputs reported in the literature that predict future 106 

changes in precipitation, temperature, snow and permafrost properties, and glacier mass balance. 107 

These then in turn have implications for mountain biophysical processes, ecosystems, resources 108 

and human activity. A significant result of this analysis is that mountain systems are confirmed 109 

to be highly vulnerable, and thus exhibit high sensitivity, to climate change and that, from almost 110 

all perspectives, negative outcomes to the physical and human environments are anticipated, and 111 

are indeed already taking place.  112 

 113 

This study identifies and discusses the impacts of climate change on four key properties of 114 

mountain systems (including aspects of human activity), which provides an interpretive 115 

framework for a better understanding of mountain system evolution in the Anthropocene. This is 116 

done through development of a new socio-biophysical systems model. The purpose of this study 117 

is to highlight the interconnectedness of mountain system properties, thereby issuing a Warning 118 

to Humanity on the impacts of climate change on mountains. The specific terms used in this 119 

study focusing on hazards, risk and resilience follow IPCC Assessment Report 5 definitions 120 

(IPCC, 2014).  121 

 122 

Survey methodology 123 

Much work on mountains globally is site-specific and often deals with only certain aspects of the 124 

biophysical environment, in particular the changing cryosphere. There are fewer studies that 125 

have focused on mountain communities and their use of environmental and climate-related 126 

resources. However, relationships between different mountain system elements have not been 127 

examined in detail, from either individual mountain blocks or from across different climatic or 128 

geologic settings. This is a limitation in identifying globally-applicable relationships between 129 

mountain system elements, and thus in building biophysical system models to explain the 130 

impacts of climate forcing. The aim of this study is to integrate evidence from examples globally 131 

on mountain system properties and dynamics, and derive an overarching analysis of mountains 132 

as biophysical systems. To achieve this, relevant peer-reviewed published literature was 133 
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identified from ISI Web of Science using the search term of “mountain systems” and then the 134 

results refined based upon the search term “climate change”. The resulting literature was 135 

included where it considered relationships between different mountain properties as developed in 136 

specific case studies. Therefore, the literature examined focuses on quantitative studies that 137 

examine the cause-and-effect relationships between mountain properties. The co-relationships 138 

between different mountain properties, and their dynamics, are then used in this study as the 139 

basis for developing a new socio-biophysical model for mountain systems. This provides a 140 

powerful way of conceptualizing both the integrated workings of mountain systems, and the 141 

potential sensitivity of these systems to climate forcing in the Anthropocene, and why this sends 142 

a Warning to Humanity of mountain environments.  143 

 144 

Results 145 

From the Web of Science literature search, 464 individual articles were identified using the 146 

search term “mountain systems” (Table 1), and 39% of all papers were published in the last 5 147 

years. The earliest publications including such a term date from 1961. A similar temporal pattern 148 

is seen with the search terms “mountain systems” and “climate change” where 44% of all papers 149 

come from the last 5 years. It is notable that in all instances there is a big increase in the number 150 

of studies on mountain systems in the last 15 years (Figure 1). These publications were also 151 

examined for their Web of Science category of academic discipline (Table 2). Although this 152 

classification is only indicative, it shows that the most common academic fields of “mountain 153 

systems” are in ecosystems (Ecology/Plant Sciences/Zoology/Biodiversity Conservation; 154 

cumulatively 31% if the total), the physical landscape (Geosciences Multidisciplinary/Geography 155 

Physical; cumulatively 15% of the total), and Environmental Sciences (11%). This highlights the 156 

most common areas of research interest in mountain systems. Including the search term “climate 157 

change”, a slightly different pattern emerges with, in percentage terms, a greater emphasis on 158 

Ecology, Environmental Sciences, Biodiversity Conservation, Meteorology Atmospheric 159 

Sciences, and Environmental Studies (Table 2). This shows the greatest areas of research interest 160 

in climate change in mountains, focusing on climate patterns/predictions and ecosystem 161 

responses. Only in Plant Sciences is there significant under-representation with “climate change” 162 

(3.7%) compared to without it (6.7%). Based upon the literature search results, four major 163 

mountain properties were identified (glaciers and permafrost related to the mountain cryosphere; 164 

mountain hazards and risk; mountain ecosystems; mountain communities and infrastructure). 165 

These properties and their dynamics are now discussed. 166 

 167 

The mountain cryosphere  168 

Mountain glaciers 169 

As a consequence of global warming, mountains glaciers worldwide including ice caps, valley 170 

and cirque glaciers are undergoing a trajectory of enhanced melt and thus negative mass balance 171 

over recent decades (e.g., Cogley, 2016; Azam et al., 2018; Cao et al., 2019; Ding et al., 2020). 172 

The result of this can be seen through (1) long-term changes in glacier area or spatial extent; (2) 173 
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changes in glacier volume as expressed through mass balance; and/or (3) changes in glacier 192 

dynamics, as evidenced by oscillations of the glacier margin. As such, glacier responses to 193 

climate forcing can be diverse, and expressed differently according to topographic setting, 194 

elevation, climate, and glacier size. Mountain glaciers are generally less sensitive to temperature 195 

changes than lowland ice sheets due to their relatively small size and steep surface gradient 196 

(Bach et al., 2018; Bolibar et al., 2022). This is because subtle variations in temperature, driving 197 

glacier mass balance, can result in changes in the position of the equilibrium line altitude (ELA) 198 

which, globally, is rising due to climate change (Six & Vincent, 2014; Lorrey et al., 2022). 199 

Several studies have projected glacier ELA and thus mass balance responses across mountain 200 

blocks (e.g., Liu et al., 2019; Žebre et al., 2021; Lorrey et al., 2022) but in detail these responses 201 

are highly spatially variable. This may reflect both different sensitivity of climate by ice masses 202 

of variable sizes (Bach et al., 2018), but also microclimate effects which are particularly 203 

significant in areas of high local relief such as mountains (Rankl et al., 2014; Six & Vincent, 204 

2014). This is highlighted by cryospheric models that suggest an over-reliance on temperature as 205 

a forcing factor in mountain glacier response (Bolibar et al., 2022), rather than consider system 206 

feedbacks such as supraglacial debris cover, snow depth, and wind-transported snow as factors 207 

influencing glacier mass balance (Dobhal et al., 2013). Although mountain glaciers have 208 

responded to climate changes throughout the Holocene, monitoring using field and remote 209 

sensing data over recent decades shows the imprint of global warming on the state of the 210 

mountain cryosphere (e.g., Banerjee & Shankar, 2013; Huss et al., 2017; Beniston et al., 2018; 211 

Hock et al., 2019b; Gärtner-Roer et al., 2019). Such studies also highlight the spatial and 212 

temporal variability of mountain glacier responses depending on their altitude, aspect, size and 213 

ELA (Dehecq et al., 2019). This is also reflected in future modeled projections of glacier volume 214 

and area change that show, for example, that different sectors of Tibetan Plateau mountains will 215 

have volume loss rates of -0.06 to -1.90% yr
-1

, and area loss rates of -0.21 to -1.85% yr
-1

 between 216 

2000 and 2050 (Zhao et al., 2014).  217 

 218 

Many regional studies of historical mountain glacier changes, using a combination of field and 219 

remote sensing data, have been undertaken. These studies can inform on the rate and style of 220 

glacier change and link these derived parameters to climate forcing or coeval changes in 221 

environmental regimes in the local area. For example, Landsat and Sentinel-2 data in the 222 

Bolivian Andes show glacier area reduction of 51% between 1975 and 2016 (1.20% yr
-1

), with 223 

the least change recorded for glaciers located above 5500 m asl (Veettil et al., 2018). This 224 

compares with a decrease in glacier area by an average of -0.57% yr
-1

 (1960–2010) over High 225 

Mountain Asia, but with high spatial variability with some 65% of datapoints statistically 226 

identical to zero change (Cogley, 2016). In the western Himalayas region (1977–2016) Landsat 227 

data show that the snow line elevation increased by 116±17 m, glaciers decreased in area (by 228 

6.25±0.0012% or 0.16% yr
-1

), average glacier snout recession rate increased (from 16±3.4 m yr
-1

 229 

in 1977 to 23±3.4 m yr
-1

 in 2016), and glacier debris cover area increased by 80% (Shukla et al., 230 

2020). In the Karakoram, Landsat data (1976–2012) show that 79% of glacier termini were 231 
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stable, 5% advanced, 8% retreated, and 8% belong to oscillating (surging) glaciers (Rankl et al., 239 

2014), confirmed by more recent mass balance studies (Farinotti et al., 2020). Glaciers across 240 

China show a long-term average mass balance decrease of -0.0135 m w.e. yr
-1

 (1960–2019) with 241 

the longest (40-year) record from Urumqi Glacier No. 1 showing a decrease of -0.0142 m w.e. 242 

yr
-1

 (1959–2019) (Su et al., 2022). All these values were statistically significant (p<0.0001). By 243 

contrast, for High Mountain Asia as a whole based on ASTER DEMs, average glacier mass 244 

balance change in the period 2000–2016 was -0.18±0.04 m water equivalent (w.e.) yr
-1

 (range 245 

+0.14 to -0.62 m w.e. yr
-1

) (Brun et al., 2017). These studies provide a snapshot of individual 246 

glaciers, over different time periods and using different methodologies but implications of the 247 

trajectories of glacier change for the wider mountain environment are not discussed.  248 

 249 

These studies and others highlight that responses of individual glaciers to climate change in 250 

different mountain massifs are highly variable, likely due to microclimate effects related to 251 

aspect, topography, elevation, snow blow and debris cover (Huss & Fischer, 2016; Azam et al., 252 

2018; Baldasso et al., 2019; Carturan et al., 2020). Mutz & Aschauer (2022) show that the mass 253 

balance of different Andean glaciers is statistically related to different climatic variables 254 

including temperature, precipitation (both seasonal and annual), El Niño–Southern Oscillation 255 

and the Antarctic Oscillation, depending on glacier location. In addition, changing debris cover 256 

(thickness, debris size, distribution) is a critical influence on albedo and insulation effects, which 257 

can lead to marked reductions in glacier mass loss and frontal dynamics (Banerjee & Shankar, 258 

2013; Dobhal et al., 2013). These factors highlight that glacier mass balance does not solely 259 

reflect climate forcing because the role of antecedent and geological factors. The multidecadal 260 

response times of many mountain glaciers also mean that they are likely out of mass balance 261 

equilibrium with prevailing climate, irrespective of their sensitivity to climate forcing (Christian 262 

et al., 2018). However, other studies have described a mode deterministic relationship of 263 

mountain glaciers to temperature (Bolibar et al., 2022), with Geyman et al. (2022) showing – 264 

based on historical photogrammetry – a mass balance response of -0.28 m yr
-1

 per 1
o
C 265 

temperature rise of Svalbard glaciers. Responses of mountain systems to deglaciation under 266 

climate change fall within the frame of paraglacial process regimes, and the nature of these 267 

responses in terms of slope and fluvial sediment yields have been examined from both late 268 

Quaternary and Anthropocene examples (e.g., Cossart & Fort, 2008; Scapozza, 2016). Such 269 

examples highlight that some mountain systems undergo very rapid change associated with ice 270 

retreat, and that these impacts are wide ranging with respect to ecosystems, geohazards, and 271 

mountain water and sediment yield (Knight & Harrison, 2014). Land surface models also show 272 

the changing sensitivities of glaciers, permafrost and mountain landforms to forcing through the 273 

paraglacial period, and this can help explain why mountain system responses to climate change 274 

may vary over time and space (Knight & Harrison, 2018). Field data, however, are not always 275 

interpreted in the context of such theoretical insights.  276 

 277 
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Climate models and historical trajectories of glacier mass loss have also been used to consider 287 

where, how and when mountain glaciers are likely to become functionally inactive, or melt 288 

completely, and the rate of water equivalent loss, under different climate change scenarios. For 289 

example, Hock et al. (2019a) used the four standard IPCC representative concentration pathways 290 

(RCPs) in order to consider regional glacier responses to future temperature patterns from 25 291 

different GCMs. The predicted mass loss from different regions varies significantly according to 292 

glacier extent and type (lowland ice sheet vs mountain ice cap or cirque/valley), but all RCP 293 

scenarios show similar patterns until the mid-21
st
 century after which these patterns diverge. The 294 

models also predict a high glacier mass loss (commonly ~60–>90%) for many mountain blocks 295 

worldwide by 2100 under the RCP8.5 emissions scenario. A similar approach with similar 296 

results was also used by Shi et al. (2020) for the Tibetan Plateau.  297 

 298 

Based on a global temperature rise of 1.5
o
C by 2100 using Coupled Model Intercomparison 299 

Project Phase 5 (CMIP5) outputs and RCP2.6, high Asian mountains are predicted to warm by 300 

2.1±0.1
o
C and result in a 36±7% total mass loss (Kraaijenbrink et al., 2017). Values for other 301 

RCP scenarios are much higher, but with temperature and mass loss responses varying by 302 

different mountain sector (ibid). More detailed regional studies also show complex glacier 303 

responses, such as in the European Alps where mountain glacier slope, topographic setting and 304 

debris cover control sensitivity to climate forcing (Huss & Fischer, 2016; Žebre et al., 2021). 305 

Such field data are confirmed across wider regions through monitored reference glaciers of the 306 

World Glacier Monitoring Service (https://wgms.ch/). These data show continues mass balance 307 

loss in all global regions and at a rate that has increased over time (since 1950), to a volume of 308 

0.98 m w.e. yr
-1

 and 0.77 m w.e. yr
-1

 in 2019/20 and 2020/21, respectively. Glaciological and 309 

climate models have also been used to predict the fate of individual glaciers. For example, 310 

modelling of Austre Lovénbreen, Svalbard, suggests rapid area and mass balance decrease, and 311 

highest meltwater yield, in the middle of the 21
st
 century, with the glacier wholly gone by 2120 312 

(Wang et al., 2019). There are similar results using different RCP scenarios for Great Aletsch 313 

Glacier, Switzerland (Jouvet & Huss, 2019). However, such projections often use different 314 

model scenarios, different temporal starting points, and different input parameters and 315 

trajectories of temperature and precipitation. This means that such results may not be easily 316 

comparable. In addition, if there are glaciers of different sensitivities, then there may be a range 317 

of future glaciological responses (Carturan et al., 2020; Bolibar et al., 2022) but these factors 318 

are not really considered with respect to impacts on wider mountain systems.  319 

 320 

Mountain permafrost 321 

Mountains worldwide already show increased permafrost temperatures, both near-surface and at 322 

depth (Harris et al., 2003; Liu et al., 2017; Severskiy, 2017). Sensitivity analysis of arctic 323 

permafrost to warming suggests areal changes of 4.0+1.0/-1.1 million km
2
 per 1

o
C of warming 324 

(Chadburn et al., 2017). The sensitivity of mountain permafrost to climate forcing is more 325 

difficult to establish because of mountains’ steep and topographically complex environments and 326 
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microclimates. However, sensitivity analysis from finite element modelling highlights the roles 329 

of snow depth and mean annual air temperature (Luetschg et al., 2008) and subsurface ice 330 

content and temperatures (Noetzli et al., 2007; Scherler et al., 2013) on mountain permafrost 331 

stability.  332 

 333 

Different field, remote sensing and modelling studies show the varied distributions and 334 

properties of permafrost in areas such as the European Alps (e.g., Boeckli et al., 2012; Deluigi et 335 

al., 2017; Kenner et al., 2019) and Tibetan Plateau/Himalayas (Gruber et al., 2017; Liu et al, 336 

2017; Gao et al., 2021). Variations in active layer thickness and subsurface temperatures are the 337 

key indicators of permafrost degradation used in monitoring studies (e.g., Hanson & Hoelzle, 338 

2004; Pogliotti et al., 2015; Kellerer-Pirklbauer, 2019). Several studies also show that 339 

permafrost distributions and properties are influenced by local-scale and site-specific slope 340 

properties including subsurface moisture content, debris size, slope aspect, length and backwall 341 

height (e.g., Noetzli et al., 2007; Kellerer-Pirklbauer, 2019). There are also differences between 342 

active and relict permafrost, identified according to whether the slope is or is not undergoing 343 

creep, largely related to moisture availability rather than temperature. Therefore, the factors 344 

contributing to permafrost instability under anthropogenic climate change is more complex than 345 

just temperature forcing alone (Pogliotti et al., 2015; Gruber et al., 2017), and permafrost 346 

system sensitivity must therefore be set in a topographic and geomorphic context (Verleysdonk et 347 

al., 2011). In addition, information on permafrost thickness, distribution and temperature regime 348 

is unknown or is poorly reported in many mountain blocks worldwide, including in Africa, South 349 

America and the Middle East. This is a limitation on projections of future permafrost change and 350 

their impacts on some mountains, including the loss of geoheritage. Particular attention has also 351 

been paid to the monitoring of permafrost within rock bodies, in particular steep rock walls 352 

where permafrost degradation can result in rock slope failure (Gruber & Haeberli, 2007; Bodin 353 

et al., 2017; Keuschnig et al., 2017). This also includes the development of rock glaciers, formed 354 

as a result of interstitial permafrost or glacier ice present within a coarse clast matrix (Knight, 355 

2019). Rock glaciers represent a distinctive signature of cryosphere decay in mountains, and 356 

these landforms are projected to increase in number and significance upon deglacierization in the 357 

Anthropocene (Knight & Harrison, 2014; Knight et al., 2019). 358 

 359 

The outcomes of climate warming on mountain permafrost include an increase in the lowest 360 

elevations at which permafrost is found; permafrost thinning and disaggregation; warming 361 

subsurface temperatures and thickening active layer; decreasing slope stability and increasing 362 

mass movement hazards (Gude & Barsch, 2005; Fukai et al., 2007; Bonnaventure & 363 

Lamoureux, 2013). The precise nature of permafrost responses depends on its depth, distribution 364 

and temperature. Under different RCP scenarios using the CMIP5 climate model, active layer 365 

thickness across northern hemisphere cold regions to 2100 is projected to increase between 366 

0.77±0.08 cm decade
-1

 (RCP2.6) and 6.51±0.07 cm decade
-1

 (RCP8.5) (Peng et al., 2018). 367 

Irrespective of future warming rates, these projections are all significantly higher than 368 
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reconstructed historical rates of 0.57±0.04 cm decade
-1

 for the period 1850–2005 (ibid). In the 371 

Tibetan Plateau, CMIP5 modelling suggests permafrost area will decrease by 10.5% and 32.7% 372 

by 2040 and 2070, respectively, under the RCP8.5 scenario (Chang et al., 2018). Permafrost in 373 

the northwest Tibetan Plateau is likely to be most resilient to climate warming. More recent 374 

CMIP6 modelling using the updated IPCC shared socioeconomic pathway (SSP)5–8.5 375 

(equivalent to RCP8.5) suggests permafrost temperature in the Tibetan Plateau will increase by 376 

2.6±0.3
o
C and active layer thickness by 3.0±1.0 m by 2100 (Zhang et al., 2022). Based on a 377 

downscaled regional climate model (RCM), frost frequency in the Mont Blanc massif (French 378 

Alps) to 2100 is predicted to significantly decrease by 30–50%, depending on altitude, with 379 

implications for the rate and efficacy of physical weathering, permafrost melt, and land surface 380 

stability (Pohl et al., 2019). Similar future climate impacts on permafrost on other mountain 381 

massifs elsewhere in the world are not well understood.  382 

 383 

Mountain geohazards and risk 384 

Mountains generally are areas of high hazard risk because of their common co-location with 385 

earthquakes and volcanoes, their steep slopes, harsh climate, and presence of snow and ice 386 

(Korup & Clague, 2009; He et al., 2012). This creates a challenging biophysical environment for 387 

human activity. Apart from geophysical hazards that are unrelated to climate, the melting of 388 

glaciers, permafrost and snow gives rise to land surface instability and mass movement hazards 389 

(Keiler et al., 2010; Ding et al., 2020; Kirschbaum et al., 2020). Several studies have shown how 390 

these cryospheric hazards, individually and in combination, have been amplified in number and 391 

magnitude as a result of global warming (e.g., Stoffel et al., 2014; Harrison et al., 2018; Ding et 392 

al., 2020; Stuart-Smith et al., 2021). However, there is significant spatial and temporal 393 

variability in such patterns (e.g., Schlögl et al., 2021; Heiser et al., 2022). A negative glacier 394 

mass balance, resulting in increased meltwater yield, can give rise to a range of land surface 395 

instabilities and geohazards. For example, runoff and sediment fluxes in the Tuotuohe River 396 

(part of the Yangtze River, Tibetan Plateau) increased by 135% and 78% from 1985–1997 to 397 

1998–2016, respectively, as a result of enhanced cryosphere melt and increased precipitation (Li 398 

et al., 2020). Ouflowing rivers from deglacierizing catchments show an increase in discharge as 399 

a result of this higher water availability (Juen et al., 2007; Tahir et al., 2011; Li et al., 2020). 400 

Further, this leads to changes in seasonality of maximum annual floods, with spring discharge 401 

corresponding to snowmelt freshets from snowmelt, and summer discharge corresponding to 402 

maximum glacier melt. Observation and modelling studies have been used to identify and then 403 

decouple different mountain water sources contributing to outflowing river discharge, and 404 

changes in total discharge over time and space and the balance between different sources (Chen 405 

et al., 2017; Sanmiguel-Vallelado et al., 2017). This is because water availability may 406 

correspond to both melting glaciers and changes in precipitation regimes. Catchment and 407 

hydrological modelling studies show that cryosphere changes in addition to climate-driven 408 

changes in rainfall seasonality affect discharge patterns of mountain rivers, contributing to 409 

hazard risk (Huss et al., 2010; Mallucci et al., 2019). Detection and attribution studies can 410 
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inform how these controls may change over time and space (Mallucci et al., 2019). Glacial 412 

melting can also lead to the development of proglacial lakes and glacial lake outburst floods 413 

(GLOFs) (Harrison et al., 2018; Khadka et al., 2018; Stuart-Smith et al., 2021). In Nepal, 414 

proglacial lakes have increased in number (by 181%) and area (by 82%) between 1997 and 2017 415 

as a consequence of climate change, but these lakes vary significantly in their evolutionary 416 

trajectory depending on elevation, topography, glacier size and local climate (Khadka et al., 417 

2018). GLOF size and recurrence interval likely shows a lagged relationship to climate forcing 418 

(Harrison et al., 2018), although this has not been fully explored. GLOFs have been noted from 419 

several mountain blocks worldwide, and their potential for geohazard risk examined (Ahmed et 420 

al., 2021; Veettil & Kamp, 2021).  421 

 422 

Glacier retreat and permafrost melting in combination lead to unstable land surfaces and 423 

enhanced mass movement activity. This genetic relationship has been noted from several 424 

mountain massifs (Sattler et al., 2011; Fischer et al., 2012; Haeberli et al., 2017) in which 425 

several mass movement types can result, including landslides, rock slope failures, debris flows, 426 

colluvial fans and terraces, screen? and talus, and rockfall. First, glacier melt leads to increased 427 

number and/or magnitude of flood events within mountain catchments, and this pattern has been 428 

noted with respect to climate forcing over different timescales and affecting glacier and 429 

snowpack melt regimes (Yao et al., 2007; Schulte et al., 2015). In the Himalayas, river 430 

hydrology varies spatially according to the contribution of monsoon rainfall, snow or glacier 431 

melt to river discharge, and this meltwater contribution also varies throughout the year (Qazi et 432 

al., 2020). Increased water availability on and beneath the land surface can then lead to rockfalls, 433 

landslides, debris/mudflows (He et al., 2012; Stoffel et al., 2014; Kirschbaum et al., 2020), or 434 

avalanches within thicker or warmed snowpacks (Muntán et al., 2009). Analysis of dated mass 435 

movements of different types through the period of the European Little Ice Age (LIA, ~1550–436 

1850 AD) shows that landslides are more common earlier in the LIA (~1660 AD), with the peak 437 

of avalanche events being later (~1720 AD) and rockfalls later still (~1710 AD) (Knight & 438 

Harrison, 2013). This may be indicative of these different mass movements having different 439 

sensitivities to forcing, and thus being triggered by different environmental conditions. This is an 440 

important consideration for predicting when and/or where certain mass movements may be found 441 

in present mountain environments. Bayesian analysis of debris flows in the French Alps shows 442 

that climatic and environmental variables explain 44% and 33% of variance, respectively 443 

(Jomelli et al., 2015). A time series of rockfall events in Austria does not show a close 444 

relationship to temperature and thus climate, but there is a spring peak in rockfall that likely 445 

corresponds to subsurface ice melt at the end of the winter season (Sass & Oberlechner, 2012). 446 

However, mass movements can also be generated by individual weather events such as the 2003 447 

European heatwave and 2005 floods (Gruber et al., 2004; Keiler et al., 2010; Bodin et al., 2017). 448 

These extreme weather events are predicted to become more common under global warming, 449 

especially over mountain regions (Huggel et al., 2010; Ding et al., 2020; Thornton et al., 2021; 450 

Adler et al., 2022).  451 
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 454 

Mountain ecosystems and services 455 

Mountain (alpine) ecosystems are strongly climatically-controlled by direct forcing of mountain 456 

temperature and precipitation regimes, and indirectly through climatic influence on soils. As 457 

such, mountain ecosystems and ecosystem services are sensitive to climate and environmental 458 

disturbance and change, including by human activity (Löffler et al., 2011; Elkin et al., 2013; 459 

Mina et al., 2017; Wei et al., 2022). The different physical properties of mountains, including 460 

their elevation and remoteness, also provide different ecological niches and can favour endemics. 461 

In detail, many mid-latitude mountains that were affected by Pleistocene glaciations have 462 

present-day ecosystems that can be considered as ice age relicts or refugia, in which cold-climate 463 

ecosystems occupy small environmental niches at the tops of mountains that are particularly 464 

climatically sensitive (e.g., Muellner-Riehl, 2019). Progressive warming, whether from the late 465 

glacial into the Holocene or during the Anthropocene, results in distinctive trajectories of climate 466 

and environmental change on mountains that have implications for ecosystems (Löffler et al., 467 

2011). These include an upslope migration of isotherms, increased number of degree days 468 

available for plant growth, longer summer growing season, warmer ground surface temperatures, 469 

enhanced biogeochemical cycling, decreased number and intensity of frost days, 470 

snowline/treeline position, reduced snow cover thickness and duration, and changed river 471 

discharge patterns and water quality (affecting aquatic ecosystems) (Gonzalez et al., 2010; 472 

Cauvy-Fraunié & Dangles, 2019; Losapio et al., 2021). These climatic changes then have 473 

implications for associated environmental regimes such as soil development and slope stability 474 

(Perrigo et al., 2020). Several studies also show there is a close correspondence between glacier 475 

retreat (Cauvy-Fraunié & Dangles, 2019), and permafrost warming as triggers for the altitudinal 476 

spread of plant species and thus mountain ecosystem development (Wei et al., 2022).  477 

 478 

Detailed analysis shows that different mountain species and biomes exhibit different responses to 479 

climate change (Thapa et al., 2016; Albrich et al., 2020; Losapio et al., 2021). This includes 480 

range shifts and changes in phenology. Most work has been done on forests, because of their 481 

implications for C storage and timber harvesting in mountains, their role as habitats for other 482 

plant and animal species, and their role in land surface stabilisation. Studies on forest biome 483 

responses to climate forcing have mainly focused on temperature rather than precipitation (e.g., 484 

Fischlin & Gyalistras, 1997; Jochner et al., 2017) but it may be that the functional water balance 485 

is more important in certain altitudinal ranges but that this is more strongly moderated by site-486 

scale topography rather than precipitation alone (Albrich et al., 2020). Climate model projections 487 

show that, although there is an upward increase in treeline position and thus a general upward 488 

zonal migration of alpine forests (Lamsal et al., 2017), this should not be considered as a simple 489 

deterministic response to climate warming. This is because it does not account for other factors 490 

determining biome responses, such as the role of species’ competition, differential species’ 491 

vagility, invasive species, and steeper slopes, thinner soils and increased windiness with 492 

elevation. Differential mobility and adaptive capacity of individual species undergoing climate 493 
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forcing can result in changes in the overall composition of mountain plant communities and, 498 

more widely, of food webs (Malanson et al., 2019). This then poses problems for the ability of 499 

entire biomes to respond to climate change with, for example, individuals at the lowest 500 

altitudinal range limits being most vulnerable to climate change but exhibiting different inter-501 

species dynamics than those elsewhere within the range (Hampe & Petit, 2005; Iglesias et al., 502 

2018). Likewise, ecosystem services in mountain regions are not well known compared to other 503 

environments (Palomo, 2017; Mengist et al., 2020). These ecosystem services may include 504 

different biological functions such as gene flow (Fady et al., 2008) and carbon (C) storage 505 

(Millar et al., 2017); economic functions; and regulatory and cultural services (Mina et al., 2017; 506 

Seidl et al., 2019). There is less understanding of human interactions with mountain ecosystems 507 

compared with other environmental resources such as water use.  508 

 509 

Climate models have been used in order to predict future mountain climates and, from this, to 510 

use ecological models to examine variations in biome spatial area, ecosystem composition, C 511 

storage, disease/pathogen spread, and the viability of certain endangered or invasive species 512 

(Fischlin & Gyalistras, 1997; Elkin et al., 2013). Key questions going forward focus on the role 513 

of detailed mountain topography and therefore micro-environmental niches for species migration 514 

routes (Perrigo et al., 2020) and therefore the potential for gene flow and survivability of 515 

endemics in specific locations (Blanco-Pastor et al., 2019). This therefore highlights the site-516 

specific and species-specific nature of mountain ecosystems and their potential responses to 517 

climate change (Gonzalez et al., 2010; Blanco-Pastor et al., 2019).  518 

 519 

Mountain communities and infrastructure 520 

Mountain environments and resources represents a ‘global common good’ made use of by 521 

mountain inhabitants and visitors alike (Debarbieux & Price, 2008, 2012; Chakraborty, 2020). 522 

As such, people and mountain environments are closely interlinked, through water and food 523 

resource use, ecosystems and ecosystem services, and human livelihoods (Martín-López et al., 524 

2019). Mountain agricultural economies have historically been founded on pastoralism and 525 

viewed as insular and isolated systems (Tahmasebi et al., 2013), but these are now seen as 526 

extending into complex spatial networks comprising other mountain goods and services, 527 

including cultural patterns, and existing over long time periods (Spies, 2018; Said et al., 2019). 528 

Although also a product of more recent globalization, changes in human populations (density, 529 

locations) and activities in mountains (agriculture, tourism, industry) are influenced by climate 530 

change through changing ecosystems and snow distributions. This is framed through the lens of 531 

socioecological vulnerability and resilience (Pandey & Bardsley, 2015; Nettier et al., 2017; 532 

Kumar et al., 2021) which describe the co-relationships between mountain 533 

environments/resources and different human activities. Fraser et al. (2003) term this 534 

environmental sensitivity and social resilience, respectively. Several recent studies have 535 

discussed these elements in different sectors of the Himalayas (Kaul & Thornton, 2014; Chettri 536 

et al., 2020; Kumar et al., 2021) and highlight the importance of integrated hazard risk 537 
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management and adaptive planning at the community level and with the involvement of 540 

indigenous knowledge systems. However, such an approach to minimising climate change risks 541 

in mountains has not yet been widely developed for many different mountain ranges (e.g., 542 

McDowell et al., 2019; Payne et al., 2020). An exception is the study by Hossain et al. (2020) 543 

that describes the feedbacks that exist within and between the socioeconomic and biophysical 544 

systems of rural communities in the Swiss Alps.  545 

 546 

The most significant issue affecting people and communities in and downstream of mountains is 547 

changes in glacier- and snow-fed river discharge (Viviroli & Weingartner, 2004; Milner et al., 548 

2017; Li et al., 2020). Such mountain ‘water towers’ contribute significantly to regional water 549 

supply to, for example, around 60 million people within the Indus and Brahmaputra catchments 550 

(Immerzeel et al., 2010), and in turn on regional food security (Carey et al., 2017; Spies, 2018). 551 

Based on a global topographic dataset, Viviroli et al. (2007) showed that 43% of mountain areas 552 

provide essential or supportive water resources for mainly urban populations, in particular during 553 

the dry season and in semiarid areas such as in central Asia. Schaner et al. (2012) estimated that 554 

370 million people globally reside in catchments where glacier melt represents one tenth of 555 

seasonal river discharge, and 140 million people in catchments where glacier melt contributes 556 

one quarter of total river discharge. Enhanced glacier melt under global warming is progressively 557 

both increasing and causing more variability of river discharge (Juen et al., 2007). Several 558 

studies now identify the multiple ways in which mountain water sources impact on people 559 

(economy, culture, infrastructure, hydropower, food/water security) and the environment 560 

(geohazards, irrigation, ecosystems) (Mukherji et al. 2015; Carey et al., 2017; Hill et al., 2017). 561 

These are key areas of research interest because of the intersectionality between people and the 562 

environment in mountains, and with reference to sustainable development, and the nexus 563 

between food, water and energy security (Rasul, 2014). Further, based on climate model results, 564 

it is likely that continued glacier melt over the next decades will result in progressively lower and 565 

more variable discharges as glacier volume decreases (Messerli et al., 2004; Juen et al., 2007). 566 

This has implications for sediment yield and geohazards, as well as water supply (Knight & 567 

Harrison, 2013; Mukherji et al., 2015; Milner et al., 2017) and water management strategies 568 

(López-Moreno et al., 2008) including for hydropower production (Bombelli et al., 2019). 569 

Contemporary snow and glacier retreat in mountains is already impacting on the development 570 

and sustainability of mountain tourism and conservation of the natural environment (Purdie, 571 

2013; Pröbstl-Haider et al., 2016; Su et al., 2022) and its built heritage (Duvillard et al., 2019).  572 

 573 

Discussion 574 

Mountain environments today are in a state of rapid transition as a consequence of anthropogenic 575 

climate change in the Anthropocene (Gerrard, 1991; Marston, 2008; Milner et al., 2017; Rasul 576 

& Molden, 2019). This study sends a powerful Warning to Humanity regarding the ways in 577 

which climate change negatively impacts on mountains and the people who reside in them, 578 

through the workings of social-ecological and physical systems. Many case studies from the 579 
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world’s mountains highlight the critical risks that climate change impacts pose for regional food, 586 

water and energy security, the maintenance of biodiversity and infrastructure, and the 587 

preservation of cultural heritage (e.g., Rasul, 2014; Pandey & Bardsley, 2015; Chakraborty, 588 

2020; Hossain et al., 2020). Addressing these issues through adaptation and mitigation, and 589 

monitoring and modelling of mountain system dynamics, is critical for future sustainability of 590 

these joint human–physical systems, and for water security for millions of people (Hill et al., 591 

2017; Milner et al., 2017; Li et al., 2020).   592 

 593 

Figure 2 qualitatively illustrates the major biophysical properties of mountain landscapes and 594 

their likely future changes under ongoing climate change. Key elements of these landscapes 595 

include glacial and periglacial landforms and processes in highest altitudes, with mass 596 

movements on lower slopes, and aggradation within river valleys (Knight & Harrison, 2009). 597 

Warming climates give rise to spatial variations in mountain process domains, with glacial and 598 

periglacial areas shrinking, and slope instability reflecting paraglaciation increasing in 599 

prominence (Knight & Harrison, 2013). Several modelling studies suggest total deglacierization 600 

of some mountain sectors, along with spread of ecosystems, over coming decades (Zemp et al., 601 

2006; Rabatel et al., 2018). This represents a fundamental first-order change in the operation of 602 

mountain systems, on a global scale (Milner et al., 2017). The full implications of this have yet 603 

to be realised through field or modelling studies, but include regional heat balance and climate 604 

(including impacts on monsoon circulation), biogeochemical cycling and hydrological balance. 605 

Full impacts on people – including mountain dwellers and those within mountain-sourced river 606 

catchments – have also yet to be realized, and this is important for developing adaptation 607 

strategies for future changes in both mountain geohazards and mountain socioeconomic and 608 

cultural systems (Chakraborty, 2021).  609 

 610 

Several conceptual frameworks have been developed to better understand the workings of 611 

integrated mountain systems. A biophysical systems approach can be used to conceptualise 612 

relationships between the different biological, geomorphological and climatic elements that exist 613 

within mountain systems (Hossain et al., 2020). Most previous work on biophysical systems in 614 

mountains has focused on ecosystem processes and drivers such as fire regime (e.g., Argañaraz 615 

et al., 2015; Zapata-Ríos et al., 2021) and their implications for ecosystem and species’ 616 

dynamics (e.g., Zhang et al., 2018; Davis et al., 2021). Fewer studies have examined the specific 617 

genetic linkages that exist between ecosystems and the physical environment itself (soils and 618 

substrate type, permafrost distribution) (Bugmann et al., 2007; Xu et al., 2008; Ran et al., 2021). 619 

These are important, however, because ecosystems are dependent upon substrate and climatic 620 

properties, and these in turn then link to the provision of different ecosystem services, in 621 

particular through agriculture (Bagstad et al., 2016; Zhang et al., 2021). The conceptual analysis 622 

of human activity in mountain landscapes has also commonly been undertaken through the lens 623 

of socio-ecological systems (e.g., Hossain et al., 2020; Berrio-Giraldo et al., 2021; Fernández-624 

Giménez et al., 2021; Grumbine & Xu, 2021; Gopiranjan et al., 2022) but this approach deals 625 
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only with human interactions with mountain environments, not changes in those environments 635 

because of climate and associated human adaptive responses. Thus, both biophysical and socio-636 

ecological systems’ approaches have some limitations when applied to mountain environments, 637 

and lack integration. For this reason, here the portmanteau term socio-biophysical systems is 638 

introduced to describe the nature of human–environment relations in mountains (Figure 2). 639 

Hossain et al. (2020) considered some of the feedbacks that exist between human and 640 

biophysical systems, based on examples from rural communities in the Swiss Alps. They 641 

develop a ‘mountain community coupled human landscape system’ model (e.g., Alberti et al., 642 

2011) to explain these relationships but with an emphasis on geohazard risk and mitigation rather 643 

than understanding the workings of mountain systems. 644 

 645 

Figure 3 proposes a socio-biophysical systems model to describe and account for the co-646 

relationships between different constituents of mountain systems, including the key 647 

transformative role of human activity and climate change in the Anthropocene. The model is 648 

organized according to the four thematic areas identified in the literature review of this study, 649 

and it highlights that there are multiple interconnections between different mountain elements 650 

that cross between these thematic areas. The elements described in this model build from and 651 

extend the limited socio-ecological connections identified in previous studies (e.g., Alberti et al., 652 

2011; Hossain et al., 2020; Kumar et al., 2021). Figure 3 identifies that there are a number of 653 

items that cross different thematic areas, thereby demonstrating interconnections between socio-654 

ecological and biophysical systems. These include anthropogenic climate/environmental change, 655 

physical landscape processes, land use/land cover change, geohazards, and tourism. Some of 656 

these elements have been included in some previous evaluations of socio-ecological and 657 

biophysical mountain systems (e.g., Bugmann et al., 2007; MacMynowski, 2007; Hill et al., 658 

2017; Hossain et al., 2020; Payne et al., 2020; Kumar et al., 2021; Gopirajan et al., 2022), but 659 

some have not. The interconnections existing within this model also speak to the potential 660 

resilience and vulnerability exhibited by both human and environmental systems in mountains, 661 

whereby the negative impacts of ongoing changes within mountains can be mitigated. 662 

Understanding these interrelationships, including community adaptations to environmental 663 

change in mountains, is an important research priority (Gentle & Maraseni, 2012; Grumbine & 664 

Xu, 2021; Kumar et al., 2021). Figure 3 also highlights that important drivers of change in 665 

mountain systems include direct human activity through land use change, agriculture, tourism 666 

development and infrastructure, and that these activities can lead to negative impacts on slope 667 

stability and ecosystems, amongst others (Hossain et al., 2020).  668 

 669 

Conclusions 670 

Mountain systems are sensitive to global warming in the Anthropocene, and thus it is timely that 671 

a Warning to Humanity is issued, highlighting the serious negative impacts of global warming 672 

and associated societal responses for mountain environments and communities, both within 673 

mountain massifs and in their extensive surrounding hinterlands. A systems approach, 674 

Eliminado: .675 

Eliminado: .676 

Eliminado: can be677 

Comentario [GP27]: Roles? 

Eliminado: 2678 

Eliminado: This model679 

Eliminado: , demonstrated through 680 
systems feedbacks. Table 1 lists the 681 
interconnections 682 

Eliminado: exist683 

Eliminado: socio-ecological and 684 
biophysical685 

Eliminado: within the 686 

Eliminado: . Those elements 687 

Eliminado: appear to have the 688 
greatest689 

Eliminado: cross-sectoral trajectories 690 
(and thus feedbacks 691 

Eliminado: elements), and which thus 692 
appear to be most important in terms 693 
of mountain socio-biophysical 694 
systems, are 695 

Eliminado: These696 

Eliminado: had697 

Con formato: Fuente: Sin Cursiva

Eliminado: ). Feedback698 

Eliminado: speaks699 

Eliminado: This is an important 700 
research priority701 

Eliminado: adaptation702 

Eliminado: ).703 

Con formato: Resaltar

Comentario [GP28]: This 
sentence is repeating what you 
expressed in lines 653-656. 
Indeed, your discussion is a 
repetition of what you already 
discussed in the results and then 
you repeated all again in the 
conclusions. Thus, I suggest that 
you consider unite Results and 
Discussion, removing your “current 
“Dicussion” section and keepiing 
the Conclusions at the end. 

Con formato: Resaltar



considering and integrating together the different properties of mountain environments, is a 704 

useful framework for examining the co-variability of mountain environment dynamics (Figure 705 

3). The impacts of warming, ice retreat and associated changes in the properties and dynamics of 706 

mountain systems have been widely examined from local case-studies (e.g., Gude & Barsch, 707 

2005; Singh, 2009; Gariano & Guzzetti, 2016), but more work is needed to understand the 708 

spatial contingency of geohazards and therefore geohazard risk that arise as a consequence of 709 

climate change. This is an important future research priority (Tullos et al., 2016). Likewise, the 710 

impacts of environmental change on (often vulnerable) mountain communities, and their societal 711 

and socioeconomic responses, have also been examined from some locations (e.g., Carey et al., 712 

2017; Rasul & Molden, 2019) but many mountains especially in the developing world have not 713 

yet been considered (Yohannes et al., 2020). These are also important research priorities because 714 

they focus on building community adaptation and resilience (Gentle & Maraseni, 2012; 715 

Xenarios et al., 2019; Hossain et al., 2020; Grumbine & Xu, 2021).  716 

 717 

Analysis of the literature, examined in this study, shows that interactions between human activity 718 

and the physical environment contribute to the achievement of sustainable development in 719 

mountains (Klein et al., 2019; Payne et al., 2020). Conserving and managing mountain 720 

sociocultural and biosystems are specifically mentioned in the 2030 Agenda for Sustainable 721 

Development and in Chapter 13 of Agenda 21. Many local case studies, in particular in the 722 

Himalayas, have examined interrelationships between physical environmental change and 723 

community adaptations to challenges posed by water availability, hazards, agriculture, and 724 

ecosystem services (Gentle & Maraseni, 2012; Sujakhu et al., 2019). However, equivalent data 725 

are often lacking for many other mountain blocks. The proposed socio-biophysical systems 726 

model (Figure 3) provides a global framework for a better understanding of the dynamics of 727 

mountains in the 21
st
 century, affected by climate change and increased human impacts. This 728 

highlights why a Warning to Humanity on the sensitivity of mountain systems to environmental 729 

disturbance in the Anthropocene is important.  730 
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Figure 2. Schematic block diagrams illustrating the geomorphic patterns and processes taking 1389 

place in mountains under (A) pre-Anthropocene, and (B) Anthropocene climates associated with 1390 

a decline in the mountain cryosphere (sketches not to scale). 1391 
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Figure 3. Interlinkages of different physical and human mountain elements, grouped under the 1393 

four themes identified in this study, within a socio-biophysical model. Abbreviations are: LULC 1394 

– land use/land cover; IKS – indigenous knowledge systems; GLOFs – glacial lake outburst 1395 

floods; SDGs – Sustainable Development Goals.  1396 
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