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ABSTRACT
Background: Living organisms face ubiquitous pathogenic threats and have
consequently evolved immune systems to protect against potential invaders.
However, many components of the immune system are physiologically costly to
maintain and engage, often drawing resources away from other organismal processes
such as growth and reproduction. Evidence from a diversity of systems has
demonstrated that organisms use complex resource allocation mechanisms to
manage competing needs and optimize fitness. However, understanding of resource
allocation patterns is limited across taxa. Cnidarians, which include ecologically
important organisms like hard corals, have been historically understudied in the
context of resource allocations. Improving understanding of resource
allocation-associated trade-offs in cnidarians is critical for understanding future
ecological dynamics in the face of rapid environmental change.
Methods: Here, we characterize trade-offs between constitutive immunity and
reproduction in the facultatively symbiotic coral Astrangia poculata. Male colonies
underwent ex situ spawning and sperm density was quantified. We then examined
the effects of variable symbiont density and energetic budget on physiological traits,
including immune activity and reproductive investment. Furthermore, we tested for
potential trade-offs between immune activity and reproductive investment.
Results: We found limited associations between energetic budget and immune
metrics; melanin production was significantly positively associated with
carbohydrate concentration. However, we failed to document any associations
between immunity and reproductive output which would be indicative of trade-offs,
possibly due to experimental limitations. Our results provide a preliminary
framework for future studies investigating immune trade-offs in cnidarians.

Subjects Ecology, Marine Biology, Zoology
Keywords Ecoimmunology, Resource allocation, Symbiosis, Immune trade-offs, Cnidarians,
Invertebrate immunity

INTRODUCTION
The ability to successfully defend against a variety of pathogenic threats is an essential
component of organismal fitness (Lochmiller & Deerenberg, 2000). However, most
immune defenses which prevent or mitigate damage from pathogens are energetically
costly (Lochmiller & Deerenberg, 2000). This is particularly important as organisms
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operate using a fixed budget of energetic resources that must be allocated to competing
demands (i.e., growth, reproduction, defense, etc; Stearns, 1989). Consequently, allocation
of resources to one demand often comes at the cost of others, creating trade-offs
(Melbinger & Vergassola, 2015). Optimal organismal fitness therefore requires careful
allocation of resources across these demands to minimize negative effects of trade-offs and
maximize reproductive output. Notably, the high costs of maintaining immune systems
and mounting immune responses often result in trade-offs with other traits (Lochmiller &
Deerenberg, 2000;Martin, Weil & Nelson, 2008; Rauw, 2012; Rigby & Jokela, 2000; van der
Most et al., 2010). Among the most well documented immune-related trade-offs are those
between reproduction and immunity, with organisms most often able to exhibit high
immune capacity or high reproductive ability, but not both (Adamo, Jensen & Younger,
2001; Brokordt et al., 2019; Gwynn et al., 2005; Hosken, 2001; Schwenke, Lazzaro &
Wolfner, 2016). However, despite frequent empirical observation of immune-reproductive
trade-offs and robust proposed theory, many questions still remain regarding the
generalizability of resource allocation theory and immune-related trade-offs. In some
systems, consistent immune-reproductive trade-offs have not been observed (Kelley et al.,
2021; McNamara et al., 2013; Miyashita et al., 2019; Syed et al., 2020; Xu, Yang & Wang,
2012). Furthermore, it remains unclear how dynamic changes in resources/energetic
budget might impact these trade-offs. It is theorized that since total energy and relative
allocation are co-dependent, variation in energy budget may have an impact on trade-offs
such as those between immunity and reproduction, however limited empirical evidence
exists to support or refute this theory (Cotter et al., 2010; Descamps et al., 2016; Simmons,
2012; Stahlschmidt et al., 2013). Combined, these gaps in existing theory make it difficult to
predict how resources are allocated among traits, requiring further study to improve
understanding of resource allocation and immune trade-offs in complex contexts. This is
particularly important in light of the rising prevalence of epizootic outbreaks affecting
vulnerable species across the globe (Croquer & Weil, 2009; Glenn & Pugh, 2006; Kilburn
et al., 2010).

Scleractinian or reef building corals are arguably one of the taxa most impacted by
increases in epizootic outbreaks (Bruno et al., 2007; Precht et al., 2016; Ruiz-Moreno et al.,
2012). Disease outbreaks have been one of the largest drivers of coral declines in recent
decades, affecting almost all major reef building species (Alvarez-Filip et al., 2022; Bourne
et al., 2009; Cróquer, Weil & Rogers, 2021; Moriarty et al., 2020; Sharma & Ravindran,
2020; Sutherland, Porter & Torres, 2004). Still, despite the severity of these outbreaks, many
gaps remain in our understanding of associated disease processes. For example, significant
inter- and intra-specific variation has been observed in coral disease resilience (Alvarez-
Filip et al., 2022;Miller et al., 2019; Palmer et al., 2011a). While some studies have pointed
to the importance of divergence in certain cellular processes in driving this variation
(Beavers et al., 2023; Fuess et al., 2017;MacKnight et al., 2022; Pinzon et al., 2014a; Traylor-
Knowles et al., 2021), little is known regarding how broader ecological processes, including
resource allocation, might contribute to variation in disease resistance. To date, most
studies of cnidarian resource allocation have focused on stress associated trade-offs.
The negative effects of thermal anomalies on coral reproductive output have been well
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documented (Michalek-Wagner & Willis, 2001; Nielsen et al., 2020; Paxton et al., 2016).
In contrast, only a handful of studies have documented reproductive trade-offs involving
immunological processes, all of which had focused on the negative impacts of disease
outbreaks on coral reproduction (Fuess et al., 2018; Weil, Croquer & Urreiztieta, 2009).
No studies have directly linked reproductive investment and constitutive immunity in
cnidarians, in part due to the historic lack of tractable model cnidarian systems.

Recent advances in the development of cnidarian model and study systems have greatly
expanded the scope of cnidarian research. One such emergent model species is Astrangia
poculata (common name: northern star coral), a non-reef building stony coral that can be
found along the Atlantic Coast of the United States ranging from Cape Cod, MA to the
Texas Gulf Coast (Dimond et al., 2012). Importantly, unlike tropical corals which are
dependent on symbiotic relationships for survival, A. poculata associates facultatively with
a single species of symbiont, Breviolum psygmophilum (Lajeunesse, Parkinson & Reimer,
2012) with colonies ranging from high symbiont density (“brown”) to low symbiont
density (“white”; Sharp et al., 2017). Classification of symbiotic states is based on color,
approximate chlorophyll concentration, and symbiont density (“brown” >106 cells cm−2;
“white” 104–106 cells cm−2; Sharp et al., 2017). A key benefit of the symbiotic relationship
between corals and their symbionts is the exchange of organic nutrients to the host (Kirk &
Weis, 2016). Consequently, facultative symbiosis may serve as a natural system for
exploring the effects of variable resource budget on immune-associated trade-offs in corals,
though the exact effects of variation in symbiont density on host energetic budget are
poorly studied (Szmant-Froelich & Pilson, 1980). In contrast, recent studies have
highlighted significant impacts of variation in A. poculata symbiont density on host
immunity (Changsut et al., 2022; Harman et al., 2022), suggesting that variation in
host-symbiont dynamics have significant consequences for broader organismal
physiology.

Here we used the tractable A. poculata study system to investigate cnidarian resource
allocation and potential trade-offs between reproduction and immunity (i.e., negative
associations between reproduction and immunity resulting from resource limitation).
We first assessed general effects of variability in symbiont density on host physiology
(reproductive output, energetic budget, and immune activity). Next, we assessed the effects
of energetic budget on both reproductive output and immune activity generally,
independent of symbiont density. Finally, we tested for reproductive-immune trade-offs.
Our study provides a preliminary framework for future studies considering the
inter-connected roles of symbiosis, resource allocation, and immunity in cnidarians.

MATERIALS AND METHODS
Portions of this manuscript were previously published as a preprint (Villafranca et al.,
2023).

Sample collection & experimental design
Entire colonies of “white” (low symbiont density; n = 13) and “brown” (high symbiont
densities; n = 7) A. poculata ranging in size from ~5–61 cm (17–86 polyps) were collected
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from Fort Wetherill in Jamestown, Rhode Island (41�28′40″N, 71�21′34″W) in August
2021, at a depth of 10–15 m. Corals were collected under RI Department of Environmental
Management Permit #825 issued to Koty Sharp/Roger Williams University. Previous
studies have indicated A. poculata reaches peak gametogenesis between August and
September each year (Szmant-Froelich, Yevich & Pilson, 1980). Samples were returned to
Roger Williams University (Bristol, Rhode Island), and held overnight prior to
experimental spawning. To trigger spawning, individuals were moved from the
recirculating tanks at ambient temperatures (~19 �C) to individual containers with 100 mL
of filtered seawater heated to 27 �C. Colonies were then closely monitored for signs of
spawning. Colony sex was confirmed based on gametes released at time of spawning
(A. poculata is gonochoristic; Szmant-Froelich, Yevich & Pilson, 1980). Twenty male
colonies were identified and used for the study, 13 white and seven brown. Individuals
were allowed to spawn for 30 min, at which point gamete release had nearly or completely
ceased. Following this period adult colonies were removed and flash frozen in liquid
nitrogen. The water in the container was then thoroughly mixed and a 1 mL sample was
taken from each colony for sperm density estimation. Sperm density was estimated by
counting in triplicate on a haemocytometer; counts were then normalized to number of
polyps per colony prior to statistical analyses. Flash frozen adult corals were later shipped
to Texas State University for downstream sample processing and analysis.

Symbiont density quantification
Flash frozen adult colonies were airbrushed using a Paasche air brusher (VL0221) with
100 mM Tris + 0.5 mM Dithiothreitol (DTT; pH 7.8) to remove tissue from the skeleton
and extract symbionts and host-enriched proteins (Fuess et al., 2016). First, in order to
estimate symbiont density, an area of 2.14 cm2 (1-2 polyps) was marked on a flat surface of
the colony. Tissue was airbrushed from the area until no tissue remained. The resulting
tissue slurry was placed in a 2.0 mL microcentrifuge tube, and homogenized for 10 seconds
using a handheld homogenizer (Fisherbrand 150). Following homogenization, samples
were centrifuged (2000 RPM for 3 min) and then washed with 500 µl of DI H2O. This
process was repeated twice; final samples were preserved in 500 µl of Deionized H2O +
0.01% Sodium Dodecyl Sulfate (SDS) and stored at 4 �C. Symbiont density was later
determined via microscopy (Nikon Eclipse E600) by counting in triplicate on a
hemocytometer (Changsut et al., 2022; Mieog et al., 2009).

Protein extraction and immune metric analyses
A cell free tissue extract was generated from the remaining portion of the A. poculata
colony following established protocols (Changsut et al., 2022). Host immunity was then
characterized using a suite of established biochemical immune assays designed to measure
multiple components of host coral immunity. Specifically we measured antioxidant activity
(catalase and peroxidase), components of the melanin synthesis cascade (total
phenoloxidase activity and melanin concentration), and antibacterial activity following

Villafranca et al. (2023), PeerJ, DOI 10.7717/peerj.16586 4/20

http://dx.doi.org/10.7717/peerj.16586
https://peerj.com/


established protocols optimized for A. poculata (Changsut et al., 2022). The assays capture
three main components of the coral immune system. Antioxidant activity is essential in
both stress and immune response, mitigating the impacts of toxic reactive oxygen species
produced by pathogens, as a byproduct of other immune pathways, or as a result of stress
(Palmer, Roth & Gates, 2009; Tarrant et al., 2014). The melanin synthesis cascade is a
multi-functional pathway with important roles in immune defense. Melanin can be used to
encapsulate pathogens, and is directly cytotoxic to pathogens (Palmer et al., 2011b).
The production of melanin is dependent on phenoloxidase enzymes which are secreted in
an inactive form (Cerenius et al., 2010; Palmer, Mydlarz & Willis, 2008); total
phenoloxidase assays captures activity of both active and inactive phenoloxidases. Finally,
we measured the ability of cell free protein extracts to inhibit growth of the known coral
pathogen, Vibrio coralliilyticus (Strain RE22Sm provided by D. Nelson at University of
Rhode Island; Ushijima et al., 2020, 2014) as a metric of antibacterial activity. All immune
assays were run in triplicate on 96 well plates using a Cytation 1 cell imaging multi-mode
reader and Gen 5 software (BioTek Instruments, Winooski, VT, USA). A Red660 (G
Biosciences, St. Louis, Missouri) assay was used to determine protein concentration to
standardize immune activity metrics (Mydlarz & Palmer, 2011). Full processing and assay
details can be found in Supplementary File 1.

Energetic assays (lipid and carbohydrate concentration)
Energetic budget, specifically lipid and carbohydrate concentration, were estimated using a
portion of the generated cell free tissue extract. Measurement of lipid and carbohydrate
concentration is a standard approach for estimating coral energetic budget (Rodrigues &
Grottoli, 2007) A standard coral protocol for quantification of lipids within coral tissue
slurries was used to estimate lipid content (Bove & Baumann, 2021). Similarly, we
estimated total carbohydrate concentration following previously established protocols
(Dubois et al., 1956;Masuko et al., 2005). Both lipid and carbohydrate concentration were
standardized by dry tissue weight. Full methodological details can be found in
Supplementary File 1.

Statistical analyses
All statistical analyses were conducted in R (version 4.2.1; R Core Team, 2021), with the
RStudio integrated development environment (R Core Team, 2020). Prior to statistical
analyses, outliers were removed based on results of a Rosner Test (EnvStats, v 2.7.0;
Millard, 2013) One outlier was identified and removed each for peroxidase, melanin, and
lipid concentration. Data was checked for normality using a Shapiro Test (base R), and
total phenoloxidase activity and sperm density were normalized using a log
transformation. We then conducted statistical analyses taking the following approach: first
we tested specific hypotheses regarding variation in symbiont density across colony types,
effects of variation in symbiont density, and drivers of variation in sperm density. Then we
considered the factors contributing to variation in immune function using both
multivariate and univariate approaches. Full details of our statistical approaches are below.
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Hypothesis testing
First, differences in symbiont density between white and brown colonies were assessed
using a non-parametric t-test (Wilcoxon test; base R) as symbiont density data distribution
could not be normalized. Next, the impact of both symbiotic state (categorical) and
symbiont density (continuous) on lipid and carbohydrate concentration was evaluated
using linear models (base R). Finally, the impact of symbiont density and energetic budget
(lipid and carbohydrate concentration) on sperm density was assessed. Using the R
package MuMIn (v. 1.47.5; Barton, 2023) we dredged all possible linear models explaining
this relationship, performed model testing, and then applied model averaging for the best
fit models (D AIC < 2).

Multivariate statistics
Next, multivariate statistics were used to investigate the roles of symbiont state/density,
energetic budget (lipids and carbohydrates), and sperm density on immune parameters.
First, a MANOVAwas run to test for the impacts of symbiont state on immune parameters
(base R). Then a principal component analysis was used to further compare immune
profiles between white and brown colonies (base R). Prior to PCA analysis all numeric
variables were centered and scaled. Next, to determine the effects of our continuous
predictors (symbiont density, energetic budget, and sperm density) on immune profiles
(response variables) centered and scaled values were used to conduct an RDA analysis with
the R package vegan (v. 2.6-4; Oksanen et al., 2023). Forward model selection was used to
determine significant predictors in our analysis. Finally, a correlational analysis was
conducted to test for associations between all continuous variables (predictor and
response) using base R (Pearson correlation).

Univariate statistics
After completing multivariate statistics, the impacts of our predictor variables (symbiont
state/density, energetic budget, sperm density) on each of our immune parameters
individually were assessed. For each immune parameter the R package MuMIn (v. 1.47.5;
Barton, 2023) was used to dredge and test all possible linear models. Model averaging was
used to summarize all best fit models (D AIC < 2).

RESULTS
Hypothesis testing
Symbiont density was significantly higher in colonies classified as “brown” than those
classified as “white” (Wilcoxon test, W=91, p < 0.001; Fig. S1). However, there was no
significant association between symbiont density and carbohydrate (linear model,
coefficient estimate = −3.18e−9, std err = 7.25e−9, t val. = −0.439, p = 0.666) or lipid
concentration (linear model, coefficient estimate = −2.65e−10, std err = 6.50e−9, t
val. = −0.041, p = 0.968), nor was there a difference in either carbohydrates (linear model,
coefficient estimate = 0.00133, std err = 0.00178, t val = 0.749, p = 0.463) or lipids (linear
model, coefficient estimate = 0.000383, std err = 0.00131, t val = 0.293, p = 0.773) between
white and brown colonies. Finally, the only significant predictor of sperm density was
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carbohydrate concentration, which was positively associated with normalized sperm
density (Fig. 1, Tables 1, S1).

Multivariate statistics
Immunity did not vary significantly as a result of symbiont state (MANOVA, Pillai’s
Trace = 0.482, F (5/11) = 2.047, p = 0.1497). Principle component analysis was in
congruence with this finding (Fig. 2); no clear spatial separation between white and brown
colonies was observed. Furthermore, forward model selection for RDA analysis failed to
identify any significant predictors. Finally, we identified several significant correlations
among our continuous variables (Fig. 3). Carbohydrate concentration was significantly
positively correlated to both antibacterial activity (Pearson correlation, r = 0.59,
p = 0.0158) and lipid concentration (Pearson correlation, r = 0.51, p = 0.0459). Symbiont
density was significantly correlated to melanin concentration (Pearson correlation,
r = 0.54, p = 0.0317). Sperm density was significantly positively correlated to total
phenoloxidase activity (Pearson correlation, r = 0.5, p = 0.0494).
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Figure 1 Linear regression modeling of the relationship between average sperm production per
polyp and carbohydrate concentration. Points are colored based on original sample symbiotic state
classification (white or brown). Trendline is representative of the linear model of the relationship of the
two variables, with 95% confidence intervals shaded. Full-size DOI: 10.7717/peerj.16586/fig-1

Table 1 Linear model results for sperm density.

Predictors Estimates SE t p value

(Intercept) 12.3 0.687 17.9 <0.001 ***

Carbohydrates 224 84.5 2.65 0.0167*

Note:
Best-fit linear models for sperm density when including symbiont density, carbohydrate concentration, lipid
concentration as predictors. All possible models were compared and model averaging was used where appropriate (AIC
delta < 2). Bold font indicates significant p-values; asterisks represent significance: *p < 0.05, **p < 0.01, ***p < 0.001.
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Univariate statistics
Based on the limited observed significant multivariate associations, we also considered the
impacts of each of our predictors (symbiont density/state, energetic budget, sperm density)
on activity of our immune metrics using general linear models. Only melanin was
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Figure 2 Principal component analysis showing special orientation of average immune activity of
each coral. Points are colored and grouped by symbiotic state classification. Arrows depict principal
component loadings of each measured immune metric. Full-size DOI: 10.7717/peerj.16586/fig-2
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Table 2 Linear model results for individual immune parameters.

Catalase

Predictors Estimates SE SEadj z p value

(Intercept) 1,386 134.5 141.5 9.80 <0.001 ***

Sperm −1.10E−5 2.02E−5 2.10E−5 0.529 0.597

Carbohydrates 9,829 18,200 18,820 0.522 0.602

Peroxidase

Predictors Estimates SE SEadj z p value

(Intercept) 1.875 0.315 0.334 5.62 <0.001 ***

Symbiont −2.74E−6 2.98E−6 3.08E−6 0.889 0.374

Antibacterial activity

Predictors Estimates SE SEadj z p value

(Intercept) 3.35 0.187 0.196 17.2 <0.001 ***

Carbohydrates 13.5 20.3 20.9 0.647 0.518

Lipids 5.32 15.0 15.5 0.343 0.732

Total phenoloxidase

Predictors Estimates SE SEadj z p value

(Intercept) −1.39 0.144 0.153 9.12 <0.001 ***

Sperm 4.06E−8 3.50E−8 3.77E−8 1.08 0.282

Melanin

Predictors Estimates SE t p value

(Intercept) 2.61E−5 1.61E−5 1.621 0.126

Carbohydrates 5.44E−3 1.82E−3 2.984 0.00927**

Symbiont 1.97E−10 7.37E−11 2.67 0.0176*

Note:
Best-fit linear models for each immune parameter when including symbiont density, carbohydrate concentration, lipid
concentration, and sperm produced per polyp as predictors. All possible models were compared and model averaging was
used where appropriate (D AIC < 2). Bold font indicates significant p-values; asterisks represent significance: *p < 0.05,
**p < 0.01, ***p < 0.001.
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significantly impacted by any of predictors (Tables 2, S2). Melanin concentration was
significantly positively associated with both carbohydrate concentration (p = 0.00927) and
symbiont density (p = 0.0176; Fig. 4).

DISCUSSION
Coral reefs globally are undergoing rapid, unprecedented declines due to anthropogenic
climate change and associated disease outbreaks (Hoegh-Guldberg et al., 2007; Johnston,
Clark & Bruno, 2022; Precht et al., 2016). Corals exhibit both inter- and intra-specific
variation in susceptibility to disease and infection, but the ecological factors that drive
susceptibility are poorly understood (Fuess et al., 2017; Mydlarz et al., 2016). Few studies
have investigated trade-offs between key life-history traits and immunity in cnidarians
(Alvarez-Filip et al., 2022; Pinzon et al., 2014b; Schlecker et al., 2022; Weil, Croquer &
Urreiztieta, 2009). Here, we used the facultatively symbiotic coral Astrangia poculata to
investigate potential reproductive-immune trade-offs in scleractinian corals, and the
impacts of variation in symbiont density and energy budgets on these trade-offs.

Our study found limited links between variation in symbiont density and our measured
physiological traits (lipid/carbohydrate concentration, immune activity, reproductive
output). Most notably, we observed no significant difference in total lipid and
carbohydrate content as a result of variable symbiont density in adult coral colonies. While
this is in agreement with a previous study of A. poculata (Szmant-Froelich & Pilson, 1980),
it is in opposition to conventional thinking regarding symbiosis, which would suggest that
increased symbiont density results in increased energetic budget (Changsut et al., 2022;
Harman et al., 2022; Hughes et al., 2010; Pupier et al., 2019). We propose two alternative
hypotheses to explain these patterns: first, it is possible corals with lower symbiont density
compensate via increased heterotrophic feeding. Unlike tropical corals, Astrangia is
commonly found in low light, nutritionally rich waters. Consequently, these corals may
obtain a significant portion of their nutrition from heterotrophy, especially colonies with
low symbiont densities (Szmant-Froelich, 1981; Wuitchik et al., 2021). Heterotrophic
feeding has previously been demonstrated to have a significant role in the efficiency of
physiological traits in Astrangia and other facultatively symbiotic corals (Aichelman et al.,
2016; Dimond & Carrington, 2007; Ferrier-Pagès et al., 1998; Miller, 1995). Thus, it is
possible that our colonies with lower symbiont densities were compensating via
heterotrophic feeding and actually not nutrient limited. The absence of nutrient limitation
due to heterotrophic feeding may also explain the lack of trade-offs observed (see below).
Alternatively, total lipid and carbohydrate assays may not fully captured host energetic
budget, as coral energetic budgets are exceptionally complex (Lesser, 2012). Other
approaches which account for carbon flux, utilize stoichiometric approaches, or assess
diverse metabolites in both the presence and absence of heterotrophy, may provide further
insight regarding the relationship between symbiont state and energetic budget.

Similar to energetic budget, associations between symbiont density and immunity were
limited. Our multivariate analyses failed to detect any differences in immunity between
white and brown colonies, nor as a result of symbiont density. However, correlational
analysis and univariate linear modeling detected a positive association between melanin
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concentration and symbiont density (but not symbiont state). Previous A. poculata studies
have noted a significant positive association between melanin synthesis and symbiotic
state/symbiont density (Changsut et al., 2022; Harman et al., 2022). This broad consensus
regarding the positive association between melanin and symbiont density is most likely
reflective of the dual roles of melanin synthesis in immunity and symbiont regulation.
Melanin production can be used as a mechanism of symbiont shading in response to UV,
reducing organismal stress (Palmer, Bythell & Willis, 2011). Further investigation of
response of A. poculata to pathogens/immune threats, as opposed to measurement of
constitutive immunity, will provide insight regarding the roles of melanin in immune
responses, and clarify the mechanisms of symbiont-melanin associations.

Next, we considered associations between symbiont density, carbohydrate and lipid
concentration and sperm density. Only carbohydrate concentration was positively
associated with sperm density, suggesting that sperm release is at least in part resource
limited. As gametogenesis in A. poculata begins earlier in the year (Szmant-Froelich, Yevich
& Pilson, 1980), this association may be more indicative of the energetic costs of sperm
release (spawning), rather than sperm production. Nutrient limitation has significant
negative effects on multiple ejaculate traits (Macartney et al., 2019), reflective of the costs of
sperm release. Further analysis of the association between energetic budget and sperm
density throughout gametogenesis will provide improved understanding of temporal shifts
in energetic allocation to reproduction.

In addition to sperm density, carbohydrate concentration was also positively associated
with two metrics of immunity: melanin concentration and antibacterial activity. These
associations are likely indicative of the high costs of both of these immune metrics.
Melanin production is the result of a complex pathway; beginning with pathogen
recognition and continuing through a series of protein cascades leading to the production
of melanin (Cerenius et al., 2010; Palmer, Mydlarz & Willis, 2008). The complexity of the
pathway is likely associated with high metabolic costs. To such end, previous studies have
documented negative associations between lipid reserves and melanin concentration
following immune stimulation (Sheridan et al., 2014). Similarly, antibacterial activity as
measured here is the result of the action of many unique compounds. Corals and other
cnidarians secrete a wide diversity of often complex antibacterial compounds (Mitchell
et al., 2019; Mydlarz et al., 2016; Palmer & Traylor-Knowles, 2012), which may require
significant energy to produce. In contrast, other metrics of immunity measured here,
specifically antioxidants, are single molecules/compounds, and likely require significantly
less metabolic input (Traylor-Knowles & Connelly, 2017). The low cost of investment in
these components could explain the lack of strong correlation between our metrics of
energetic budget and these immune parameters.

Finally, when considering the factors driving variation in immunity using both a
multivariate and univariate approach, we found limited evidence for any association
between sperm density and immunity. A moderate positive association between total
phenoloxidase and sperm density was observed using correlational analyses. There is
conflicting evidence regarding the link between reproduction and phenoloxidase in other
invertebrates, with studies indicating both positive and negative associations (Castella,
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Christe & Chapuisat, 2009; Guo et al., 2021). Further study of immune-reproduction
associations in cnidarians will help clarify this relationship.

In total, our results were in contrast with our hypothesis; we observed no significant
trade-offs between constitutive immunity and reproduction. We can posit several
hypotheses to explain these observations. First, the timing of our experiment may not have
properly reflected peak reproductive investment. Gametogenesis in A. poculata begins in
early March-April and continues through June and July, with colonies spawning in early
August/September (Szmant-Froelich, Yevich & Pilson, 1980). While we observed some
association between sperm density and carbohydrate concentration indicative of resource
allocation, is possible that this allocation may have been higher at earlier points of
gametogenesis, as opposed to at the time of sampling in August (Szmant-Froelich, Yevich
& Pilson, 1980). Consequently, the most pronounced trade-offs would have occurred
earlier in the season, and tapered off by the point of sampling as resources availability
increased and more resources could be allocated to immunity. Second, we chose here to
measure sperm density due to sampling logistics. Sperm production is typically considered
to be less energetically costly than production of eggs (Hayward & Gillooly, 2011; Parker,
1970; Parker, 1982). While we did observe some association between energetic resources
and sperm, it is likely that these associations are more pronounced in females and
consequently reproductive trade-offs would be more evident when considering females.
Finally, our study does not account for multiple spawning events, specifically spawning
events that may have occurred naturally prior to sample collection. Some coral species
spawn multiple times throughout a season, and exact timing of Astrangia spawning in
natural environments is unknown (Szmant-Froelich, Yevich & Pilson, 1980). Thus, it is
possible that the collected Astrangia colonies had previously spawned in situ, and the
induced events were a secondary release with reduced sperm density not reflective of true
reproductive investment. Congruent with this possibility, several of our colonies had
negligible measured sperm density. Future studies combining histology with
immunological assays at different points of gametogenesis in both male and female
colonies may clarify presence and timing of potential trade-offs.

It is also possible that nuances in our study design did not allow us to observe trade-offs.
It must be noted that trade-offs occur in a multi-dimensional trait space filled with
competed demands (Lochmiller & Deerenberg, 2000; Stearns, 1989), and our experimental
analyses only captured two of these demands (i.e., reproduction and immunity). It is highly
likely that more complicated trade-offs, that involve other organismal demands (growth,
maintenance, etc.,) may occur and were not captured by our study. Approaches that
properly reflect the multi-dimensional trait space associated with resource allocation will
be necessary to fully disentangle the relationship between immunity and other costly
processes. Additionally, our study measured a limited number of immune metrics; it is
possible that trade-offs exist between reproduction and immunity but involve other
components of the immune system. The coral immune system is complex, involving many
different components (receptors, signaling cascades, cellular and humoral effector
responses, etc.), all of which have different relative costs (Colditz, 2008; Ivanina et al., 2018;
Lochmiller & Deerenberg, 2000; Seppala & Leicht, 2013). It is therefore reasonable to
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assume that trade-offs are not equivalent across components, as has previously been
observed in other systems (Adamo, Jensen & Younger, 2001; Albery et al., 2019; Gershman
et al., 2010; Lochmiller & Deerenberg, 2000). Future studies should incorporate more
comprehensive metrics of immunity using methods such as gene expression or proteomics.

CONCLUSIONS
In sum, our results fail to document notable associations between variation in symbiont
density or energetic budget and metrics of host physiology (reproductive output and
immunity). Furthermore, we find no evidence of trade-offs between reproductive output
and immune activity. Still, our results are an important first step in broadening general
understanding of resource allocation theory in cnidarians, which can be applied to other
organisms facing rapid environmental changes. The information provided here provides
an important preliminary framework for future studies of immunological trade-offs in
marine invertebrates and the potential effects of variation in energetic budget on these
patterns.
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