Examining the spatial ecology of Giant Sea Bass (Stereolepis gigas) in a southern California kelp forest in relation to existing spatial management measures using acoustic telemetry. Kayla M. Blincow^{1,2}, Jack T. Elstner¹, Noah Ben-Aderet^{3,1}, Lyall F. Bellquist^{4,1}, Andrew P. Nosal^{1,5}, Brice X. Semmens¹ ¹Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, USA ²Center for Marine and Environmental Studies, University of the Virgin Islands, St. Thomas, ³California Natural Resources Agency, Ocean Protection Council, Sacramento, CA, USA ⁴The Nature Conservancy, San Diego, CA, USA ⁵Department of Biology, Point Loma Nazarene University, San Diego, CA, USA Corresponding Author: Kayla M. Blincow^{1,2} #2 John Brewers Bay, St. Thomas, USVI, 00802, USA Email address: kaylamblincow@gmail.com

Comentado [AAP1]: I suggest the following title for consistency:

Spatial ecology of the Giant Sea Bass, *Stereolepis gigas*, in a kelp forest is southern California as determined by acoustic telemetry

Abstract

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61 62 63

64

65

66

67

The fishery history of the Giant Sea Bass, Stereolepis gigas (Telostei: Polyprionidae), is closely linked to its spatial ecology. Overharvest is directly associated with formation of spatially distinct spawning aggregations during summer, while its subsequent recovery is hypothesized to be the result of spatially explicit gear restrictions. Understanding its spatial ecology is a key part of efforts to assess contemporary threats, such as commercial harvest and incidental catch. In this study, we used acoustic telemetry to characterize its space use in the La Jolla kelp forest using an acoustic array in two marine protected areas (MPAs) and in heavily trafficked recreational fishing grounds. Five of the seven fish we tagged remained in the La Jolla array for at least six months, Two fish were resident across multiple years, with one fish consistently detected for four years and the other fish detected in the broader network of regional acoustic receivers moving north approximately 8 km to Del Mar. Most tagged fish had home ranges and core use areas indicating they spend considerable time outside MPAs, particularly in areas with high recreational fishing, During spawning season, we detected fish less frequently in the La Jolla array and showed higher movement rates. While the current MPA network in La Jolla by no means offers complete protection to this fish, it does appear to support long-term persistence of some individuals in a region of exceptionally high recreational fishing pressure.

Eliminado: (...tereolepis gigas (Telostei: Polyprionidae),)...fisheries ...s closely linked to their ...ts spatial ecology. O. Their o...erharvest is directly associated with their ...ormation of spatially distinct spawning aggregations during summer months... while itstheir...subsequent recovery is hypothesized to be the result of spatially -...xplicit gear restrictions. It thus stands to reason that... u...derstanding its the ...patial ecology of Giant Sea Bass ...s a key part of efforts to assess contemporar threats, such as commercial harvest and incidental catch by recreational fisheries... In this study, we used acoustic telemetry to characterize its Giant Sea Bass ...pace use in the La Jolla kelp forest using an acoustic array in that encompasses ...wo marine protected areas (MPAs) and in heavily trafficked recreational fishing grounds. Five of the seven fish we tagged remained in the La Jolla array for at least six months following tagging... Two fish were resident across multiple years, with one fish being detected consistently detected for a period of ...our years and the other . Only one tagged fish w...ishas...detected in the broader network of regional acoustic receivers,...moving north approximately 8 km to Del Mar. Most The majority of tagged fish had home ranges and core use areas that indicatinged...they spend considerable time outside of MPAs, particularly in areas with high recreational fishing activity... During the ...pawning season, we tagged fish were detected fish less frequently in the La Jolla array,...and showedhad...higher movement rates when detected... While the current MPA network in La Jolla by no means offers complete protection to Giant Sea Bass [1]

Con formato: Justificado

Introduction

The Giant Sea Bass, Stereolepis gigas (Teleostei: Polyprionidae) is one of the largest sabout 2 m in length) bony fish in kelp forests of the southern coasts of California and the Baja

California Peninsula (Hawk & Allen, 2014). Giant Sea Bass is a high-level predator that was once plentiful in coastal rocky reef habitats south of Point Conception, California (Dayton et al., 1998; Domeier, 2001; Erauskin-Extramiana et al., 2017; Blincow et al., 2022). Historically, it

Eliminado: Reaching over two meters in length, ...he Giant Sea Bass, Stereolepis gigas (Teleostei: Polyprionidae) is, are one of the largest bony ...about 2 m in length) bony fish found ...n the ...elp forests of the southern coasts of and the the

... [3]

Eliminado: They are...iant Sea Bass is a high-level predators...that wasere

Eliminado: Giant Sea Bass

149 was a sought-after fishery species, commercially and recreationally, which contributed to its near Eliminado: ere Eliminado: ies population_extirpation from southern California waters (Domeier, 2001; Baldwin & Keiser, 150 Eliminado: both Eliminado: their 151 2008; Allen, 2017). One contributing factor of its decline is formation of spawning aggregations Eliminado: near (Allen, 2017; Erauskin-Extramiana et al., 2017). This reproductive strategy confers the fish to be Eliminado: to the 152 153 an easy target once fishers identify an aggregation because many fish seasonally gather in the Eliminado: their Eliminado: Species with this 154 same geographic area (Erauskin-Extramiana et al., 2017). At the height of its commercial and Eliminado: are o Eliminado: fte 155 recreational importance in the US, fishers heavily targeted its spawning aggregations during Eliminado: to Eliminado: is identified, 156 summer (Allen, 2017). The Red List of Threatened Species, of the International Union for Eliminado: individuals 157 Conservation of Nature (IUCN), recognized the Giant Sea Bass, as Critically Endangered by Eliminado: Giant Sea Bass Eliminado: fisheries 158 (Cornish, 2004). Eliminado: in southern California Eliminado: months Recent reports indicate its population began to recover in the US (Pondella & Allen, 2008; 159 Eliminado: Today, Eliminado: 160 Allen & Andrews, 2012; House, Clark & Allen, 2016). In response to population declines in the Eliminado: are listed 161 early to mid-1900s, the state of California implemented regulations in 1981 that essentially 162 closed all US Giant Sea Bass fisheries (FGC §8380, Title 14, CCR, §28.10). Currently, the Eliminado: that Giant Sea Bass are Eliminado: inning to 163 government in California has prohibited all recreational take of Giant Sea Bass and commercial take in the state is limited to one incidentally caught fish per trip for gill net and trammel net 164 Eliminado: is prohibited in California, Eliminado: allow 165 fisheries (Domeier, 2001; Baldwin & Keiser, 2008), Reports of population recovery attribute the Eliminado: for California commercial set 166 return to species-specific state fishing regulations, as well as the banning of the nearshore gill net fishery in 1994, which many believe reduced incidental landings (Pondella & Allen, 2008; Allen 167 Eliminado: These reports 168 & Andrews, 2012; House, Clark & Allen, 2016; Guerra et al., 2018). Eliminado: the 169 While reports of <u>its</u> recovery in US are encouraging, <u>the fish</u> still experiences <u>removals</u> Eliminado: of Giant Sea Bass Eliminado: waters 170 through the Mexican fishery, allowable commercial catch in the US, and incidental catch by US Eliminado: the species Eliminado: fisheries take 171 recreational fisheries. Recreational fishing of Giant Sea Bass in Mexico is limited to landing one Eliminado: , including by Eliminado:

Eliminado: of Giant Sea Bass populations Eliminado: the International Union for Conservation of Nature (IUCN) Red List of Threatened Species Eliminado: regulations in California prohibit Eliminado: . Recent reports indicate that Giant Sea Bass are beginning to recover in the US (Pondella & Allen, 2008; Allen & Andrews, 2012; House, Clark & Allen, 2016) Eliminado: of Giant Sea Bass to California waters

fish per day (Ramírez-Valdez et al., 2021); however, there are currently no regulations on commercial Giant Sea Bass fisheries in the Mexican waters (Ramírez-Valdez et al., 2021). It is difficult to gather reliable data on the status of the Giant Sea Bass fishery in Mexico because much of the catch is artisanal, often reported based on coarse regional areas or in multi-specific groupings (Erauskin-Extramiana et al., 2017; Ramírez-Valdez et al., 2021). Fish production and consumptive value of Giant Sea Bass in Mexico is 19 times and 3.5 times greater than in the US, respectively (Ramírez-Valdez et al., 2021). If Giant Sea Bass travel between US and Mexican waters, the ongoing Mexican fisheries could be affecting its populations managed by US agencies.

Fishing in the US could also be mediating its continued recovery. From 2000 to 2020, commercial fishers in the US landed an average of 2.76 metric tons of Giant Sea Bass per year (calculated from Pacific Fisheries Information Network (PacFIN) Commercial Landed Catch Species Report; www.psmfc.org). While this is much less than the landings reported prior to implementation of fishing regulations in California, it is still a large number of fish when considering this species' history of overfishing. Recreationally, regulations limit Giant Sea Bass landings; however, a portion of individuals are caught incidentally and released. While recreational fishers are supposed to ensure the survival of incidentally caught Giant Sea Bass, it can be difficult to release fish of their size without any barotrauma, especially if captured from larger vessels with raised decks (Parker et al., 2006). If not handled properly, barotrauma can result in fatality of the fish (Parker et al., 2006; Jarvis & Lowe, 2008).

Decline and subsequent rebound of its populations in are linked to a complex history of spatial resource use and spatial management. From fishers, actively targeting spawning aggregations (Allen, 2017; Erauskin-Extramiana et al., 2017), to the apparent positive response

Eliminado: .

Eliminado: T

Eliminado: o

Eliminado: Mexican

Eliminado: by

Eliminado: fisheries

Eliminado: However, o

Eliminado: One study estimated that the

Eliminado: are

Eliminado: are

Eliminado: ing

Eliminado: impactin

Eliminado: g Giant Sea Bass

Eliminado: the
Eliminado: of this species

Eliminado: efficiently

Eliminado: activities

Eliminado: The

Eliminado: de

Eliminado: Giant Sea Bass

Eliminado: US waters

Eliminado: Eliminado: can be

Eliminado: ,

of US Giant Sea Bass populations to spatially explicit regulations limiting fishing gear types (Pondella & Allen, 2008; House, Clark & Allen, 2016), the space appears to be an important consideration for conservation, Acquiring a better understanding of how the fish uses space can Eliminado: when it comes to the Eliminado: of this help determine the effectiveness of current management strategies and better understand the risks Eliminado: e Eliminado: species posed by contemporary fishing. For example, spatial management initiatives such as the Eliminado: Gaining Eliminado: species California Marine Protected Area network, while not explicitly directed at conserving Giant Sea Eliminado: activity Bass, might provide benefits by protecting important habitat or providing refuge from fisheries. Eliminado: to the species The ongoing recovery of this fish has allowed researchers to consider its spatial ecology. As Eliminado: Giant Sea Bass in southern California Eliminado: begin to ask and answer questions about the part of a larger regional multi-species, mark-recapture study, Hanan and Curry (2012) recaptured Eliminado: species Eliminado: researchers two out of 14 tagged individuals, 245 and 1240 days post-tagging, one within 1 to 5 km and the Eliminado: Giant Sea Bass other 5 to 20 km from the tagging locations. While only constituting data on two fish, Hanan and Curry (2012) found Giant Sea Bass showed some level of site fidelity. This finding is supported Eliminado: this study suggests that Eliminado: also by more recent research tracking this fish on Santa Barbara Island, California where 12 Eliminado: Giant Sea Bass Eliminado: that found when acoustically tagged individuals were queried across regional acoustic telemetry databases, they were detected solely on receivers stationed around the island, sometimes leaving the array but returning during spawning season (Spector et al., 2022). Clevenstine and Lowe (2021) used external acoustic tagging to investigate its spawning aggregation site fidelity on Santa Catalina Eliminado: of Giant Sea Bass Island, California, and found tagged individuals resided at suspected spawning aggregation sites Eliminado: . They Eliminado: that during the summer spawning season. About a third of the individuals tagged returned to the same Eliminado: tended to Eliminado: , and a spawning aggregation site in the subsequent year (Clevenstine & Lowe, 2021). However, they found that while some individuals remained on the island year-round, others traveled to other Eliminado: also islands in the Channel Islands or the mainland coast of California (Burns et al., 2020;

Clevenstine & Lowe, 2021). These excursions are a departure from the previous notion of Giant

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

Sea Bass having limited home ranges (Cornish, 2004), and suggest that they can travel long distances.

In our study, we used acoustic tagging to characterize the spatial ecology of the Giant Sea

Bass over a longer time scale than previously studied (> three years) focusing on their movement
in the La Jolla kelp forest, which is one of the best areas for divers to observe adult and youngof-the-year Giant Sea Bass (Allen, Benseman & Couffer, 2019). The kelp forest overlaps with
two separate no-take marine protected areas (MPAs) as well as one of the most intensely
recreationally fished areas in the San Diego region (Parnell et al., 2010). Our objectives were to
(1) determine whether tagged fish are resident to La Jolla, (2) characterize the seasonality of
space use, and (3) investigate how the movement of fish relates to its spatial management and
contemporary fishery-related threats

Materials & Methods

Study Area

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

La Jolla kelp forest (~8.25 km²) is the second largest kelp forest in California (Parnell et al., 2005, 2006), and its environment is marked by hard bottom, with channels of sand and cobble interspersed throughout. On the northern edge, La Jolla kelp forest is bounded by a submerged canyon with a sandy shelf, and on the western and southern edges is bounded by sandy bottom habitats (Parnell et al., 2006). In this area, there are two no-take marine reserves: Matlahuayl State Marine Reserve and South La Jolla State Marine Reserve. In addition, there are two conservation areas, San Diego-Scripps Coastal Marine Conservation Area and South La Jolla State Marine Conservation Area. These areas allow limited recreational and commercial fishing. (Figure 1). The region between these reserves is an important fishing ground for commercial sea urchin and spiny lobster, for recreational anglers from private vessels with the San Diego

Eliminado: this

Eliminado: data

Eliminado: Giant Sea Bass spatial ecology

Eliminado: individuals

Eliminado: . La Jolla, California is home to at least one historic Giant Sea Bass spawning aggregation site and a vibrant kelp forest community. It

Eliminado: also known as

Eliminado: goals

Eliminado: individuals

Eliminado: :

Eliminado: tagged Giant Sea Bass

Eliminado: ;
Eliminado: tagged
Eliminado: individuals

Eliminado: interact
Eliminado: with

Comentado [AAP2]: You cannot quote here if it is an

objective of you

Eliminado: (Blincow 2021)

Eliminado: We conducted this study in the

Eliminado: L
Eliminado: , which at

Eliminado: i

Eliminado: . La Jolla's kelp forest

Eliminado: It

Eliminado: on the northern edge

Eliminado: and bounded

Eliminado: on the western and southern edges

Eliminado: T

Eliminado: in the area,

Eliminado: as well as

Eliminado: , which

Eliminado: take
Eliminado: constitutes

Eliminado: fishers as well as

Eliminado: and

Commercial Passenger Fishing Vessel fleet, which charters vessels with groups fishing (usually ~30-50 passengers) (Parnell et al., 2010). While our analysis focuses on the La Jolla region, we also shared our tag information with the network of researchers engaged in monitoring for acoustic tags in the broader region of southern California and Baja California, Mexico and report those results as well (Figure 1).

Acoustic Tagging

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

From August 2018 to October 2019, we tagged seven Giant Sea Bass in the La Jolla Kelp Forest (Figure 1) using Vemco V16-4H acoustic tags (randomized 30 to 120 s reporting interval and 1400 d battery life). Tags provide spatial and temporal presence information on individual fish. We monitored all tags from their date of release (Table 1) to 21 July 2022. We intended to have a larger fish sample size, but individuals were limited due to their rarity and our decision to capture fish at <20m to reduce the negative impacts of barotrauma. Ultimately, we only captured 7 fish during 67 sampling days.

With the exception of one individual, we captured fish using hand lines with 9/0 or 10/0 circle hooks with Pacific Chub Mackerel (Scomber japonicus) as bait. We chummed the water using a combination of Shakin Bait (an Anchovy (Engraulis mordax) and Sardine (Sardinops sagax) based chum oil) and a frozen mixture of roughly chopped and/or blended Pacific Chub Mackerel, Pacific Jack Mackerel (Trachurus symmetricus), and/or Pacific Sardines. We captured fish at depths < 20 m and brought them to the surface at a moderate speed to minimize barotrauma while not exhausting the fish. To avoid barotrauma in fish, we reduced the time each fish spent at surface. The only fish not captured with hand lines was caught with gillnet during Hubbs Sea World Research Institute's (HSWRI) White Seabass (Atractoscion nobilis) survey by

Eliminado: (CPFV) Eliminado: are Eliminado: ed Eliminado: that Eliminado: take

Eliminado: W Eliminado: 7

Eliminado: from August 2018 to October 2019

Eliminado: with a Eliminado: estimated

Eliminado: When detected by an acoustic receiver,

Eliminado: these t Eliminado: by the Eliminado: of the species

Eliminado: individuals on 7 Eliminado: out of

Eliminado: all the

Eliminado: tagged in this study using

Eliminado: equipped Eliminado: and whole dead

Eliminado: for

Eliminado: In addition to the baited line,

Eliminado: \boldsymbol{w} Eliminado: also Eliminado: targeted

Comentado [AAP3]: This was mentioned earlier.

Eliminado: further address the potential negative effects of

Eliminado: made every effort to

Eliminado: amount of

Eliminado: the

Eliminado: outsta

Eliminado: nding individual that was

Eliminado: using Eliminado: gill net

Eliminado: conducted under contract for

the California Department of Fish and Wildlife (CDFW; Permit: P1770011) and approved by the HSWRI Institutional Animal Care and Use Committee (IACUC) (Protocol APF #2016-09). After <u>catch</u> in the gill net, we assessed <u>if was in good condition</u> and transferred it to a holding **Eliminado:** being pulled up...atch in the gill net, we assessed if was this individual, found it to be ...n good condition,...and transferred it to a holding tank before tank before tagging, beginning ...agging procedures (described below) [4] We positioned captured fish with hand lines at surface in vinyl sling mounted on the side of Eliminado: For all the fish c...ptured fish with using ...and lines, once a...t the ...urface we positioned them inside our vessel to restrict movement while in the water. For fish captured during the HSWRI survey Eliminado: which Eliminado: that ...o restricted their...movement while (Tag 1), we kept it in a large oxygenated holding tank before and after tagging. While we keeping them ...n the water. For the [6] Eliminado: n preferred to keep fish submerged during tagging, we could not hold it steady at the surface in the Eliminado: procedures... While we would have ...referred to to ...eep the ...ish submerged during surgical ...agging, we could did ...ot have the means to ...old it steady at the holding tank or alongside the boat due to fish small size. We removed fish from the holding tank surface inof...the holding tank or alongside the boat due to it...ishs sm...small size. WAs a result, w .. [7] and placed it in a vinyl cradle on the deck of the vessel during surgical tagging. We covered the Eliminado: ,...removing ...emoved it . [8] Eliminado: the fish in a wet towel and used a seawater hose to maintain water flow over its gills for the short Eliminado: placing ...laced it in a vinyl cradle on the deck of the vessel during surgical tagging. We covered the fish in a wet towel and used a seawater hose to maintain water flow period spent outside of the holding tank (< 2 mins). We implanted acoustic tags in fish's gut over its gills for the short period spent outside of the holding tank (< 2 mins). ... [9] cavity via incision off-center of the midline and posterior to the pelvic girdle following Eliminado: to each...fish's gut cavity via an ...ncision offcenter of the midline and posterior to the pelvic girdle (Lowerre-Barbieri et al. (2014) and Blincow et al. (2020). We used sterile antibiotic infused, following in accordance with methods outlined in previous telemetry studies ... [10] dissolvable cutting sutures (PDS II violet 27" CP-1) to close the incision. We measured fish for Eliminado: ,...(...014) and ; ...lincow et al. (, ...020). We used sterile antibiotic infused, dissolvable cutting sutures (PDS II violet 27" CP-1) to close the incision. We then total length (cm), standard length (cm), and head length (cm), and took a small fin clip (1-2 cm) measured each ...ish for total length (cm), standard length (cm), and head length (cm), and . We also ... [11] from the anal fin for later genetic and stable isotope analyses as part of separate studies that are not reported here. We secured an external Floy tag (BFIM-96) at the base of the dorsal fin as a Comentado [AAP4]: Remove since it is not part of this work. visual identifier of surgically tagged fish. Later, we positioned the fish to recover in a dorsal Eliminado: Finally,...ater, we positioned the fish to recover in a dorsal side-up position to recover ...longside the vessel (or within the holding tank for the HSWRI fish) before being side-up position alongside the vessel (or within the holding tank for the HSWRI fish) before r...eleased... If In instances where ...ish had swim bladders inflated swim bladders . [12] release, If fish had swim bladders inflated, we released them at depth using a descending device (SeaQualizer). CDFW permitted our activities (Permit #S-192900002-19290-001), and the Eliminado: i University of California, San Diego IACUC approved our tagging protocols (Protocol #S12116).

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

537 538 539 We used a stationary receiver array, comprised 29 Vemco VR2W single channel passive 540 541 542 543 544 545 546 547 548 549 550 551 552 553

554

555

556

557

558

559

Acoustic Receiver Arrays

autonomous data-loggers, deployed in the La Jolla kelp forest to track tagged fish movements, Each VR2W receiver logged date, time, and individual ID. Depth range of receivers was 11.27 to 24.69 m (19.81 m \pm 3.04; Mean \pm SD). In addition to the 29 receivers moored in the La Jolla Kelp Forest, we had two receivers moored to the north at Torrey Pines (VR2W) and Del Mar (VR2C) (Figure 1). The Torrey Pines receiver was deployed adjacent to a ~1 acre artificial reef habitat constructed by CDFW in 1975 of quarry rock and concrete dock floats at a depth of ~13m as part of their Nearshore Sportfish Habitat Enhancement Program (Lewis and McKee 1989). The Del Mar receiver was placed at 13 m depth on a multidisciplinary surface mooring deployed on the shelf break at 100 m just offshore from rocky reef, kelp forest habitat along the coast (Send and Nam 2012; Navarro et al. 2018). We verified detections by other regional acoustic receiver arrays ranging from Isla de Cedros, Baja California, Mexico to Santa Barbara, California, USA (Figure 1). These arrays were active throughout the study period.

We performed a detection range analysis on six of the 29 receivers in the La Jolla array (Blincow et al., 2020) (Figure 1). The six receivers chosen spanned a representative depth gradient for the array, ranging from 15.54 to 24.38 m (20.12 m \pm 3.04). We performed drifts starting at the coordinates of a given receiver mooring while towing a Vemco-coded transmitter tag (~ 1 to 2 m depth). We simultaneously recorded all acoustic tag transmissions (pings) during the drift using a Vemco VR100 mobile receiver unit deployed off the vessel in close proximity to the tag and compared detections with those recorded on the moored VR2W receivers. Using the

coordinates for each ping detection on the VR100, we calculated the distance of each ping from

Eliminado: over time

Eliminado: This array comprised 29 Vemco VR2W single channel passive autonomous data-loggers

Eliminado: when a tag came within the detection range of the receiver

Eliminado: The d Eliminado: 2

Con formato: Fuente: Sin Negrita

Con formato: Fuente: Sin Negrita

Con formato: Fuente: Sin Negrita

Eliminado: also checked for Eliminado: of our tagged fish

Con formato: Fuente: Negrita

Eliminado: our

Eliminado: 6

Eliminado: 31 Eliminado: 6

Eliminado:

Eliminado: . We

Eliminado: the VR100

Eliminado: e

Eliminado: detections

the VR2W receiver mooring. We compiled data for all receivers that detected the towed tag and analyzed them using a generalized linear mixed-effects model (glmm) with a logit link and a random slope effect of receiver to determine the detection probability of individual pings (binary response) and distance of the tag from the receiver (continuous covariate). With the exception of our movement rate analysis (described below), we assumed the detection range of all of our receivers to be the distance at which our model estimated we could detect tag pings with a 50% probability. We note that detection ranges can vary depending on environmental factors, such as diurnal noise patterns and current variability (Mathies et al., 2014; Huveneers et al., 2015); however, we chose to make the simplifying assumption of a relatively constant detection range over time for all our receivers.

Eliminado: where it was detected

Eliminado: these

Eliminado: the

Eliminado: of

Data Analysis

Prior to analysis, we filtered data to remove detections on the same day as when we tagged the fish to avoid any behavior associated with recovery from tagging influencing our results (Farmer & Ault, 2011). To avoid spurious detections from code collisions, we removed any detections from the same tag on a single receiver across time intervals that were less than the minimum time it takes the tag to transmit a signal. We performed all analyses using R statistical software, version 4.1.1 (R Core Team, 2019). We implemented our models using a maximum likelihood approach with the 'lme4' package (Bates et al., 2015b) and estimated associated p values using the 'lmerTest' package, which uses the Satterthwaite approximation of degrees of freedom method (Kuznetsova, Brockhoff & Christensen, 2017). This method estimates the denominator degrees of freedom for F statistics or degrees of freedom for t statistics, depending on the model structure, to evaluate significance and produces more conservative p-value

Eliminado: our

Eliminado: that occurred

Eliminado: that can result

Eliminado: that occurred

Eliminado: for

Eliminado: has been shown to

estimates with lower levels of Type 1 error rates when compared to other mixed-effect model p-value estimation methods, such as likelihood ratio tests (Luke, 2017).

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630 631

632

633

We calculated the number of days each fish was at liberty by determining the number of days between the day after the release of fish and the end of the study (21 July 2022). We also calculated the number of days each fish was at liberty within the La Jolla array by determining the number of days between the first and last detection of the tag on La Jolla array receivers after data filtering. We calculated an array residency index, or the residency of each tagged fish within the La Jolla array, by dividing the number of days each fish detected within the array by the number of days at liberty within the array. We calculated residency index, or residency of each fish within the La Jolla array across the study, by dividing the number of days each fish was detected within the array by the total number of days at liberty across the study. One of our fish left the La Jolla array and was detected consistently at the Del Mar receiver for a period of months.

We summarized fish movements in La Jolla by calculating their activity spaces within the La Jolla array. First, we generated position estimates by calculating centers of activity (COAs), which are weighted average positions of each fish based on the number of detections present on each receiver across 30 min intervals (Simpfendorfer, Heupel & Hueter, 2002). We then used these COAs to calculate the 50 and 95% kernel utilization distributions (KUD) of each fish across spawning and non-spawning seasons in the La Jolla array using the 'adehabitatHR' package in R (Calenge 2006). We used the ad hoc method for determining the smoothing parameter for KUD calculations, which assumes the distribution is bivariate normal (Calenge 2006). We limited our KUD analyses to the La Jolla array due to our interest in investigating

interactions between Giant Sea Bass resident to La Jolla with local spatial management. There

Eliminado: across the study period

Eliminado: the

Eliminado: given their presence there

Eliminado: was

Eliminado: between the first and last detection of each fish within the La Lalle owner.

within the La Jolla array

Eliminado: they were

Eliminado: the

Eliminado: tagged

Eliminado: La Jolla

Eliminado: entire

Eliminado: period

Eliminado: between the day after the release of the tagged

fish and the end of the study (21 July 2022)

Eliminado: they were

Eliminado: period

Eliminado: the

Eliminado: of our fish

Eliminado: utilization

was only one fish detected outside of the La Jolla array, and it appeared to migrate from La Jolla to Del Mar receiver (fish spent nine months in La Jolla and traveled to Del Mar and never returned; Figure 2). If this fish had made regular excursions to Del Mar and back to La Jolla, we would have considered the full range of its movements in the KUD analysis. The 50% KUD is representative of the core use area of the fish, while the 95% KUD is representative of the home range of each fish within the La Jolla array. There was one instance in which the 95% KUD overlapped with land along the coast. In this case, we removed the land portion of the KUD. We used the resulting KUD estimates to calculate the area of overlap between La Jolla MPAs with core use areas and home ranges.

To investigate seasonal and diel differences in the activity of our fish in La Jolla, we calculated hourly movement rates, which we defined as the distance moved during one hour intervals. We did this by estimating COAs as described above across 10-minute intervals. Since we are unable to measure movement rates when the fish are outside of the detection range of the array, we filtered for intervals consisting of six consecutive COAs. We summed the distance between COAs in the resulting hour intervals to generate hourly movement rates when fish were occupying the La Jolla array. The movement rate data were zero-inflated, so we analyzed them using two separate models. First, we converted the movement rates to a binary variable, with 0 being a zero movement rate and 1 being a non-zero movement rate. Using this information, we constructed a binomial glmm (logit link function) to calculate the probability of a positive movement rate given the explanatory variables of diel period (dawn, day, dusk, or night), lunar phase (waxing, full, waning, new), and month. Second, we filtered our data for only non-zero movement rates and used a linear mixed-effects model to determine the effect of the explanatory

variables diel period, lunar phase, and month. In accordance with suggested best practices for

Eliminado: e
Eliminado: the vicinity of the
Eliminado: the

Eliminado:

Eliminado: then

Eliminado: 6

Eliminado: and

mixed effects modeling that recommend fitting the most complex mixed effects structure allowed by your data (Bates et al., 2015a; Harrison et al., 2018), we first attempted to fit models with both random slope and intercept terms; however, we were unable to reach model convergence. As a result, both of our models included only a random intercept effect of individual, the most complex model structure allowed by our data. We calculated the associated pseudo-R² values (marginal and conditional) using the delta method via the 'MuMIn' package (Nakagawa, Johnson & Schielzeth, 2017; Barton, 2022).

692693 Results

685

686 687

688

689

690

691

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

We tagged seven fish (126.14 cm TL ± 30.25; Mean ± SD, range 77 cm to 163 cm TL)

(Table 1). Based on their sizes and available age-growth relationships for the species (Hawk and Allen 2014), all the fish we tagged were likely sexually mature; however, our smallest individual fell within the range of uncertainty regarding age at maturity for the species (Tag 1 estimated age: 9 years, species reported age at maturity: 7 to 13 years; Hawk and Allen 2014). The number of days each tagged fish was at liberty throughout the study ranged from 1000 to 1437 (1202.43 ± 169.68) (Table 1).

The number of days at liberty for each fish within the La Jolla array, ranged from 0 to 1426 (435.29 ± 524.09) and the number of receivers each fish was detected at ranged from 0 to 25 (13.86 ± 9.99) (Table 1). The La Jolla array residency index ranged from 0 to 1 (0.64 ± 0.38) while study residency index ranged from 0 to 0.571 (0.20 ± 0.20) (Table 1). Two fish (Tag Numbers 5 and 6) left the La Jolla array within two days of being tagged and did not return (Table 1). We removed these fish from subsequent analyses.

VR2W receivers in the La Jolla array detected on average tag pings with a 50% probability at 218.3 m (Figure 3). Receivers in sandy areas on the edges of the kelp forest had a larger

Eliminado: Based on our range analysis, we found that the VR2W receivers in the La Jolla array on average detect tag pings with a 50% probability at 218.3 m (Figure 3). When investigating receiver effects, we found that receivers that were in sandy areas on the edges of the kelp forest, forest tended to have a larger detection radius than receivers within the kelp forest. The largest distance of 50% detection probability calculated for an individual receiver was 283 m and was associated with a receiver moored at 24.38 m depth in the open sandy area between the edge of the submarine canyon and kelp forest on the northwest edge of the array. The lowest was 180 m and was associated with a receiver moored at 17.07 m depth in the kelp. The presence of kelp (or lack thereof) appeared to outweigh other factors that could potentially influence detection ranges, including presence of currents or depth.¶

Eliminado: 7

Eliminado: ranging in size total length from 77 cm to 163

cm

Comentado [AAP5]: You can never include quotes in Results section. These considerations have to be mentioned in Materials and methods.

Comentado [AAP6]: NO

Eliminado:

Eliminado: each fish was

Eliminado: detected

Eliminado: (after data filtering)

Eliminado: 83.86

Eliminado: 37

Eliminado: 59

Eliminado: 40

detection radius than receivers within the kelp forest. The largest distance of 50% detection probability calculated for an individual receiver was 283 m and was associated with a receiver moored at 24.38 m depth in the open sandy area between the edge of the submarine canyon and kelp forest on the northwest edge of the array. The lowest was 180 m and was associated with a receiver moored at 17.07 m depth in the kelp. The presence of kelp (or lack thereof) appeared to outweigh other factors that could potentially influence detection ranges, including presence of currents or depth.

Two fish (Tag Numbers 1 and 3) remained within the La Jolla array consistently throughout

Mexico regional arrays.

Two fish (Tag Numbers 1 and 3) remained within the La Jolla array consistently throughout their time at liberty, a period of 2.37 and 3.92 years respectively. Three fish (Tag Numbers 2, 4, and 7) left the array bounds after approximately nine, eight, and six months, respectively (Figure 4a). One of these three fish traveled to the Del Mar receiver (movement rate: ~0.45 m/s) and remained there consistently for approximately five months before leaving and returning again to Del Mar (Figure 2). The consistency of the detections was such that we initially considered that this was an incidence of mortality or tag expulsion near the receiver. After continued monitoring the variability in detections indicating departure from and return to the area led us to believe the fish was alive and just consistently occupying the area near the Del Mar receiver. Our fish were not detected at any other receivers from the broader southern California and Baja California,

We found that KUDs varied across fish, but that the area between the two MPAs was the most highly used area overall (Figure 4). During non-spawning season, the 95% KUDs for tagged fish had, on average, 32% overlap with local MPAs, while during spawning season this overlap grew slightly to 36%, with a larger proportion attributed to space use within the Matlahuayl State Marine Reserve (Figure 4). The core use areas (50% KUD) of all fish averaged

Comentado [AAP7]: This comment is more a Discussion than Result

Eliminado: ,

9% overlap with MPAs in non-spawning season and grew to 20% overlap during spawning season; this latter finding was <u>predominantly</u> driven by the fish with Tag Number 7 (Figure 4).

Based on our movement rate analysis, fish had a lower probability of non-zero movement rates during summer months, particularly June through September (Table 2, Figure 5b); however, given a positive movement rate, the predicted movement rates were highest in the months of May through July (Table 3, Figure 5e). These periods coincide with the recorded spawning months of Giant Sea Bass (May through October). We recorded fewer detections per hour as well (Figure 5a) and the probability of non-zero movement rates was highest during the day, though all diel periods had predicted probabilities of non-zero movement rates inclusive of confidence intervals that were greater than 35% (Table 2, Figure 5d). Given non-zero movement rates, the predicted movement rate was lowest during nighttime and higher across all other diel periods (Table 3, Figure 5f). The predicted movement rate did not differ between dawn, day, or dusk (Table 3, Figure 5f). We did not find a relationship between lunar phase with either the probability or rate of movement (Table 2-3). Both movement models had relatively low conditional R² values (binary movement: 0.141, non-zero movement: 0.051), suggesting that there is a large amount of variability in the data that is unaccounted for by the explanatory

Discussion

variables included in the models (Table 2-3).

Giant Sea Bass are an ecologically and culturally important species in southern California and Baja California, Mexico. Understanding their spatial ecology is a critical step in supporting their ongoing recovery. In particular, the lack of knowledge about the residency of individuals to certain areas, the seasonality of their movements, and their interaction with existing spatial

Eliminado: chiefly

Eliminado: t

Eliminado: n

Comentado [AAP8]: This is a comparisons, consequently it belongs to Discussion section.

Eliminado: tended to

Eliminado: across this time period

Eliminado: . We found that

Eliminado: night time

Eliminado: 38

management measures hinders our ability to understand the extent to which contemporary fishing activities are impacting populations within the lattice of spatial management.

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

Comentado [AAP9]: Remove this sentences.

We found Giant Sea Bass to be a long-term resident of the La Jolla kelp forest and showed the highest predicted movement rates during summer spawning months. We detected some fish more outside of the La Jolla array during this same time, which suggests a local spawning aggregation site exists outside the bounds of our array. While our study only recorded data based on five fish, it still offers valuable insights into the spatial ecology of this fish considering the time length we monitored individuals and the paucity of related scientific literature.

When fish were present in the La Jolla array, we detected them more often outside of the boundaries of local MPAs, in both spawning and non-spawning season, particularly in highly trafficked recreational fishing areas. While this could be an artifact of where we captured individuals (outside MPAs), it still indicates that Giant Sea Bass in La Jolla are at risk of the potential negative impacts of incidental recreational catch. This high site fidelity indicates that MPAs could be effective management tools for this species if positioned appropriately.

Our results suggest that fish in the La Jolla array occupied relatively small, well-defined areas. Fish did not frequently move enough across hour time periods to be detected on multiple receivers (as evidenced by the zero-inflation of our movement rate data). Even the fish that traveled to Del Mar, while being detected on multiple receivers spanning the full extent of the array during it's time in La Jolla, showed remarkably consistent detections (averaging over 60 detections per hour) at the Del Mar receiver for a period of five months. Furthermore, most of our tagged fish had the greatest detection rates on receivers near where they were captured. We conducted our tagging efforts outside of MPAs, thus most of our fish tended to be detected in areas outside of spatial protection. Somewhat counterintuitively, this trend of high site fidelity

Eliminado: While our study only gathered data on 5 individuals, it still offers valuable insight into the spatial ecology of this species, especially considering the length of time individuals were monitored and the paucity of published literature on this species in general. In this study, we

Eliminado: We found that some Giant Sea Bass appear to be long term residents of the La Jolla kelp forest. This high site fidelity indicates that MPAs could be effective management tools for this species if positioned appropriately., though there was variability in the residency among individuals. We also found that fFish had the highest predicted movement rates during summer spawning months and tended to spend more timebe detected more outside of the La Jolla array during this same time period, suggesting that a local spawning aggregation site exists outside the bounds of our arrav.. When fish were present in the La Jolla array, they tended to spend most of their time be detected more often outside of the boundaries of local MPAs, in both spawning and nonspawning season, particularly in highly trafficked recreational fishing areas. While this could be an artifact of where we captured individuals (outside MPAs), it still indicates that Giant Sea Bass in La Jolla are at risk of the potential negative impacts of incidental recreational catch.¶

Eliminado: while present

Eliminado: , individuals

Eliminado: tended to

Eliminado: y

Eliminado: We found that, overall, tagged f

Eliminado: frequently

844 across smaller scales suggests that spatial management such as MPAs could be an effective tool 845 for sheltering some individuals from fishing activity if their range is within the MPA; though 846 more study is warranted to confirm this notion given our small sample size. 847 Our finding of high site fidelity for most individuals agrees with previous studies on Giant Movido (inserción)[2] Eliminado: the findings of Sea Bass and similar species (Eklund & Schull, 2001; Hanan & Curry, 2012; Clua et al., 2015; 848 Spector et al., 2022). Goliath Grouper (Epinephelus itajara) and Giant Grouper (Epinephelus 849 Eliminado: Studies on similar large predatory species, 850 lanceolatus) also have shown site fidelity across years, in some cases with individuals being Eliminado: Eliminado: found 851 resighted in the same location up to four years after the initial record (Eklund & Schull, 2001; 852 Giglio, Adelir-Alves & Bertoncini, 2014; Clua et al., 2015). In La Jolla, it is possible the large 853 spatial extent of contiguous kelp forest habitat and the fish's ability to support an ample prey Eliminado: its resource contribute to high site fidelity observed (Parnell et al., 2006; Udy et al., 2019). If site 854 Eliminado: s Eliminado: the 855 fidelity is driven by the availability of resources, it is possible it will lower as Giant Sea Bass Eliminado: we Eliminado: among tagged Giant Sea Bass 856 populations continue to recover and intra-species competition for resources becomes more 857 influential (Atwell, O'Neal & Ketterson, 2011; Dmitrieva et al., 2016). 858 We did not observe long-distance movements in our study, but it is possible these events Eliminado: in our tag Eliminado: ged fish occurred and went undetected given the sparse regional receiver coverage. Most fish disappeared 859 Eliminado: y 860 from the La Jolla array prior to the end of tag battery life. This could be the result of either 861 mortality outside of the receiver array or relocation to other areas. For the latter scenario, with the exception of the fish that went to Del Mar, we cannot say how far they could have traveled. 862 Though we detected no fish on any of the regional receivers along the southern California coast 863 Eliminado: ne Eliminado: were detected 864 in the Channel Islands, or Baja California, Mexico, there is a chance fish that left the La Jolla Eliminado: that the tagged 865 array made long-distance excursions/relocations undetected. Previous studies have documented Eliminado: that went 866 such long-distance movements in tagged fish (both generally, and in the case of Giant Sea Bass).

For instance, one of the species' congeners in the Polyprionidae family, the Hāpuku (*Polyprionidae oxygeneios*), showed variable movement patterns during a multi-year mark-recapture study with some being recaptured close to 1400 km from their tagging location and others being recaptured at the same location as tagging (Beentjes & Francis, 1999). In another study, Giant Sea Bass tagged on Santa Catalina Island, California traveled long distances from the island following spawning season, traversing the San Pedro Channel to the mainland, or traveling to other islands in the area (Burns et al., 2020; Clevenstine & Lowe, 2021). Given these results from other studies, it is not out of the realm of possibility for individuals to travel from the San Diego region to areas where they are susceptible to either targeted or incidental commercial catch, such as Baja California, Mexico or outside of the 3-mile nearshore gill and trammel net ban. While we can't rule out such movements in our tagged fish, the relatively long residence of several individuals to La Jolla (3 of 7 fish detected in the region for ~2-4 years) suggests at least some Giant Sea Bass have strong site fidelity to a coastal region with intensive spatial fisheries restrictions.

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

We found that Giant Sea Bass tended to have a higher probability of movement during the day and that their movement patterns did not seem to be influence by lunar phase. Clevenstine and Lowe (2021) found something similar with this fish on Santa Catalina Island with longer distances traveled on average during the day and no effect of lunar phase on movement during spawning season. We agree in their assessment that a lack of influence of lunar phase could be the result of abundances being too low to support consistent aggregation behavior or alternatively the fish could be more akin to aggregation forming species that do not align their spawning with particular lunar phases, such as Gulf Grouper (Mycteroperca jordani) (Rowell et al. 2019, Clevenstine and Lowe 2021). We should note that our movement models indicated that

Movido hacia arriba[2]: Our finding of high site fidelity for most individuals agrees with the findings of previous studies on Giant Sea Bass and similar species (Eklund & Schull, 2001; Hanan & Curry, 2012; Clua et al., 2015; Spector et al., 2022). Studies on similar large predatory species, Goliath Grouper (Epinephelus itajara) and Giant Grouper (Epinephelus lanceolatus), also found site fidelity across years, in some cases with individuals being resighted in the same location up to four years after the initial record (Eklund & Schull, 2001; Giglio, Adelir-Alves & Bertoncini, 2014; Clua et al., 2015). In La Jolla, it is possible the large spatial extent of contiguous kelp forest habitat and its ability to support ample prey resources contribute to the high site fidelity we observed among tagged Giant Sea Bass (Parnell et al., 2006; Udy et al., 2019). If site fidelity is driven by the availability of resources, it is possible it will lower as Giant Sea Bass populations continue to recover and intra-species competition for resources becomes more influential (Atwell, O'Neal & Ketterson, 2011; Dmitrieva et al., 2016).

Eliminado: d
Eliminado: presente

Eliminado: d

Eliminado: results for Giant Sea Bass

Eliminado: , reporting

Eliminado: the

Eliminado: of Giant Sea B

Eliminado: ass

Eliminado: ,

Eliminado: a

Eliminado: , that Giant Sea Bass

Comentado [AAP10]: I urge to improve this idea

our explanatory variables did not account for much of the variability in our data. We suspect they would have higher explanatory power if we had a more expansive receiver array and could better resolve the finer-scale movement patterns of our tagged fish. More research into the periodicity of Giant Sea Bass spawning behavior is warranted, especially as their populations continue to recover.

Spatial management tools would be most effective if they encompassed spawning

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

Spatial management tools would be most effective if they encompassed spawning aggregation sites in this fish. Previous studies showed that spatial protections of spawning aggregations help support recovery from overfishing (Nemeth, 2005; Chollett et al., 2020; Waterhouse et al., 2020). While the California MPAs were not implemented with Giant Sea Bass in mind, if MPA boundaries include spawning aggregation sites, then it would be a support for its population recovery by protecting fish during a critical stage of their life history (Chollett et al., 2020). Our results suggest that there is likely a spawning aggregation in La Jolla—we detected fish year-round and found seasonal differences in movement during the presumed spawning season.

Due to our small sample size and the array positioning, we cannot say whether a La Jolla aggregation is inside or outside the MPAs. However, fish were more active in the northwest corner of the array during the spawning season, which coincides with heavily trafficked fishing grounds. Previous characterizations of spawning aggregation sites of Giant Sea Bass and similar species occurring near promontories in areas with strong currents (Eklund & Schull, 2001; Clevenstine & Lowe, 2021) support the notion of an aggregation in this area. The La Jolla submarine canyon runs along the northwest corner of the La Jolla array and is home to steep sandstone cliffs and subsurface promontories that contribute to the generation of strong currents close the edge of the kelp forest (Parnell et al., 2005, 2006, 2010). Incidentally, these same

Comentado [AAP11]: This idea is not clear.

Eliminado: We did not observe long-distance movements in our tagged fish, but it is possible they occurred and went undetected given sparse regional receiver coverage. Most fish disappeared from the La Jolla array prior to the end of tag life. Though none were detected on any of the regional receivers along the southern California coast, in the Channel Islands, or Baja California, Mexico, there is a chance that the tagged fish that left the La Jolla array made long-distance excursions/relocations that went undetected. Previous studies have documented such long distance movements in tagged fish (both generally, and in the case of Giant Sea Bass). For instance, one of the species' congeners in the Polyprionidae family, the Hāpuku (Polyprionidae oxygeneios), showed variable movement patterns during a multi-year markrecapture study with some being recaptured close to 1400 km from their tagging location and others being recaptured at the same location as tagging (Beentjes & Francis, 1999). In another study, Giant Sea Bass tagged on Santa Catalina Island, California traveled long distances from the island following spawning season, traversing the San Pedro Channel to the mainland or traveling to other islands in the area (Burns et al., 2020; Clevenstine & Lowe, 2021). While we can't rule out such movements in our tagged fish, the relatively long residence of several individuals to La Jolla (3 of 7 fish detected in the region for ~2-4 years) suggests at least some Giant Sea Bass have strong site fidelity to a coastal region with intensive spatial fisheries restrictions.¶ Our results suggest the while present in the La Jolla array, individuals tended to occupy relatively small, well-defined areas. We found that, overall, tagged fish frequently did not move enough across hour time periods to be detected on multiple receivers (as evidenced by the zero-inflation of our movement rate data). Even the fish that traveled to Del Mar, while being detected on multiple receivers spanning the full extent of the array during it's time in La Jolla, showed remarkably consistent detections (averaging over 60 detections per hour) at the Del Mar receiver for a period of five months. Additionally, that fish was not detected at any of the other more coastal receivers just north of the Del N ... [13]

Eliminado: for Giant Sea Bass

Eliminado: likely

Eliminado: can

Eliminado: their

Eliminado: the

Eliminado: y could help

Eliminado: the species'

Eliminado: .

Movido (inserción)[1]

Eliminado: say for certain

Eliminado: existing

Eliminado: In particular,
Eliminado: seemed to be

Eliminado: seemed to be

Eliminado: st

currents are responsible for attracting pelagic migratory species that are highly sought after by recreational anglers (Parnell et al., 2010).

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1b76

1b77

1078

1079

1080

1081

1082

1083

We detected high levels of activity and evidence for a potential spawning aggregation in one of the most highly trafficked recreational fishing areas in San Diego (Parnell et al., 2010). While much of the local recreational fishing community is conscientious of regulations and efforts to support the recovery of Giant Sea Bass, fatalities do occur because of incidental catch.

Barotrauma in fish can occur when there is rapid change in pressure, such as when it is brought to the surface quickly from a considerable depth, resulting in an overexpansion of gases in the body of the fish, especially in the swim bladder (Rummer & Bennett, 2005; Parker et al., 2006; Jarvis & Lowe, 2008). Giant Sea Bass are susceptible to barotrauma and, as large animals, can be difficult to handle properly.

One of the strongest indicators of post-release survival, following barotrauma in other species, is the ability to release the fish as quickly as possible (Jarvis & Lowe, 2008; Roach, Hall & Broadhurst, 2011). With a fish that regularly reaches over a meter in length and is often interacting with anglers on kayaks or larger chartered fishing vessels with raised decks (Parnell et al., 2010), reducing surface time is especially challenging. In the event a fish is released successfully, there is still a chance delayed mortality can occur if there is excessive damage to the swim bladder or other organs (Parker et al., 2006; Jarvis & Lowe, 2008). Furthermore, sublethal effects of catch and release fishing can also negatively impact individuals by decreasing their overall fitness (Cooke & Schramm, 2007; Campbell et al., 2010).

While incidental catch is of concern, the magnitude of negative effects is not so strong that it hindered the ongoing recovery of Giant Sea Bass in recent years. Our finding that individuals persisted in the La Jolla across multiple years suggests the existing spatial and fisheries

Eliminado: observed

Eliminado: found some

Eliminado: Giant Sea Bass

Eliminado: a fish

Eliminado: species

Movido hacia arriba[1]: In particular, fish seemed to be most active in the northwest corner of the array, which coincides with heavily trafficked fishing grounds. Previous characterizations of spawning aggregation sites of Giant Sea Bass and similar species occurring near promontories in areas with strong currents (Eklund & Schull, 2001; Clevenstine & Lowe, 2021) support the notion of an aggregation in this area. The La Jolla submarine canyon runs along the northwest corner of the La Jolla array and is home to steep sandstone cliffs and subsurface promontories that contribute to the generation of strong currents close the edge of the kelp forest (Parnell et al., 2005, 2006, 2010). Incidentally, these same currents are responsible for attracting pelagic migratory species that are highly sought after by recreational anglers (Parnell et al., 2010).

Eliminado: ¶

Our results also indicate that the potential spawning aggregation site is likely outside of the local MPA boundaries. We found that fish were more often detected outside of MPAs than inside of them during summer spawning months, and that they had higher movement rates during this period

Eliminado: . 🛭

While our sample size is small, our results provide insight into the susceptibility of Giant Sea Bass to their three major contemporary fishing-related threats: targeted commercial catch in Mexico, incidental commercial catch in the US, and incidental recreational catch. Regarding targeted commercial catch in Mexico, while we do not have evidence of fish tagged in the US crossing the border into Mexican waters, it is not out of the realm of possibility for individuals to travel from the San Diego region to Baja California given records of fish traveling long distances in other studies (Burns et ... [14]

Con formato: Fuente: Cursiva

Con formato: Fuente: Cursiva
Con formato: Fuente: Cursiva

Eliminado: certainly a cause for

Eliminado: the

Eliminado: Giant Sea Bass are a hardy fish that appear to handle stress well as evidenced by their apparent abili ... [15]

Eliminado: region

Eliminado: that

management measures afford protection in the La Jolla area. Management of the ongoing recovery throughout its range would benefit from further work quantifying the effects of incidental recreational catch. Fortunately, among people there is an understanding of best practices to mitigate the effects of incidental catch, chief among them quickly and efficiently releasing fish back to depth. Development of tools, such as larger versions of descending devices (e.g. SeaQualizers) often used with rockfish, can help support efforts to properly handle incidentally caught Giant Sea Bass.

Conclusions

1185

1186

1187

1188

1189

1190

1191

11921193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

We characterized residency and seasonality of Giant Sea Bass space use as determined by acoustic telemetry in one of the largest kelp forests in southern California, and identified how tagged individuals interact with local spatial management and fishing, While our sample size was small (five fish), we found valuable information for this Critically Endangered species. We found fish were resident to the La Jolla area for extended periods, with the longest consistent detection range lasting four years. We are unsure where the fish traveled after leaving the array, as we detected only one fish on receivers maintained in the broader southern California and Baja California region. Receiver coverage was sparse in many areas, especially in Mexican waters.

We detected fish Jess frequently and displayed higher movement rates during spawning months.

Based on the movement patterns, jagged fish are regularly interacting with a highly trafficked recreational fishing ground, including during spawning season. Nevertheless, existing spatial and fishery management measures appear to support long-term persistence of Giant Sea Bass in an area that is marked by high recreational fishing pressure. Future work would benefit from determining where Giant Sea Bass go when they exit the detection range of regional acoustic

Eliminado: substantial

Eliminado: to Giant Sea Bass

Eliminado: of this species

Eliminado: on Giant Sea Bass populations

Eliminado: i

Eliminado: Giant Sea Bass are an ecologically and culturally important species throughout their range, and understanding how they use space is a critical step in ensuring their ongoing recovery from historical overharvest.

Eliminado: The goal of this study wa

Eliminado: s

Eliminado: to use acoustic telemetry to characterize the residency and seasonality of Giant Sea Bass space use

Eliminado: , as well as determine

Eliminado: activity

Eliminado: contemporary fishery-related threats

Eliminado: is

Eliminado: were able to find

Eliminado: on a

Eliminado: that

Eliminado: largely

Eliminado: of them

Eliminado: was detected

Eliminado: is

Eliminado: Fish tended to be detected

Eliminado: we recorded

Eliminado: it is likely there is a spawning aggregation site outside of local marine protected areas in

Eliminado: our

Eliminado: La Jolla in

1238 receiver arrays, and direct quantification of the impact of incidental take on the health of Giant Sea Bass populations in southern California waters. 1239 Comentado [AAP13]: You cannot recommend in the Conclusions section 1240 1241 Acknowledgements 1242 We acknowledge all the other regional acoustic telemetry research groups that queried their Eliminado: would like to databases for our tag numbers, including Brian Sterling and Chris Lowe from the Lowe Lab at 1243 CSULB, Ryan Freedman and Pike Spector from the Channel Islands National Marine Sanctuary, 1244 1245 and James Ketchum, Marc Aquino Baleytó, Mauricio Hoyos from Pelagios-Kakunjá A.C. in 1246 Baja California, Mexico. We thank the Hubbs Sea World Research Institute for allowing us to 1247 follow them during their surveys in case they caught a Giant Sea Bass. We would like to thank 1248 Phil Zerofski and Chugey Sepulveda for helping us develop our fishing and tagging protocols. We would also like to acknowledge the many volunteer anglers and divers who helped with the 1249 field work for this project, especially Rich Walsh, Ross Cooper, Zach Skelton, Erica Jarvis-1250 1251 Mason, Shane Finnerty, Mohammad Sedarat, and Youssef Doss. 1252 1253 References Allen LG. 2017. GIANTS! Or... The Return of the Kelp Forest King. Copeia 105:10-13. 1254 Allen LG, Andrews AH. 2012. Bomb radiocarbon dating and estimated longevity of Giant Sea 1255 1256 Bass (Stereolepis gigas). Bulletin, Southern California Academy of Sciences 111:1–14. Allen LG, Benseman SA, Couffer M. 2019. Baby Giants are found at the heads of submarine 1257 canyons. Ecology 100:e02496. DOI: 10.1002/ecy.2496. 1258 1259 Atwell JW, O'Neal DM, Ketterson ED. 2011. Animal migration as a moving target for 1260 conservation: Intra-species variation and responses to environmental change, as illustrated in 1261 a sometimes migratory songbird. Environmental law (Northwestern School of Law) 41:289-1262 Baldwin DS, Keiser A. 2008. Giant sea bass, Stereolepis gigas. In: Larinto T (ed) Status of the 1263 Con formato: Fuente: Cursiva 1264 Fisheries Report, Cal. Dept. Fish Game. p. 8. 1265 Barton K. 2022. MuMIn: Multi-Model Inference. Eliminado:

1268	Bates D, Kliegl R, Vasishth S, Baayen H. 2015a. Parsimonious mixed models. arXiv preprint
1269	arXiv:1506.04967.
1270	Bates D, Mächler M, Bolker B, Walker S. 2015b. Fitting Linear Mixed-Effects Models Using
1271	lme4. Journal of Statistical Software 67. DOI: 10.18637/jss.v067.i01.
1272	Beentjes MP, Francis MP. 1999. Movement of hapuku (<i>Polyprion oxygeneios</i>) determined from
1273	tagging studies. New Zealand Journal of Marine and Freshwater Research 33:1-12. DOI:
1274	10.1080/00288330.1999.9516852.
1275	Blincow KM. 2021. Addressing applied fishery ecology questions across species, fishery, and
1276	global scales. [Unpublished dissertation]. University of California San Diego, La Jolla,
1277	California, United States of America. Available at https://escholarship.org/uc/item/8qb7t0sp.
1278	Blincow K, Bush P, Heppell S, McCoy C, Johnson B, Pattengill-Semmens C, Heppell S,
1279	Stevens-McGeever S, Whaylen L, Luke K, Semmens B. 2020. Spatial ecology of Nassau
1280	grouper at home reef sites: using acoustic telemetry to track a large, long-lived epinephelid
1281	across multiple years (2005-2008). Marine Ecology Progress Series 655:199-214.
1282	Blincow KM, Swalethorp R, Ramírez-Valdez A, Semmens BX. 2022. Giant appetites: exploring
1283	the trophic ecology of California's largest kelp forest predator, the giant sea bass Stereolepis Con formato: Fuente: Cursiva
1284	gigas. Marine Ecology Progress Series 695:157–171.
1285	Burns ES, Clevenstine AJ, Logan RK, Lowe CG. 2020. Evidence of artificial habitat use by a
1286	recovering marine predator in southern California. Journal of Fish Biology 97:1857–1860.
1287	DOI: 10.1111/jfb.14539.
1288	Calenge C. 2006. The package adehabitat for the R software: a tool for the analysis of space and
1289	habitat use by animals. Ecological Modelling 197:516–519.
1290	California Department of Fish and Wildlife. 2019. California Marine Protected Areas shapefile.
1291	https://data.ca.gov/dataset/california-marine-protected-areas-ds582.
1292	Campbell MD, Patino R, Tolan J, Strauss R, Diamond SL. 2010. Sublethal effects of catch-and-
1293	release fishing: Measuring capture stress, fish impairment, and predation risk using a
1294	condition index. ICES Journal of Marine Science 67:513-521. DOI: 10.1093/icesjms/fsp255.
1295	Chollett I, Priest M, Fulton S, Heyman WD. 2020. Should we protect extirpated fish spawning
1296	aggregation sites? Biological Conservation 241:108395. DOI:
1297	10.1016/j.biocon.2019.108395.

1299	Clevenstine AJ, Lowe CG. 2021. Aggregation site fidelity and movement patterns of the		
1300	protected marine predator giant sea bass (Stereolepis gigas). Environmental Biology of		Con formato: Fuente: Cursiva
1301	Fishes 104:401–417. DOI: 10.1007/s10641-021-01077-9.		
1302	Clua E, Chauvet C, Mourier J, Werry JM, Randall JE. 2015. Pattern of movements within a		
1303	home reef in the Chesterfield Islands (Coral Sea) by the endangered Giant Grouper,		
1304	Epinephelus lanceolatus. Aquatic Living Resources 28:53–58. DOI: 10.1051/alr/2015006.		Con formato: Fuente: Cursiva
1305	Cooke SJ, Schramm HL. 2007. Catch-and-release science and its application to conservation and		
1306	management of recreational fisheries. Fisheries Management and Ecology 14:73-79. DOI:		
1307	10.1111/j.1365-2400.2007.00527.x.		
1308	Cornish A. 2004, Stereolepis gigas. IUCN Red List of Threatened Species. DOI: 10.2305/IUCN.	<	Con formato: Fuente: Cursiva
1309	<u>UK.2004.RLTS.T20795A9230697.en</u>		Con formato: Fuente: (Predeterminada) Times New
1310	Dayton PK, Tegner MJ, Edwards PB, Riser KL. 1998. Sliding baselines, ghosts, and reduced		Roman, 12 pto
1311	expectations in kelp forest communities. Ecological Applications 8:309-322.		
1312	Divins DL, Metzger D, NGDC Coastal Relief Model, 21 September 2023,		
1313	http://www.ngdc.noaa.gov/mgg/coastal/coastal.html. Download provided by the Southern		
1314	California Coastal Ocean Observing System http://sccoos.org/data/bathy.		
1315	Dmitrieva L, Jüssi M, Jüssi I, Kasymbekov Y, Verevkin M, Baimukanov M, Wilson S,		
1316	Goodman SJ. 2016. Individual variation in seasonal movements and foraging strategies of a		
1317	land-locked, ice-breeding pinniped. Marine Ecology Progress Series 554:241-256. DOI:		
1318	10.3354/meps11804.		
1319	Domeier ML. 2001. Giant sea bass. California's living marine resources: a status report. Calif		
1320	Fish Game, Sacramento:209–211.		
1321	Eklund A-M, Schull J. 2001. A Stepwise Approach to Investigating the Movement Patterns and		
1322	Habitat Utilization of Goliath Grouper, Epinephelus itajara, Using Conventional Tagging,		Con formato: Fuente: Cursiva
1323	Acoustic Telemetry and Satellite Tracking. In: Springer, Dordrecht, 189-216. DOI:		
1324	10.1007/978-94-017-1402-0_9.		
1325	Erauskin-Extramiana M, Herzka SZ, Hinojosa-Arango G, Aburto-Oropeza O. 2017. An		
1326	interdisciplinary approach to evaluate the status of large-bodied Serranid fisheries: The case		
1327	of Magdalena-Almejas Bay lagoon complex, Baja California Sur, Mexico. Ocean & Coastal		
1328	Management 145:21–34.		

1329	Farmer NA, Ault JS. 2011. Grouper and snapper movements and habitat use in Dry Tortugas,
1330	Florida. Marine Ecology Progress Series 433:169–184. DOI: 10.3354/meps09198.
1331	Giglio VJ, Adelir-Alves J, Bertoncini AA. 2014. Using scars to photo-identify the goliath
1332	grouper, Epinephelus itajara. Marine Biodiversity Records 7. DOI:
1333	10.1017/S1755267214001080.
1334	Guerra AS, Madigan DJ, Love MS, McCauley DJ. 2018. The worth of giants: The consumptive
1335	and non-consumptive use value of the giant sea bass (Stereolepis gigas). Aquatic Con formato: Fuente: Cursiva
1336	Conservation: Marine and Freshwater Ecosystems 28:296–304. DOI: 10.1002/aqc.2837.
1337	Hanan DA, Curry BE. 2012. Long-Term Movement Patterns and Habitat Use Of Nearshore
1338	Groundfish: Tag-Recapture in Central and Southern California Waters. The Open Fish
1339	Science Journal 5:30–43.
1340	Harrison XA, Donaldson L, Correa-Cano ME, Evans J, Fisher DN, Goodwin CED, Robinson
1341	BS, Hodgson DJ, Inger R. 2018. A brief introduction to mixed effects modelling and multi-
1342	model inference in ecology. PeerJ 6:e4794.
1343	Hawk HA, Allen LG. 2014. Age and growth of the giant sea bass, Stereolepis gigas. CalCOFI Con formato: Fuente: Cursiva
1344	Report 55:128–134.
1345	House PH, Clark BLF, Allen LG. 2016. The return of the king of the kelp forest: Distribution,
1346	abundance, and biomass of Giant sea bass (Stereolepis gigas) off Santa Catalina Island, Con formato: Fuente: Cursiva
1347	California, 2014-2015. Bulletin, Southern California Academy of Sciences 115:1–14.
1348	Huveneers C, Simpfendorfer CA, Kim S, Semmens JM, Hobday AJ, Pederson H, Stieglitz T,
1349	Vallee R, Webber D, Heupel MR, Peddemors V, Harcourt RG. 2015. The influence of
1350	environmental parameters on the performance and detection range of acoustic receivers.
1351	Fisheries New South Wales. DOI: 10.1111/2041-210X.12520.
1352	Jarvis ET, Lowe CG. 2008. The effects of barotrauma on the catch-and-release survival of
1353	southern California nearshore and shelf rockfish (Scorpaenidae, Sebastes spp.). Canadian Con formato: Fuente: Cursiva
1354	Journal of Fisheries and Aquatic Sciences 65:1286–1296. DOI: 10.1139/F08-071.
1355	Kuznetsova A, Brockhoff PB, Christensen RHB. 2017. lmerTest Package: Tests in Linear Mixed
1356	Effects Models. Journal of Statistical Software 82. DOI: 10.18637/jss.v082.i13.
1357	Lewis R, McKee K. 1989. A Guide to the Artificial Reefs of Southern California. Nearshore
1358	Sportfish Habitat Enhancement Program. California Department of Fish and Wildlife.
1359	https://wildlife.ca.gov/Fishing/Ocean/Artificial-Reefs/Guide.
•	

1360 Lowerre-Barbieri S, Villegas-Ríos D, Walters S, Bickford J, Cooper W, Muller R, Trotter A. 1361 2014. Spawning site selection and contingent behavior in common snook, Centropomus 1362 undecimalis. PLoS ONE 9:101809. DOI: 10.1371/journal.pone.0101809. 1363 Luke SG. 2017. Evaluating significance in linear mixed-effects models in R. Behavior Research 1364 Methods 49:1494-1502. DOI: 10.3758/s13428-016-0809-y. Mathies N, Ogburn M, McFall G, Fangman S. 2014. Environmental interference factors 1365 1366 affecting detection range in acoustic telemetry studies using fixed receiver arrays. Marine Ecology Progress Series 495:27-38. DOI: 10.3354/meps10582. 1367 1368 Nakagawa S, Johnson PCD, Schielzeth H. 2017. The coefficient of determination R2 and intra-1369 class correlation coefficient from generalized linear mixed-effects models revisited and 1370 expanded. Journal of The Royal Society Interface 14:20170213. DOI: 1371 10.1098/rsif.2017.0213. 1372 Navarro MO, Parnell PE, Levin LA. 2018. Essential market squid (Doryteuthis opalescens) habitat: A baseline for anticipated ocean climate change. Journal of Shellfish Research 37:3 1373 1374 601-614. DOI: https://doi.org/10.2983/035.037.0313. 1375 Nemeth RS. 2005. Population characteristics of a recovering US Virgin Islands red hind spawning aggregation following protection. Marine Ecology Progress Series 286:81-97. 1376 1377 DOI: 10.3354/meps286081. 1378 Parker SJ, McElderry HI, Rankin PS, Hannah RW. 2006. Buoyancy Regulation and Barotrauma in Two Species of Nearshore Rockfish. Transactions of the American Fisheries Society 1379 1380 135:1213-1223. DOI: 10.1577/t06-014.1. Parnell PE, Dayton PK, Fisher RA, Loarie CC, Darrow RD. 2010. Spatial patterns of fishing 1381 effort off San Diego: implications for zonal management and ecosystem function. Ecological 1382 Applications 20:2203-2222. DOI: 10.1890/09-1543.1. 1383 Parnell PE, Dayton PK, Lennert-Cody CE, Rasmussen LL, Leichter JJ. 2006. Marine Reserve 1384 1385 Design: Optimal Size, Habitats, Species Affinities, Diversity, And Ocean Microclimate. Ecological Applications 16:945-962. DOI: https://doi.org/10.1890/1051-1386 0761(2006)016[0945:MRDOSH]2.0.CO;2. 1387 Parnell P, Lennert-Cody CE, Geelen L, Stanley LD, Dayton PK. 2005. Effectiveness of a small 1388 marine reserve in southern California. Marine Ecology Progress Series 296:39-52. DOI: 1389 10.3354/meps296039. 1390

Con formato: Fuente: Cursiva

1391	Pondella DJ, Allen LG. 2008. The decline and recovery of four predatory fishes from the	
1392	Southern California Bight. Marine Biology 154:307-313.	
1393	R Core Team. 2019. R: A language and environment for statistical computing.	
1394	Ramírez-Valdez A, Rowell TJ, Dale KE, Craig MT, Allen LG, Villaseñor-Derbez JC, Cisneros-	
1395	Montemayor AM, Hernández-Velasco A, Torre J, Hofmeister J, Erisman BE. 2021.	
1396	Asymmetry across international borders: Research, fishery and management trends and	
1397	economic value of the giant sea bass (Stereolepis gigas). Fish and Fisheries 22:1392–1411.	Con formato: Fuente: Cursiva
1 1398	DOI: https://doi.org/10.1111/faf.12594.	
1399	Roach JP, Hall KC, Broadhurst MK. 2011. Effects of barotrauma and mitigation methods on	
1400	released Australian bass Macquaria novemaculeata. Journal of Fish Biology 79:1130–1145.	Con formato: Fuente: Cursiva
1401	DOI: 10.1111/j.1095-8649.2011.03096.x.	
1402	Ross, G. 2018. PACIFIC_OCEAN shapefile. LUEG-GIS, San Diego County. San Diego	
1403	Geographic Information Source - JPA. http://www.sangis.org/download/index.html.	
1404	Rowell, T. J., Aburto-Oropeza, O., Cota-Nieto, J. J., Steele, M. A., & Erisman, B. E. 2019.	Con formato: Español (México)
1404 1405	Rowell, T. J., Aburto-Oropeza, O., Cota-Nieto, J. J., Steele, M. A., & Erisman, B. E. 2019. Reproductive behaviour and concurrent sound production of Gulf grouper <i>Mycteroperca</i>	Con formato: Español (México) Con formato: Fuente: Cursiva
1405	Reproductive behaviour and concurrent sound production of Gulf grouper Mycteroperca	
1405 1406	Reproductive behaviour and concurrent sound production of Gulf grouper <u>Mycteroperca</u> jordani (Epinephelidae) at a spawning aggregation site. Journal of Fish Biology, 94(2), 277-	
1405 1406 1407	Reproductive behaviour and concurrent sound production of Gulf grouper <u>Mycteroperca</u> <i>jordani</i> (Epinephelidae) at a spawning aggregation site. Journal of Fish Biology, 94(2), 277-296. DOI: 10.1111/jfb.13888.	
1405 1406 1407 1408	Reproductive behaviour and concurrent sound production of Gulf grouper <i>Mycteroperca jordani</i> (Epinephelidae) at a spawning aggregation site. Journal of Fish Biology, 94(2), 277- 296. DOI: 10.1111/jfb.13888. Rummer JL, Bennett WA. 2005. Physiological Effects of Swim Bladder Overexpansion and	
1405 1406 1407 1408 1409	Reproductive behaviour and concurrent sound production of Gulf grouper Mycteroperca jordani (Epinephelidae) at a spawning aggregation site. Journal of Fish Biology, 94(2), 277- 296. DOI: 10.1111/jfb.13888. Rummer JL, Bennett WA. 2005. Physiological Effects of Swim Bladder Overexpansion and Catastrophic Decompression on Red Snapper. Transactions of the American Fisheries	
1405 1406 1407 1408 1409 1410	Reproductive behaviour and concurrent sound production of Gulf grouper <i>Mycteroperca jordani</i> (Epinephelidae) at a spawning aggregation site. Journal of Fish Biology, 94(2), 277- 296. DOI: 10.1111/jfb.13888. Rummer JL, Bennett WA. 2005. Physiological Effects of Swim Bladder Overexpansion and Catastrophic Decompression on Red Snapper. Transactions of the American Fisheries Society 134:1457–1470. DOI: 10.1577/t04-235.1.	
1405 1406 1407 1408 1409 1410 1411	Reproductive behaviour and concurrent sound production of Gulf grouper <i>Mycteroperca jordani</i> (Epinephelidae) at a spawning aggregation site. Journal of Fish Biology, 94(2), 277- 296. DOI: 10.1111/jfb.13888. Rummer JL, Bennett WA. 2005. Physiological Effects of Swim Bladder Overexpansion and Catastrophic Decompression on Red Snapper. Transactions of the American Fisheries Society 134:1457–1470. DOI: 10.1577/t04-235.1. Send U, Name S. 2012. Relaxation from upwelling: The effect on dissolved oxygen on the	
1405 1406 1407 1408 1409 1410 1411 1412	Reproductive behaviour and concurrent sound production of Gulf grouper Mycteroperca jordani (Epinephelidae) at a spawning aggregation site. Journal of Fish Biology, 94(2), 277- 296. DOI: 10.1111/jfb.13888. Rummer JL, Bennett WA. 2005. Physiological Effects of Swim Bladder Overexpansion and Catastrophic Decompression on Red Snapper. Transactions of the American Fisheries Society 134:1457–1470. DOI: 10.1577/t04-235.1. Send U, Name S. 2012. Relaxation from upwelling: The effect on dissolved oxygen on the continental shelf. Journal of Geophysical Research: Oceans 117: C04022.	
1405 1406 1407 1408 1409 1410 1411 1412 1413	Reproductive behaviour and concurrent sound production of Gulf grouper <i>Mycteroperca jordani</i> (Epinephelidae) at a spawning aggregation site. Journal of Fish Biology, 94(2), 277- 296. DOI: 10.1111/jfb.13888. Rummer JL, Bennett WA. 2005. Physiological Effects of Swim Bladder Overexpansion and Catastrophic Decompression on Red Snapper. Transactions of the American Fisheries Society 134:1457–1470. DOI: 10.1577/t04-235.1. Send U, Name S. 2012. Relaxation from upwelling: The effect on dissolved oxygen on the continental shelf. Journal of Geophysical Research: Oceans 117: C04022. DOI:10.1029/2011JC007517.	

Spector M, Clevenstine AJ, Cajandig M, Caldow C, Duncan EA, Peavey Reeves LE, Freedman

Udy JA, Wing SR, O'Connell-Milne SA, Durante LM, McMullin RM, Kolodzey S, Frew RD.

2019. Regional differences in supply of organic matter from kelp forests drive

offshore island. Journal of Fish Biology 101:1366-1370.

RM. 2022. Network analysis reveals aggregation behaviour for an endangered predator at an

1417

1418

14191420

1421

1422 1423 1424 1425	trophodynamics of temperate reef fish. Marine Ecology Progress Series 621:19–32. DOI: 10.3354/meps12974. Waterhouse L, Heppell SA, Pattengill-Semmens C v., McCoy C, Bush P, Johnson BC, Semmens BX. 2020. Recovery of critically endangered Nassau grouper (<i>Epinephelus striatus</i>) in the Conformato: Fuente: Cursiva
1426 1427	Cayman Islands following targeted conservation actions. Proceedings of the National Academy of Sciences:201917132. DOI: 10.1073/pnas.1917132117.

Página 2: [1] Eliminado	Anonymous	16/10/2023 11:58:00 a. m.
(
Página 2: [1] Eliminado	Anonymous	16/10/2023 11:58:00 a. m.
(,	
,		
Página 2: [1] Eliminado	Anonymous	16/10/2023 11:58:00 a. m.
(o , o	14, 10, 2020 1 100000 111111
`		
Página 2: [1] Eliminado	Anonymous	16/10/2023 11:58:00 a. m.
(7e y ee	19, 19, 2020 1 100000 41 111
Página 2: [1] Eliminado	Anonymous	16/10/2023 11:58:00 a. m.
(7e y eac	19, 19, 2020 1 100000 4.1 11.1
Página 2: [1] Eliminado	Anonymous	16/10/2023 11:58:00 a. m.
(7onymous	10, 10, 2020 1 1 150100 u. m.
Página 2: [1] Eliminado	Anonymous	16/10/2023 11:58:00 a. m.
(7e y ee	19, 19, 2020 1 100000 4.1 11.1
Página 2: [1] Eliminado	Anonymous	16/10/2023 11:58:00 a. m.
(7e y ee	19, 19, 2020 1 100000 4.1 11.1
Página 2: [1] Eliminado	Anonymous	16/10/2023 11:58:00 a. m.
(7onymous	10, 10, 2020 1 1 150100 u. m.
`		
Página 2: [1] Eliminado	Anonymous	16/10/2023 11:58:00 a. m.
(ye	15, 15, 2520 11100100 21 1111
`		
Página 2: [1] Eliminado	Anonymous	16/10/2023 11:58:00 a. m.
(,,
Página 2: [1] Eliminado	Anonymous	16/10/2023 11:58:00 a. m.
(7you5	10, 10, 2020 11.30.00 u. III.
`		

Página 2: [1] Eliminado	Anonymous	16/10/2023 11:58:00 a. m.
(
Página 2: [1] Eliminado	Anonymous	16/10/2023 11:58:00 a. m.
(
Página 2: [1] Eliminado	Anonymous	16/10/2023 11:58:00 a. m.
(
Página 2: [1] Eliminado	Anonymous	16/10/2023 11:58:00 a. m.
(
Página 2: [1] Eliminado	Anonymous	16/10/2023 11:58:00 a. m.
(
Página 2: [1] Eliminado	Anonymous	16/10/2023 11:58:00 a. m.
(
Página 2: [1] Eliminado	Anonymous	16/10/2023 11:58:00 a. m.
(
Página 2: [1] Eliminado	Anonymous	16/10/2023 11:58:00 a. m.
Página 2: [1] Eliminado	Anonymous	16/10/2023 11:58:00 a. m.
(
Página 2: [1] Eliminado	Anonymous	16/10/2023 11:58:00 a. m.
(
Página 2: [1] Eliminado	Anonymous	16/10/2023 11:58:00 a. m.
Página 2: [1] Eliminado	Anonymous	16/10/2023 11:58:00 a. m.
(

Página 2: [1] Eliminado	Anonymous	16/10/2023 11:58:00 a. m.
(-	
Página 2: [1] Eliminado	Anonymous	16/10/2023 11:58:00 a. m.
(Anonymous	10, 10, 2023 11.30.00 u. iii.
Dr. C. Callella C. L.	•	45/40/2022 44 50 00
Página 2: [1] Eliminado	Anonymous	16/10/2023 11:58:00 a. m.
Página 2: [1] Eliminado	Anonymous	16/10/2023 11:58:00 a. m.
(
Página 2: [1] Eliminado	Anonymous	16/10/2023 11:58:00 a. m.
(
Página 2: [1] Eliminado	Anonymous	16/10/2023 11:58:00 a. m.
(
Página 2: [1] Eliminado	Anonymous	16/10/2023 11:58:00 a. m.
(
Página 2: [1] Eliminado	Anonymous	16/10/2023 11:58:00 a. m.
(. ,	, ,
`		
Página 2: [1] Eliminado	Anonymous	16/10/2023 11:58:00 a. m.
(Anonymous	10, 10, 2023 11.30.00 u. iii.
Página 2: [2] Eliminado	Anonymous	13/10/2023 11:47:00 a. m.
Reaching over two meters in length,	Anonymous	13/10/2023 11:47:00 d. M.
treating ever two motors in length,		
DC : 0 F01 FILE : 1		12/10/2022 11 17 22
Pagina 2: [2] Eliminado Danching over two meters in length	Anonymous	13/10/2023 11:47:00 a. m.
Reaching over two meters in length,		
Página 2: [2] Eliminado	Anonymous	13/10/2023 11:47:00 a. m.
Reaching over two meters in length,		

Página 2: [2] Eliminado	Anonymous	13/10/2023 11:47:00 a. m.
Reaching over two meters in length,		
Página 2: [2] Eliminado	Anonymous	13/10/2023 11:47:00 a. m.
Reaching over two meters in length,		
Página 2: [2] Eliminado	Anonymous	13/10/2023 11:47:00 a. m.
Reaching over two meters in length,		
Página 2: [3] Eliminado	Anonymous	13/10/2023 11:48:00 a. m.
They are		
Página 2: [3] Eliminado	Anonymous	13/10/2023 11:48:00 a. m.
They are		
Página 2: [3] Eliminado	Anonymous	13/10/2023 11:48:00 a. m.
They are		
Página 8: [4] Eliminado	Anonymous	13/10/2023 03:29:00 p. m.
being pulled up		
Página 8: [4] Eliminado	Anonymous	13/10/2023 03:29:00 p. m.
being pulled up		
Página 8: [4] Eliminado	Anonymous	13/10/2023 03:29:00 p. m.
being pulled up		
Página 8: [4] Eliminado	Anonymous	13/10/2023 03:29:00 p. m.
being pulled up		
Página 8: [4] Eliminado	Anonymous	13/10/2023 03:29:00 p. m.
being pulled up		
Página 8: [5] Eliminado	Anonymous	16/10/2023 12:09:00 p. m.
For all the fish c		

D(: 0 :=: =: : 1	•	46/40/2022 42 22 22
Página 8: [5] Eliminado	Anonymous	16/10/2023 12:09:00 p. m.
For all the fish c		
Página 8: [5] Eliminado	Anonymous	16/10/2023 12:09:00 p. m.
For all the fish c	Anonymous	10, 10, 2023 12.03.00 β. Π.
Tot all the fish c		
Página 8: [5] Eliminado	Anonymous	16/10/2023 12:09:00 p. m.
For all the fish c		-
Página 8: [5] Eliminado	Anonymous	16/10/2023 12:09:00 p. m.
For all the fish c		
Dánina O. IE1 Eliminada	A	16/10/2023 12:09:00 p. m.
Página 8: [5] Eliminado For all the fish c	Anonymous	16/10/2023 12:09:00 p. m.
For all the fish c		
Página 8: [6] Eliminado	Anonymous	13/10/2023 03:31:00 p. m.
that	•	
Página 8: [6] Eliminado	Anonymous	13/10/2023 03:31:00 p. m.
that		
Dánina O. IGI Eliminada	A	12/10/2022 02:21:00
Página 8: [6] Eliminado	Anonymous	13/10/2023 03:31:00 p. m.
that		
Página 8: [6] Eliminado	Anonymous	13/10/2023 03:31:00 p. m.
that	· •	., ,
that		
Página 8: [7] Eliminado	Anonymous	13/10/2023 03:31:00 p. m.
procedures		
		42/42/2022 22 24 22
Página 8: [7] Eliminado	Anonymous	13/10/2023 03:31:00 p. m.
procedures		
Página 8: [7] Eliminado	Anonymous	13/10/2023 03:31:00 p. m.
procedures	Anonymous	13, 10, 2023 03.3 1.00 р. пі.
procedures		

Página 8: [7] Eliminado	Anonymous	13/10/2023 03:31:00 p. m.
procedures		
Página 8: [7] Eliminado	Anonymous	13/10/2023 03:31:00 p. m.
procedures		
Página 8: [7] Eliminado	Anonymous	13/10/2023 03:31:00 p. m.
procedures		
Página 8: [7] Eliminado	Anonymous	13/10/2023 03:31:00 p. m.
procedures		
Página 8: [7] Eliminado	Anonymous	13/10/2023 03:31:00 p. m.
procedures		
Página 8: [7] Eliminado	Anonymous	13/10/2023 03:31:00 p. m.
procedures		
Página 8: [7] Eliminado	Anonymous	13/10/2023 03:31:00 p. m.
procedures		
Página 8: [7] Eliminado	Anonymous	12/10/2022 02:21:00 =
procedures	Anonymous	13/10/2023 03:31:00 p. m.
procedures		
Página 8: [8] Eliminado	Kayla Blincow	04/09/2023 01:20:00 p. m.
,		о 1,00,2020 о 112000 рт 1111
Página 8: [8] Eliminado	Kayla Blincow	04/09/2023 01:20:00 p. m.
,		
Página 8: [8] Eliminado	Kayla Blincow	04/09/2023 01:20:00 p. m.
,		
Página 8: [9] Eliminado	Kayla Blincow	04/09/2023 01:20:00 p. m.
placing		

Página 8: [9] Eliminado	Kayla Blincow	04/09/2023 01:20:00 p. m.
placing	y 2co	0 1,00,1010 0 112000 p. 1111
r		
7() 2		42 // 2000 200 20
Página 8: [10] Eliminado	Anonymous	13/10/2023 03:33:00 p. m.
to each		
Página 8: [10] Eliminado	Anonymous	13/10/2023 03:33:00 p. m.
to each		
Página 8: [10] Eliminado	Anonymous	13/10/2023 03:33:00 p. m.
to each	·	-
Página 8: [11] Eliminado	Anonymeus	13/10/2023 03:34:00 p. m.
Pagina 6: [11] Eliminado	Anonymous	13/10/2023 03:34:00 p. m.
,		
Página 8: [11] Eliminado	Anonymous	13/10/2023 03:34:00 p. m.
,		
Página 8: [11] Eliminado	Anonymous	13/10/2023 03:34:00 p. m.
,		
Página 8: [11] Eliminado	Anonymous	13/10/2023 03:34:00 p. m.
	7.monymous	15, 16, 2025 05.5 1100 р. 1111
,		
Página 8: [11] Eliminado	Anonymous	13/10/2023 03:34:00 p. m.
,		
Página 8: [11] Eliminado	Anonymous	13/10/2023 03:34:00 p. m.
,		
Página 8: [11] Eliminado	Anonymous	13/10/2023 03:34:00 p. m.
,	,	, , , , , , , , , , , , , , , , , , , ,
Dé :: 0. [42] Eli	A	12/10/2022 02 25 00
Página 8: [12] Eliminado	Anonymous	13/10/2023 03:35:00 p. m.
Finally,		

Página 8: [12] Eliminado	Anonymous	13/10/2023 03:35:00 p. m.
Finally,		
Página 8: [12] Eliminado	Anonymous	13/10/2023 03:35:00 p. m.
Finally,		
• •		
Página 8: [12] Eliminado	Anonymous	13/10/2023 03:35:00 p. m.
	Anonymous	13/10/2023 03.33.00 β. 111.
Finally,		
Página 8: [12] Eliminado	Anonymous	13/10/2023 03:35:00 p. m.
Finally,		
•		
Página 8: [12] Eliminado	Anonymous	13/10/2023 03:35:00 p. m.
	Allollylllous	13/10/2023 03.33.00 p. III.
Finally,		

Página 19: [13] Eliminado **Kayla Blincow** 23/09/2023 05:04:00 p. m. We did not observe long-distance movements in our tagged fish, but it is possible they occurred and went undetected given sparse regional receiver coverage. Most fish disappeared from the La Jolla array prior to the end of tag life. Though none were detected on any of the regional receivers along the southern California coast, in the Channel Islands, or Baja California, Mexico, there is a chance that the tagged fish that left the La Jolla array made long-distance excursions/relocations that went undetected. Previous studies have documented such long distance movements in tagged fish (both generally, and in the case of Giant Sea Bass). For instance, one of the species' congeners in the Polyprionidae family, the Hāpuku (Polyprionidae oxygeneios), showed variable movement patterns during a multi-year mark-recapture study with some being recaptured close to 1400 km from their tagging location and others being recaptured at the same location as tagging (Beenties & Francis, 1999). In another study, Giant Sea Bass tagged on Santa Catalina Island, California traveled long distances from the island following spawning season, traversing the San

Pedro Channel to the mainland or traveling to other islands in the area (Burns et al., 2020; Clevenstine & Lowe, 2021). While we can't rule out such movements in our tagged fish, the relatively long residence of several individuals to La Jolla (3 of 7 fish detected in the region for ~2-4 years) suggests at least some Giant Sea Bass have strong site fidelity to a coastal region with intensive spatial fisheries restrictions.

Our results suggest the while present in the La Jolla array, individuals tended to occupy relatively small, well-defined areas. We found that, overall, tagged fish frequently did not move enough across hour time periods to be detected on multiple receivers (as evidenced by the zero-inflation of our movement rate data). Even the fish that traveled to Del Mar, while being detected on multiple receivers spanning the full extent of the array during it's time in La Jolla, showed remarkably consistent detections (averaging over 60 detections per hour) at the Del Mar receiver for a period of five months. Additionally, that fish was not detected at any of the other more coastal receivers just north of the Del Mar receiver that are part of the larger southern California acoustic telemetry network. Furthermore, most of our tagged fish had the greatest detection rates on receivers near where they were captured. We conducted our tagging efforts outside of MPAs, thus most of our fish tended to occupy areas outside of spatial protection. Despite this trend, the high site fidelity across smaller scales suggests that spatial management such as MPAs could be an effective tool for sheltering some individuals from fishing activity if their range is within the MPA.

Página 20: [14] Eliminado Kayla Blincow 23/09/2023 05:27:00 p. m.

While our sample size is small, our results provide insight into the susceptibility of Giant Sea Bass to their three major contemporary fishing-related threats: targeted commercial catch in Mexico, incidental commercial catch in the US, and incidental

recreational catch. Regarding targeted commercial catch in Mexico, while we do not have evidence of fish tagged in the US crossing the border into Mexican waters, it is not out of the realm of possibility for individuals to travel from the San Diego region to Baja California given records of fish traveling long distances in other studies (Burns et al., 2020; Clevenstine & Lowe, 2021). However, based on our findings of generally high levels of regional and local site fidelity, these types of long-distance excursions are not necessarily the norm for Giant Sea Bass, and fish residing in US waters are likely to be well-protected [MOU1]despite the differences in management between the US and Mexico. Similarly, incidental catch by commercial fisheries in the US does not seem to be a strong threat, at least for Giant Sea Bass in La Jolla. We did not find any evidence that fish travel beyond the scope of the 3-mile nearshore gill and trammel net ban, and the records of long-distance movements from other studies indicate that when Giant Sea Bass do traverse beyond the scope of these spatial gear restrictions it is to transit relatively quickly to other coastal areas (Clevenstine & Lowe, 2021).

The greatest threat to Giant Sea Bass in La Jolla appears to be incidental catch by recreational fisheries. The area where tagged fish spent most of their time is one of the most highly trafficked recreational fishing areas in San Diego (Parnell et al., 2010). While much of the recreational fishing community in San Diego is conscientious of regulations and efforts to support the recovery of Giant Sea Bass, fatalities do occur because of incidental catch. Barotrauma can occur when there is rapid change in pressure, such as when a fish is brought to the surface quickly from depth, resulting in an overexpansion of gases in the body of the fish, especially in the swim bladder (Rummer & Bennett, 2005; Parker et al., 2006; Jarvis & Lowe, 2008). Giant Sea Bass are susceptible to barotrauma and, as large animals, can be difficult to handle properly. One of the strongest indicators of post-release

survival following barotrauma in other species is the ability to release the fish as quickly as possible (Jarvis & Lowe, 2008; Roach, Hall & Broadhurst, 2011). With a species that regularly reaches over a meter in length and is often interacting with anglers on kayaks or larger chartered fishing vessels with raised decks (Parnell et al., 2010), reducing surface time is especially challenging. In the event a fish is released successfully, there is still a chance delayed mortality can occur if there is excessive damage to the swim bladder or other organs (Parker et al., 2006; Jarvis & Lowe, 2008). Furthermore, sublethal effects of catch and release fishing can also negatively impact individuals by decreasing their overall fitness (Cooke & Schramm, 2007; Campbell et al., 2010).

Página 20: [15] Eliminado Kayla Blincow 05/10/2023 09:52:00 a. m.

Giant Sea Bass are a hardy fish that appear to handle stress well as evidenced by their apparent ability to recover from handling during this study. Furthermore, o