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ABSTRACT
Background. Thyroid-associated orbitopathy (TAO) is a disease associated with
autoimmune thyroid disorders and it can lead to proptosis, diplopia, and vision-
threatening compressive optic neuropathy. To comprehensively understand themolec-
ular mechanisms underlying orbital adipogenesis in TAO, we characterize the intrinsic
molecular properties of orbital adipose/connective tissue from patients with TAO and
control individuals.
Methods. RNA sequencing analysis (RNA-seq) was performed to measure the gene
expression of orbital adipose/connective tissues of TAO patients. Differentially ex-
pressed genes (DEGs) were detected and analyzed throughGeneOntology (GO), Kyoto
Encyclopedia of Genes and Genomes (KEGG) analysis, and Gene Set Enrichment
Analysis (GSEA). The protein–protein interaction (PPI) network was constructed
using the STRING database, and hub genes were identified by the Cytoscape plug-in,
cytoHubba. We validated several top DEGs through quantitative real-time polymerase
chain reaction (qRT–PCR).
Results. We identified 183 DEGs in adipose tissue between TAO patients (n= 3) and
control patients (n= 3) through RNA sequencing, including 114 upregulated genes and
69 downregulated genes. The PPI network of these DEGs had 202 nodes and 743 edges.
PCR-based validation results of orbital adipose tissue showedmultiple top-ranked genes
in TAO patients (n= 4) are immune and inflammatory response genes compared
with the control individual (n= 4). They include ceruloplasmin isoform x3 (CP),
alkaline tissue-nonspecific isozyme isoform x1 (ALPL), and angiotensinogen (AGT),
which were overrepresented by 2.27- to 6.40-fold. Meanwhile, protein mab-21-like
1 (MAB21L1), phosphoinositide 3-kinase gamma-subunit (PIK3C2G), and clavesin-2
(CLVS2) decreased by 2.6% to 32.8%.R-spondin 1 (RSPO1),which is related to oogonia
differentiation and developmental angiogenesis, was significantly downregulated in
the orbital muscle tissues of patients with TAO compared with the control groups
(P = 0.024).
Conclusions. Our results suggest that there are genetic differences in orbital adipose-
connective tissues derived from TAO patients. The upregulation of the inflammatory
response in orbital fat of TAOmay be consistent with the clinical phenotype like eyelid
edema, exophthalmos, and excess tearing. Downregulation of MAB21L1, PIK3C2G,
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and CLVS2 in TAO tissue demonstrates dysregulation of differentiation, oxidative
stress, and developmental pathways.

Subjects Bioinformatics, Genomics, Molecular Biology, Diabetes and Endocrinology, Ophthal-
mology
Keywords Thyroid Associated Ophthalmopathy, High-throughput sequencing, Differentially
expressed genes, mRNA, Inflammation

INTRODUCTION
Thyroid-associated orbitopathy (TAO), also called Graves’ ophthalmopathy, is a category
of autoimmune diseases associated with thyroid dysfunction (Bahn, 2010). A prominent
feature of TAO is the expansion of orbital tissue, comprising both extraocular adipose
and muscle tissues (Garrity & Bahn, 2006). The swollen soft tissues are the result of the
accumulation of nonsulfated glycosaminoglycan, inflammation, hyaluronan, and the
activation of local fibroblasts (Berchner-Pfannschmidt et al., 2016). If left untreated, the
expansion of orbital tissue can result in orbital congestion, significant exophthalmos,
compressive neuropathy, and even lead to vision loss causing a serious decline in quality
of life (Wang et al., 2021). In the last several decades, rehabilitative orbital decompression
surgery has been the standard treatment for the stable stage of TAO. This surgical
approach aims to mitigate proptosis, alleviate orbital congestion, and enhance the aesthetic
appearance of the orbital region. Consequently, it serves as a means to ameliorate the
quality of life for individuals afflicted with TAO (Bartalena, 2013).

The activation of orbital fibroblasts plays a key role in the immune process of TAO
pathogenesis (Naik et al., 2010). Under pathological conditions, orbital fibroblasts will
express functional molecules, such as thyrotropin receptor, the receptor of insulin-like
growth factor, and CD40, and continue to differentiate into adipocytes and myofibroblasts
closely related to disease progression. Most of the current studies focus on isolating and
establishing primary orbital fibroblasts and conducting further immune research related
to various pathological mechanisms of TAO (Hammond et al., 2021; Jang et al., 2019).
However, limited research has been conducted concerning the direct detection of gene
expression within the orbital adipose/connective tissue of TAO patients utilizing high-
throughput sequencing methods. This issue emphasizes the importance of comprehending
the underlying mechanism(s) of orbital adipogenesis to identify therapeutic approaches
for the prevention or treatment of TAO.

The transcriptome refers to the sum of all RNA transcripts for a specific tissue or cell in
a certain developmental state or functional condition, including messenger RNA (mRNA),
noncoding RNAs, and small RNAs. Screening the specific genes that play a key role in
disease among many differentially expressed genes (DEGs) has become a key research goal
(Chen et al., 2021). Bioinformatics analysis based on gene expression profiles may screen
hub genes and regulatory pathways, which play an important role in the early diagnosis of
TAO and the establishment of early warning mechanisms (Kim et al., 2021).
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In this study, DEGs were identified based on high-throughput RNA sequencing data
of tissues from TAO and control subjects to explore the pathogenesis of TAO. Then,
Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set
Enrichment Analysis (GSEA) pathway analyses were obtained to predict the functions of
these DEGs. The expression patterns of some DEGs were confirmed by qRT-PCR.

MATERIALS & METHODS
Subjects and tissue samples
All human studies were conducted according to the Declaration of Helsinki principles and
were approved by the Ethics Committee of the AffiliatedWuxi People’s Hospital of Nanjing
Medical University (identifier, KY23013). We collected human orbital adipose/connective
tissues from 43 to 80-year-old patients with TAOundergoing routine resection of prolapsed
orbital fat in the Department of Ophthalmology, the Affiliated Wuxi People’s Hospital
of Nanjing Medical University, from July 2021 to August 2022. The demographics of the
patients are presented in Table 1 and Fig. S1. All TAO patients included in this study were
diagnosed according to Bartley’s criteria, and tissues of control individuals obtained in
plastic surgery were collected as control samples. All patients provided written informed
consent.

Bulk RNA sequencing analysis (RNA-Seq)
The total RNA in tissues were extracted. To ensure the quality of the samples for
transcriptome sequencing, the concentration and integrity of RNA samples were checked
using a Nanodrop ND-2000 spectrophotometer and an Agilent Bioanalyzer 2100/4200,
respectively. The qualified RNA samples were used for mRNA preparation and cDNA
library construction. After library construction, the qualified libraries were sequenced
using the Illumina NovaSeq 6000 using PE150 mode. Following an extracting and filtering
quality control, we obtained high-quality, cleaned reads, and a follow-up analysis was then
conducted (Table S1). All experiments were repeated three times with biological replicates.
The statistical power of this experimental design, calculated in RNASeqPower is 0.96, based
on a sequencing depth of 6 GB, CV of 0.4. We have uploaded the RNA-seq into the NCBI,
the NCBI accession number is PRJNA971380.

DEGs and differential alternative splicing (DAS) analysis
We used FeatureCount (version 2.0.2) (Liao, Smyth & Shi, 2014) to quantify transcripts at
the gene level. Differential expression analyses were performed with edgeR (version 3.3.3)
according to the criteria of |log2 (FC)| > 1 and P value < 0.05.

Alternative splicing (AS) is the process by which different splice sites in precursor
messenger RNA are selected to generate multiple mRNA isoforms, so AS is an important
mechanism in creating proteome diversity and regulating gene expression in different
tissues and developmental stages. To identify the number of different splicing events in
TAO patients and controls, the software rMATS (version 4.0.2) was used (Shen et al.,
2014), a new statistical method for robust and flexible detection of differential AS from
replicate RNA-Seq data. Five main alternative splicing events, A3SS, A5SS, MXE, RI, and
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Table 1 Characteristics of TAO and control patients undergoing study.

Control
(n= 6)

TAO
(n= 5)

P value

Age (years) 32.67± 13.57 59.20± 13.29 0.010
Male (n, %) 1 (16.67%) 3 (60%) 0.137
Disease (n, %)

TAO — 5 (100%)
Blepharochalasis 2 (33.33%) —
Adipositas palpebrae 1 (16.67%) —
Exotropia 3 (50%) —

Duration of thyroid disease prior to surgery (approx.mo) N/A 112.2± 195.97
Duration of TED prior to surgery (approx.mo) N/A 5.8± 3.12
Previous treatment for Grave’s disease

Antithyroid drugs N/A 4 (80%)
Thyroid surgery N/A 1 (20%)
Radioactive iodine therapy N/A 1 (20%)

Previous treatment for TED
Corticosteroid pulse therapy N/A 3 (60%)
Disarticulation of rectus N/A 2 (40%)

Smoking history (n, %) 0 (0%) 0 (0%)
Exophthalmometry, hertel (mm) N/A 19.9± 4.72
Presence of compressive optic neuropathy (n, %) N/A 2 (40%)
Surgery

Orbital decompression — 5 (100%)
Blepharoplasty 3 (50%) —
Strabismus surgery 3 (50%) —

Clinical activity score (0–7) N/A 1.6± 0.8

Notes.
Abbreviations: N/A, not applicable; TED, Thyroid Eye Disease.
Data are shown as the mean± SD.

SE, were analyzed. A significance threshold of P value < 0.01 was used to define differential
alternative splicing events.

Functional enrichment analysis
GO enrichment analyses for both the upregulated and downregulated genes were
carried out using the R package topGO (The Gene Ontology Consortium, 2021) and the
results were visualized using the REVIGO tool (http://revigo.irb.hr) (Supek et al., 2011).
KEGG Orthology Based Annotation System (KOBAS) v3.0 (Bu et al., 2021) was used to
perform the functional enrichment analysis. GSEA was carried out using the R package
‘clusterProfiler’ (Yu et al., 2012). The results are indicated in the appropriate figure legend
and text.

The protein–protein interaction (PPI) network and hub gene
identification
Construction of a PPI network was conducted using STRING (https://string-db.org/). We
uploaded DEGs to STRING and obtained high-resolution bitmaps. By calculating the

Wang et al. (2023), PeerJ, DOI 10.7717/peerj.16569 4/22

https://peerj.com
http://revigo.irb.hr
https://string-db.org/
http://dx.doi.org/10.7717/peerj.16569


degree of connectivity, the hub genes in the PPI network were identified via cytoHubba,
which is a plugin in Cytoscape software (version v3.9.1) (Shannon et al., 2003).

RNA quantification
Total RNA was extracted using the RNAiso Plus (Takara, Kyoto, Japan), according to the
manufacturer’s instructions. Final RNA pellets were resuspended in nuclease-free H2O and
then determine the purity and concentration by measuring the optical density at 260 nm
and 280 nm (NanoDrop 2000c; Thermo Fisher Scientific, Waltham, MA, USA). Reverse
transcription of total isolated RNA was performed using the PrimeScript RT master mix
kit (Takara, Kyoto, Japan). Gene expression was measured by qRT-PCR. The data were
analysed using the 2−11CT method and normalized to the endogenous control GAPDH
mRNA (for humans), and the amount of target gene mRNA expression in each sample
was expressed relative to that of the control. Primer sequences for qRT-PCR were designed
using Primer Express Software (Thermo Fisher Scientific, Waltham, MA, USA; Table S2).

Histological and immunohistochemical analysis
Human orbital adipose/connective tissues were obtained during orbital decompression and
fixed overnight in 4%PFA (w/v) at 4 ◦C.The adipose samplewas dehydrated through graded
ethanol, and paraffin embedded. Histological sections of 5 µmwere taken along the vertical
meridian. Specimens were stained with H&E staining and observed under an Olympus
BX-51 lightmicroscope (Olympus, Tokyo, Japan). Standard immunohistochemical analysis
with citrate antigen retrieval was performedwith the antibodies against CD45 (#70257S; Cell
Signaling, Danvers, MA, USA), Fibronectin (FN, #15613-1-AP; Proteintech, Chicago, IL,
USA), and intercellular adhesionmolecule 1 (ICAM1, #ab282575; Abcam, Cambridge, UK)
to localize expression. Standard immunofluorescence analysis was performed to indicate
F4/80 (#ab6640; Abcam, Cambridge, UK) expression, followed by Goat anti-Rabbit IgG
(H+L) Cross-Adsorbed Secondary Antibody, Alexa Fluor™ 488 (#A-11008; Thermo Fisher
Scientific, Waltham, MA, USA), and Goat anti-rat IgG (H+L) Cross-Adsorbed Secondary
Antibody, Alexa Fluor™ 488 (#A-11006; Thermo Fisher Scientific, Waltham, MA, USA).

Statistical analysis
The results are expressed as the mean ± SD. Significance was established between the two
groups using Student’s t test (paired t test). Age was compared using the t -test, and gender
was compared using chi-squared tests. The data were analysed using GraphPad Prism 5
statistical software (Prism v5.0; GraphPad Software, La Jolla, CA, USA). A P value < 0.05
was considered statistically significant.

RESULTS
DEGs in orbital adipose/connective tissue samples of TAO patients
Deep sequencing identified 183 DEGs with the conditions of |log2(FC)| > 1 and P
value < 0.05 between the orbital adipose/connective tissues of TAO patients and control
individuals. Among these, 114 genes were upregulated, and 69 genes were downregulated.
The fragments per kilobase million (FPKM) value of mRNAs shows that there is no
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Figure 1 The differentially expressed genes were analyzed from RNA sequencing data. (A) Volcano
plot of different genes in control or TAO orbital fat. FC, fold change; DEGs, differentially expressed genes.
(B) Hierarchical clustering heatmap showing gene expression differences.

Full-size DOI: 10.7717/peerj.16569/fig-1

abnormal expression in the three samples in each group (Figs. S2A–S2C). Principal
component analysis (PCA) showed a significant separation between the two sets of samples
(Fig. S2D). In our volcano plot and heatmap analysis of TAO-enriched genes, we showed
the top 40 most DEGs in TAO samples compared to the controls (Figs. 1A, 1B). To
identify and analyze the corresponding changes in these underlying functional DEGs, the
enrichment analyses were employed.

DAS gene analysis
Alternative splicing (AS) refers to the process of selectively removing or retaining
exons/introns during the initial transcription of DNA into RNA and further processing
into mature mRNA, resulting in multiple transcripts of a gene. To learn the potential AS
of TAO patients, five main types of AS events were analyzed using rMATS, including exon
skipping (SE), intron retention (RI), alternative 5′splice site (A5SS), alternative 3′splice site
(A3SS), and mutually exclusive exons (MXE) (Fig. 2A). We selected the DAS genes with
a threshold of P value < 0.01. The numbers of A3SS, A5SS, MXE, RI, and SE events were
65, 57, 22, 18, and 477, respectively. SE was the most prevalent AS event in TAO patients,
whereas RI was the least prevalent (Figs. 2B, 2C). This data suggests that an abnormal
splicing process leads to specific splicing isoforms, which may have a close relationship
with the occurrence and development of TAO.

Enrichment analyses of DEGs
To explore the functions of DEGs, functional enrichment analysis was performed on DEGs
by linking them with biological phenomena and their underlying mechanisms.

GO annotation analyses
GO analysis is a common useful method for large-scale functional enrichment research,
which can significantly distributeDEGs into the biological process (BP),molecular function
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Figure 2 Analysis of differential alternative splicing (AS) genes and distribution of the five main AS
events. (A) Schematic diagrams of the mechanisms of the five main AS events. (B) Venn diagram of the
detected genes undergoing the five AS events and overlap of these genes. SE, exon skipping; RI, intron re-
tention; A5SS, alternative 5′splice site; A3SS, alternative 3′splice site; MXE, mutually exclusive exons. (C)
Distribution of differential AS events based on a threshold of P < 0.01.

Full-size DOI: 10.7717/peerj.16569/fig-2

(MF), and the cellular component (CC). The most significant GO terms of upregulated
and downregulated DEGs are shown in Figs. 3A–3C, and detailed information is listed in
Table 2.

In the GO terms of TAO samples, inflammation response was the main BP
category, including inflammatory response, regulation of inflammatory response, acute
inflammatory response, regulation of acute inflammatory response, and myeloid leukocyte
migration (Fig. 3A). This suggests that the pathogenesis of TAO is closely related to the
aberrant activation of inflammatory responses, which play a key role in the activation of
orbital adipogenesis. The MF category was abundant in glycosaminoglycan binding, G
protein-coupled receptor binding, signaling receptor binding, and extracellular matrix
structural constituent (Fig. 3B). In addition, CC mainly displayed extracellular region,
extracellular space, and cell surface (Fig. 3C).

KEGG pathway enrichment analyses
The KEGG database is a widely used database to systematically analyze the metabolic
pathways of gene products in cells and the functions of these gene products. It can help
us study genes and expression information as a whole network. By analyzing the signaling
pathway of DEGs, we can understand the significantly changed metabolic pathway in the
state of TAO, which is important for exploring the pathogenesis of the disease.

KEGG analysis showed that 142 pathways were significantly enriched. The top 20
enriched pathways are shown in Fig. 3D. The represented pathways were ECM-receptor
interaction, PI3K-Akt signaling pathway, cell adhesion molecules, cytokine–cytokine
receptor interaction, and focal adhesion.

GSEA
GSEA is a promising, widely used software package that derives gene sets to determine
different biological functions between two groups. By GSEA, we identified that cytokine–
cytokine receptor interaction, cytokine–cytokine receptor interaction, NF-kappa B
signaling pathway, rheumatoid arthritis, TNF signaling pathway, and viral protein
interaction with cytokine and cytokine receptor were the top five enriched pathways
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Figure 3 The most significantly enriched GO terms and KEGG pathway analysis relevant to up- and
downregulated genes. (A) BP term of GO enrichment analysis, *p< 0.001. BP, biological process. (B) MF
term of GO enrichment analysis, *p < 0.05. MF: the molecular function. (C) CC term of GO enrichment
analysis, *p < 0.05. CC: cellular component. (D) KEGG pathway analysis showing pathways that are en-
riched in the TAO group. (E) Gene cluster enrichment analysis (GSEA) revealed a significant enrichment
of the first five pathways in TAO patients.

Full-size DOI: 10.7717/peerj.16569/fig-3

(Fig. 3E). In summary, the biological processes from the enriched GO terms, KEGG
pathways, and GSEA for the DEGs were mainly involved in the regulation of inflammatory
response, glycosaminoglycan binding and hyaluronic acid binding.

Cross with gene expression omnibus (GEO) database
We downloaded the microarray data of GSE185952 from the GEO database (Yue et al.,
2021). This dataset contains six samples, including three TAO patients who underwent
orbital decompression for proptosis correction and three control groups obtained from
patients who underwent plastic surgery. We screened out the DEGs on the cut-off criteria
with |log2 (FC)| > 1 and P value < 0.01. Intersection analysis was performed on the DEGs of
the two independent samples. We obtained six co-upregulated genes, cartilage oligomeric
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Table 2 The top GO terms of DEGs between TAO and control samples. The top 10 BP terms, MF terms and the most significantly CC terms of
DEGs between TAO and control samples.

Category ID Term Gene

BP GO:0007275 multicellular
organism
development

ACAN|ADAMTS18|ADAMTS9|ADCYAP1|ADGRG6|
ADRA2B|AGT|ALPL|ALX1|AQP3|ARID5B|BAIAP2|BMP3|
C8orf22|CDH11|CDH4|CDON|COL9A3|COMP|CP|CXCL8|
CXCR4| CYP19A1|DUSP2|EDN3|EDNRB|EFEMP1|EGFL6|FAP|
FGF1| FOXD1|FOXN4|GABRA4|GATA6|GFRA1|HIF1A|HIF3A
|HMOX1| HOXC9|ICOS|IHH|KCNA1|KRT25|LCP1|LFNG|
MAB21L1| MCL1|MCOLN3|MEIS1|NGFR|NLGN4Y|NOCT|
NR2F1|NTS| PAPPA2|PCSK6|PDE4D|PFKFB3|PHLDA1|
PKP2|PLEK| POU3F3|PPL|PTHLH|RPS4Y1|RUNX1|
S100A9|S1PR3|SFRP4|SHC3|SLC7A5|SPRY4|T|
TBX1|TBX3|TENM1|TMEM176A|TPO|TRIB1|
USP9Y|VCAN|VCX|VNN2|WNT5B|
XIRP1|ZFY|ZIC1|ZIC2

BP GO:0048856 anatomical
structure
development

ACAN|ADAMTS18|ADAMTS9|ADCYAP1|ADGRG6|
ADRA2B|AGT|ALPL|ALX1|AQP3|ARID5B|BAIAP2|
BMP3|C8orf22|CDH11|CDH4|CDON|COCH|COL9A3|
COMP|CP|CXCL8|CXCR4|CYP19A1|DNASE1L3|DUSP2|
EDN3|EDNRB|EFEMP1|EGFL6|FAP|FGF1|FOXD1|FOXN4|
GABRA4|GATA6|GFRA1|HIF1A|HIF3A|HMOX1|HOXC9|
ICOS|IHH|KCNA1|KRT25|LCP1|LFNG|MAB21L1|MCL1|
MCOLN3|MEIS1|MPZL2|NGFR|NLGN4Y|NOCT|NR2F1|
NTS|OLFM4|PAPPA2|PCSK6|PDE4D|PFKFB3|PHLDA1|
PKP2|PLEK|POU3F3|PPL|PTHLH|RPS4Y1|RUNX1|S100A9|
S1PR3|SFRP4|SHC3|SLC7A5|SPRY4|T|TBX1|TBX3|
TENM1|TMEM176A|TPO|TRIB1|UGCG|USP9Y|VCAN|VCX|
VNN2|WNT5B|XIRP1|ZFY|ZIC1|ZIC2

BP GO:0032502 developmental
process

ACAN|ADAMTS18|ADAMTS9|ADCYAP1|ADGRG6|
ADRA2B|AGT|ALPL|ALX1|AQP3|ARID5B|BAIAP2|
BMP3|C8orf22|CDH11|CDH4|CDON|COCH|COL9A3|
COMP|CP|CXCL8|CXCR4|CYP19A1|DDX21|DNASE1L3|
DUSP2|EDN3|EDNRB|EFEMP1|EGFL6|FAP|FGF1|FNDC5|
FOXD1|FOXN4|GABRA4|GATA6|GFRA1|HIF1A|HIF3A|
HMOX1|HOXC9|ICOS|IHH|KCNA1|KRT25|LCP1|LFNG|
MAB21L1|MCL1|MCOLN3|MEIS1|MPZL2|MSR1|NEK6|
NGFR|NLGN4Y|NOCT|NR2F1|NTS|OLFM4|PAPPA2|PCSK6|
PDE4D|PFKFB3|PHLDA1|PKP2|PLEK|POU3F3|PPL|
PTHLH|RPS4Y1|RUNX1|S100A9|S1PR3|SFRP4|SHC3|
SLC7A5|SPRY4|T|TBX1|TBX3|TENM1|TMEM176A|TPO|
TRIB1|UGCG|USP9Y|VCAN|VCX|VNN2|WNT5B|
XIRP1|ZFY|ZIC1|ZIC2

BP GO:0001501 skeletal system
development

ACAN|ALPL|ALX1|ARID5B|BMP3|CDH11|
COMP|EFEMP1|HIF1A|HOXC9|IHH|MEIS1|
PAPPA2|PTHLH|RUNX1|T|TBX1|
TBX3|VCAN|WNT5B

BP GO:0019932 second-messenger-
mediated signaling

ADCYAP1|ADGRG6|ADRA2A|ADRA2B|AGT|
CCL4|CXCL8|CXCR4|EDN3|EDNRB|FPR1|
GPR3|PDE4D|PLEK|PTHLH

(continued on next page)
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Table 2 (continued)

Category ID Term Gene

BP GO:0032501 multicellular
organismal process

ACAN|ACE2|ADAMTS18|ADAMTS9|ADCYAP1|
ADGRG6|ADRA2A|ADRA2B|AGT|ALPL|ALX1|
AQP3|ARID5B|BAIAP2|BMP3|C8orf22|CD177|
CDH11|CDH4|CDON|COCH|COL9A3|COMP|CP|CXCL8|
CXCR4|CYP19A1|DDX21|DDX3Y|DUSP2|EDN3|EDNRB|
EFEMP1|EGFL6|F13A1|FAM107B|FAP|FGF1|FOSB|
FOXD1|FOXN4|GABRA4|GATA6|GFRA1|GP1BB|
HIF1A|HIF3A|HILPDA|HMOX1|HOXC9|ICOS|IHH|
KCNA1|KCNK10|KRT25|LCP1|LFNG|MAB21L1|MCL1|
MCOLN3|MEIS1|MLIP|MMRN1|MSR1|MYH2|NGFR|
NLGN4Y|NOCT|NR2F1|NTS|PAPPA2|PCSK6|PDE4D|
PFKFB3|PHLDA1|PKP2|PLEK|POU3F3|PPL|
PRKAR2B|PTHLH|RPS4Y1|RUNX1|S100A9|S1PR3|
SAA1|SERPINA3|SFRP4|SHC3|SLC7A5|SPRY4|T|
TBX1|TBX3|TENM1|TLR2|TMEM176A|TPO|TRIB1|
USP9Y|VCAN|VCX|VNN2|WNT5B|XIRP1|
ZFY|ZIC1|ZIC2

BP GO:0048518 positive regulation
of biological pro-
cess

ACE2|ADAMTS9|ADCYAP1|ADRA2A|ADRA2B|
AGT|ALX1|AQP3|ARID5B|BAIAP2|BCL2A1|BMF|
BMP3|C4A|CCL4|CDH4|CDON|COCH|CR1|CXCL8|
CXCR4|DCUN1D3|DDX21|DDX3Y|EDN3|EDNRB|
EFEMP1|EGFL6|FAP|FCGR1A|FGF1|FNDC5|FOSB|
FOXD1|FOXN4|FPR1|GATA6|HIF1A|HIF3A|
HILPDA|HLA-DRB5|HMOX1|ICOS|IHH|IL16|
LCP1|LFNG|MAB21L1|MCL1|MEIS1|MSR1|MYH2|
NEK6|NGFR|NOCT|NR2F1|OLFM4|OSMR|PDE4D|
PHLDA1|PKP2|PLEK|POU3F3|PRKAR2B|PTHLH|
RNASE2|RPS4Y1|RSPO1|RUNX1|S100A9|S1PR3|
SAA1|SAMD4A|SEPT5|SFRP4|SKAP2|SLA|
SLC30A8|T|TBX1|TBX3|TENM1|TLR2|
TRIB1|UGCG|WNT5B|ZIC1|ZIC2

BP GO:0048731 system develop-
ment

ACAN|ADAMTS18|ADCYAP1|ADGRG6|ADRA2B
|AGT|ALPL|ALX1|AQP3|ARID5B|BAIAP2|BMP3|
C8orf22|CDH11|CDH4|CDON|COL9A3|COMP|
CP|CXCL8|CXCR4|CYP19A1|EDN3|EDNRB|
EFEMP1|FAP|FGF1|FOXD1|FOXN4|GABRA4|
GATA6|GFRA1|HIF1A|HIF3A|HMOX1|HOXC9|
ICOS|IHH|KCNA1|KRT25|LCP1|LFNG|MAB21L1|
MCOLN3|MEIS1|NGFR|NLGN4Y|NR2F1|NTS|
PAPPA2|PDE4D|PFKFB3|PHLDA1|PKP2|PLEK|
POU3F3|PPL|PTHLH|RUNX1|S100A9|SHC3|
SLC7A5|T|TBX1|TBX3|TENM1|TMEM176A|
TPO|TRIB1|USP9Y|VCAN|VCX|VNN2|WNT5B|
XIRP1|ZIC1|ZIC2

BP GO:0040011 locomotion ADRA2A|AGT|ALX1|ARID5B|CCL4|CD177|
CDH4|CXCL8|CXCR4|CYP19A1|EDN3|EDNRB|
EFEMP1|FAP|FGF1|FOXD1|FPR1|HIF1A|
HMOX1|IL16|LCP1|NGFR|NR2F1|OLFM4|
PDE4D|PIK3C2G|PKP2|POU3F3|RNASE2|
S100A9|SAA1|SLC7A5|T|TBX1|TRIB1|USP9Y|
VCAN|WNT5B

BP GO:0006954 inflammatory
response

ACE2|ADCYAP1|ADRA2A|AGT|C4A|CCL4|
CR1|CXCL8|CXCR4|CYP19A1|EDNRB|FCGR1A|
HIF1A|HMOX1|NFKBIZ|NGFR|OSMR|S100A9|
S1PR3|SAA1|SERPINA3|TLR2

(continued on next page)
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Table 2 (continued)

Category ID Term Gene

MF GO:0005539 glycosaminoglycan
binding

ACAN|COMP|FGF1|NELL2|PCSK6|RSPO1|
SAA1|SPOCK3|SUSD5|TENM1|TLR2|VCAN

MF GO:0001664 G protein-coupled
receptor binding

ADCYAP1|ADRA2A|AGT|CCL4|CXCL8|
EDN3|EDNRB|PDE4D|RSPO1|SAA1|WNT5B

MF GO:0005102 signaling receptor
binding

ADCYAP1|ADRA2A|AGT|BMP3|CCL4|CXCL8|
EDN3|EDNRB|EFEMP1|EGFL6|FAP|FGF1|FNDC5|
FPR1|GFRA1|HIF1A|HILPDA|IHH|IL16|MICA|
NGFR|NLGN4Y|NTS|PDE4D|PTHLH|RSPO1|
S100A9|S1PR3|SAA1|SHC3|TLR2|WNT5B

MF GO:0004938 alpha2-adrenergic
receptor activity

ADRA2A|ADRA2B

MF GO:0016176 superoxide-
generating
NADPH oxidase
activator activity

AGT|NOXA1

MF GO:0051379 epinephrine bind-
ing

ADRA2A|ADRA2B

MF GO:0005201 extracellular
matrix
structural
constituent

ACAN|COL4A6|COL9A3|COMP|VCAN

MF GO:0008201 heparin binding COMP|FGF1|NELL2|PCSK6|RSPO1|
SAA1|TENM1

MF GO:0005540 hyaluronic acid
binding

ACAN|SUSD5|VCAN

MF GO:0048018 receptor ligand ac-
tivity

ADCYAP1|AGT|BMP3|CCL4|CXCL8|
EDN3|EFEMP1|FGF1|FNDC5|IL16|NTS|
PTHLH|SAA1

CC GO:0005576 extracellular region ACAN|ACE2|ADAMTS9|ADCYAP1|AGT|
ALPL|BAIAP2|BMP3|BPIFB4|C4A|CCL4|
CD177|CDH11|CDON|COCH|COL4A6|COMP|CP|
CPXM1|CR1|CXCL8|CXCR4|DDX3Y|EDN3|EFEMP1|
EGFL6|F13A1|FAP|FGF1|FNDC5|GFRA1|GPX3|
HILPDA|HLA-DRB5|HMCN2|HMOX1|ICOS|
IGLON5|IHH|IL16|IL1R2|KRT25|KSR2|
LCP1|LFNG|MICA|MLPH|MMRN1|MSR1|NELL2|
NGFR|NLGN4Y|NTS|OLFM4|PAPPA2|PCSK1|
PCSK6|PI3|PLEK|PPL|PRKAR2B|PTHLH|
RNASE2|RPS26|RPS4Y1|RSPO1|S100A9|SAA1|
SCG5|SERPINA3|SFRP4|SLC7A5|SPOCK3|
TENM1|TPO|VCAN|WNT5B

CC GO:0044421 extracellular
region part

ACAN|ACE2|ADAMTS9|ADCYAP1|AGT|
ALPL|BAIAP2|BMP3|C4A|CCL4|CD177|
CDH11|CDON|COCH|COL4A6|COMP|CP|
CPXM1|CR1|CXCL8|CXCR4|DDX3Y|EDN3|
EFEMP1|EGFL6|F13A1|FAP|FGF1|GFRA1|
GPX3|HILPDA|HLA-DRB5|HMCN2|HMOX1|IHH|
IL16|KRT25|KSR2|LCP1|LFNG|MICA|MLPH|
MSR1|NELL2|NLGN4Y|OLFM4|PAPPA2|
PCSK1|PCSK6|PI3|PPL|PRKAR2B|PTHLH|
RNASE2|RPS26|RPS4Y1|S100A9|SAA1|
SERPINA3|SFRP4|SLC7A5|SPOCK3|TPO|
VCAN|WNT5B
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Table 2 (continued)

Category ID Term Gene

CC GO:0005615 extracellular space ACE2|ADAMTS9|ADCYAP1|AGT|ALPL|
BAIAP2|BMP3|C4A|CCL4|CD177|CDH11|
COCH|COMP|CP|CPXM1|CR1|CXCL8|CXCR4|
DDX3Y|EDN3|EFEMP1|EGFL6|F13A1|FAP|
FGF1|GFRA1|GPX3|HILPDA|HLA-DRB5|HMOX1|
IHH|IL16|KRT25|KSR2|LCP1|MICA|MLPH|
MSR1|NELL2|NLGN4Y|OLFM4|PAPPA2|PCSK1|
PCSK6|PI3|PPL|PRKAR2B|PTHLH|RNASE2|
RPS26|RPS4Y1|S100A9|SAA1|SERPINA3|
SFRP4|SLC7A5|SPOCK3|TPO|VCAN|WNT5B

CC GO:0009986 cell surface ACE2|ADAMTS9|CDON|CR1|CXCR4|
FAP|FCGR1A|HILPDA|ICOS|KCNA1|MICA|
NGFR|NLGN4Y|PCSK6|SFRP4|TLR2|TPO|WNT5B

Notes.
Abbreviations: BP, biological process; MF, molecular function; CC, cellular component.
Cut-off criteria: *p< 0.05.

matrix protein(COMP), interleukin-8(CXCL8), fmet-leu-phe receptor (FPR1), chemokine
(c-cmotif) ligand 4-like 1 (CCL4), protein s100-a9 (S100A9), and nf-kappa-b inhibitor zeta
isoform x2 (NFKBIZ), and 14 co-downregulated genes, alx homeobox protein 1 (ALX1),
protein kinase c-binding protein nell2 isoform x3 (NELL2), cadherin-4 isoform x1 (CDH4),
puratrophin-1 isoform x1 (PLEKHG4), cochlin (COCH), low-quality protein: bcl-2-
modifying factor (BMF), probable carboxypeptidase x1 (CPXM1), prolyl endopeptidase
fap isoform x1 (FAP), low quality protein: hemicentin-2 (HMCN2), melanophilin isoform
x1(MLPH), collagen alpha-6 chain (COL6A6), epidermal growth factor-like protein 6
isoform x1 (EGFL6), shc-transforming protein 3 (SHC3), and periplakin (PPL) (Fig. 4A).

The protein–protein interaction (PPI) network and hub gene
To better understand the molecular mechanism of TAO, we visualized the importance of
the relationship between proteins of DEGs using Cytoscape software (Table S3, Fig. 4B).
Moreover, we identified the top 10HUB genes according to node degree among these target
genes via the Cytoscape plug-in cytoHubba (Fig. 4C). Collectively, these results suggest
that the core proteins CXCL8, Toll-like receptor-2 (TLR2), CCL4 and angiotensinogen
(AGT) in the PPI network may be involved in the regulation of TAO pathogenesis.

Validation of the expression of DEGs
We confirmed the DEGs by qRT-PCR in orbital adipose/connective tissues to confirm the
results of RNA-seq. In orbital adipose tissues, alkaline tissue-nonspecific isozyme isoform
x1 (ALPL), ceruloplasmin isoform x3 (CP), and AGT were significantly upregulated,
and protein mab-21-like 1 (MAB21L1), phosphoinositide 3-kinase gamma-subunit
(PIK3C2G), and clavesin-2 (CLVS2) were significantly downregulated compared with
controls (Figs. 5A, 5B). In orbital muscle, glutathione peroxidase 3 (GPX3) and alpha-
1-antichymotrypsin isoform x1 (SERPINA3) were upregulated, while MAB21L1 and
PIK3C2G were downregulated, but the difference did not achieve statistical significance
(Figs. 5C, 5D). Among these genes, only R-spondin 1 (RSPO1) was significantly
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Figure 4 The Venn diagram and the top hub genes identified in the protein–protein interaction (PPI)
networks. (A) The Venn diagram shows the differentially expressed gene identification in the two gene ex-
pression profile datasets. (B) PPI network of differentially expressed genes. (C) Identification of the top 10
hub genes.

Full-size DOI: 10.7717/peerj.16569/fig-4

downregulated in orbital muscle tissues. Thus, the validation results by qRT-PCR are
consistent with the RNA sequencing results.

Histology and inflammation in the orbital adipose/connective tissues
of TAO patients and control individuals
H&E staining showed the morphology of orbital adipose tissue, and consistently indicated
an increased level of the inflammatory cell infiltration (black arrows) in TAO patients
compared with the control individuals (Fig. 6A). Meanwhile, we immunohistochemically
stained sections for the CD45, a protein expressed on all leukocytes, and found that
CD45 expression (black arrows) also increased in the TAO patients compared with
controls (Fig. 6B). To identify and quantitate macrophages within adipose tissue, we
detected the expression of F4/80 antigen, a marker specific for mature macrophages in
the orbital adipose tissues. Indeed, the TAO group had significantly increased amounts of
F4/80-positive macrophages, compared with the control groups.

Besides, in the orbital muscle tissues, the inflammatory markers, CD45 and ICAM1 also
increased surrounding the myofibrils in patients with TAO compared with the control
groups (Figs. S3A and S3B). Moreover, there was a potent increase in the expression of
fibrotic proteins, including α-SMA and FN (Figs. S3C and S3D), indicating the orbital
fibrosis or myositis in individuals with TAO.

Collectively, our results showed that there were enhanced inflammatory responses in
orbital adipose/connective tissue and increased levels of fibrosis in the extraocular muscles
among TAO patients.
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Figure 5 Validation of the expression levels of mRNAs in the TAO groups and control groups. (A and
B) The mRNA expression levels in orbital adipose tissue as verified by qRT–PCR. (C and D) Expression
levels of mRNAs in orbital muscle tissues as verified by qRT–PCR. The results are presented as the means
± SDs; n= 4, * p< 0.05, and **p< 0.01 for each pair of groups indicated.

Full-size DOI: 10.7717/peerj.16569/fig-5

Figure 6 Orbital adipose tissue inflammation in the TAO patients and control individuals. (A) H & E
staining in paraffin sections of orbital fat; scale bar, 25 µm. (B) Immunohistochemistry for CD45 (black
arrows) and a hematoxylin nuclear counterstain (blue) was performed on orbital adipose tissue; scale bar,
25 µm. (C) Immunofluorescence detection of the macrophage-specific antigen F4/80 (green) in orbital
adipose tissue from TAO patients and control individuals; scale bar, 25 µm.

Full-size DOI: 10.7717/peerj.16569/fig-6
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DISCUSSION
TAO is an autoimmune disease that affects orbital adipose tissue and extraocular muscles
(Bartalena & Tanda, 2022). To date, the pathogenic mechanisms of TAO have not been
clearly understood. Symptomatic treatments, such as hormone pulse therapy and orbital
decompression, are currently limited for patients with TAO (Baeg et al., 2022). This
issue emphasizes the importance of understanding the underlying mechanism(s) of and
identifying therapeutic approaches for the prevention or treatment of TAO. In this study,
we analysed the DEGs in orbital adipose/connective tissue from TAO patients and controls.
The symptoms of TAO are mainly caused by the inflammation in the orbital connective
tissue, an increase in orbital volume due to enhanced adipogenesis and overproduction of
glycosaminoglycans, and fibrosis of the extraocular muscles (Kahaly et al., 1992).

It has been reported that the inflammatory levels significantly upregulated in the adipose
tissue and muscle of TAO patients (Carroll et al., 2013; Natesha et al., 1992; Khong et al.,
2015). Huang et al. (2022) demonstrated that endoplasmic reticulum stress initiated by
cholesterol metabolism may provoke adipose inflammation in TAO. Adipocyte-derived
CP and AGT play a critical role in adipogenesis as well as inflammation (Carroll et al., 2013;
Bednarek, Wysocki & Sowinski, 2004). Consistent with previous studies, we found elevated
levels of CP and ATG in the adipose tissue and muscle of TAO patients. Existing data show
that SERPINA3, an acute phase response protein, is involved in the pathogenesis of acute
anterior uveitis, chronic obstructive pulmonary disease, Parkinson’s disease, Alzheimer’s
disease, and coronary artery disease (Eidet et al., 2021; Li et al., 2021; Sánchez-Navarro et
al., 2021). There is also literature supporting that SERPINA3 can be expressed to promote
cell proliferation, migration, and expression of inflammatory cytokines by NF-κB signaling
pathways (Liu et al., 2022). Consistently, SERPINA3 is also upregulated in both adipose
tissue and muscle in TAO. Our research also combined RNA sequencing analysis with
multiple validation experiments including qRT-PCR, H&E, immunohistochemistry and
immunofluorescence analysis. H&E staining, CD45 and ICAM1 immunohistochemistry
staining, and F4/80 immunofluorescence staining results showed the inflammatory
responses potently increased in the orbital adipose/connective tissues of TAO patients,
compared with the control groups (Figs. 6A and 6B, Figs. S3A and S3B).

In our study, RSPO1 was downregulated more significantly in orbital connective tissue
than that in orbital fatty tissue. We speculated that this may be related to the fibrosis of the
extraocular muscles. There is literature indicating that in other organs, such as the kidney,
RSPO1 plays an important role in fibrogenesis, which may explain why the downward
trend of RSPO1 is more pronounced in muscles (Su et al., 2021).

In our study, the results of GO molecular function analysis indicated that these DEGs
were enriched in several terms, such as glycosaminoglycan binding, and extracellularmatrix
structural constituent. Wu et al. (2020), Wu et al. (2021a) and Wu et al. (2021b) indicated
that several extracellular matrix related mRNAs (such as COL12A1, COL6A3) significantly
reduced in TAO samples and closely related to the abnormal deposition of the extracellular
matrix in orbital fat tissues in TAO patients (Liang et al., 2021). Additionally, GSEA and
KEGG pathway enrichment analyses of the DEGs also showed marked enrichment of
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the NF-κB pathway, ECM-receptor interaction, cell adhesion molecules, and PI3K-Akt
signaling pathway. During the pathogenesis of TAO, orbital fibroblasts are thought to
interact with immunocompetent cells recruited to the orbit (Heufelder, 1995). They produce
high amounts of glycosaminoglycans, particularly hyaluronan, which absorb water and lead
to an increase inmatrix volume (Smith et al., 1991). It has been documented previously that
CD40–CD40 ligand interactions have important roles in the activation of human orbital
fibroblasts (Cao et al., 1998). CD40L-provoked signaling pathways, including theNF-kappa
B pathway and PI3K-Akt signaling pathway, result in the high expression of a variety of
cytokines, such as VCAM-1, E-selective protein, IL-6, and other cytokines, in orbital
fibroblasts of patients with TAO (Gillespie et al., 2012; Hwang et al., 2009). Fibroblasts are
reported to be responsible for the secretion of collagen, release of extracellular matrix,
and participation in inflammatory responses (Smith & Janssen, 2019). This functional
characterization is further substantiated by α-SMA and FN immunofluorescent staining
results (Figs. S3C and S3D).

As a previous study reported, there may exist alterations in the composition of the
intestinal microbiota among patients, who suffered from severe and active TAO (Mori,
Nakagawa & Ozaki, 2012). We found that pathway analyses highlighted the enrichment of
highly expressed genes in the intestinal immune network for IgA production. In a separate
investigation, Shi et al. (2019) found that two gut microbiotas (s_Prevotella_copri and
f_Prevotellaceae) showed a significant correlation with TRAb. This suggests that intestinal
symbiotic microorganisms may influence extraintestinal immune responses through the
mucosal immune response induced by IgA antibodies, and they may render tolerance
to self-antigens incompetent, such as TRAb, which can stimulate orbital and periorbital
tissues and constitutes an independent risk factor for GO (Pianta et al., 2017; Seo & Sanchez
Robledo 2018).

As with all transcriptomic analyses, there are limitations to this study. With the use
of human tissue, there is heterogeneity in the patient’s genetic background and other
characteristics, such as age, gender, and CAS, which likely affect the disease. As such,
we removed the influence of smoking on our results as much as possible, which has a
strong and consistent association with TAO (Bartalena et al., 1989). One notable limitation
lies in the relatively small sample size employed in our study, which consequently limits
the statistical power. Additionally, while we selected genes that we believed were most
important to the pathogenic mechanisms of TAO, it is imperative to acknowledge the
presence of numerous other DEGs and pathways presented in these results that could be
important and contribute to TAO.

CONCLUSIONS
Our transcriptome analysis identified 183 DEGs between TAOs and normal orbit tissues.
Through an integrated bioinformatics analysis and verification of the DEGs, we identified
several key candidate genes and enriched pathways that may aid the search for biomarkers

Wang et al. (2023), PeerJ, DOI 10.7717/peerj.16569 16/22

https://peerj.com
http://dx.doi.org/10.7717/peerj.16569#supp-1
http://dx.doi.org/10.7717/peerj.16569#supp-1
http://dx.doi.org/10.7717/peerj.16569


and therapeutic targets of TAO. However, further molecular biology experiments are
required to validate the findings of this study.
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