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Abstract 16 
Whole mitochondrial genomes have been widely used in phylogenetic analysis, population 17 
genetics and biogeography studies. This study sequenced and characterized three complete 18 
mitochondrial genomes (Dasyhippus peipingensis, Myrmeleotettix palpalis, Aeropedellus 19 
prominemarginis) and determined their phylogenetic position in Acrididae. The length of the 20 
mitochondrial genomes ranged from 15621-15629 bp and composed of 13 PCGs, 2 rRNA, 22 21 
tRNA genes and an AT control region. The arrangement and structure of the mitochondrial 22 
genomes were similar to those of other invertebrates. Comparative genomics revealed that the 23 
three mitochondrial genomes were highly conserved in terms of gene size, structure, and codon 24 
usage, all PCGs were purified selections with an ATN start codon and a TAN stop codon. All 25 
tRNAs could be folded into the typical clover-leaf structure, except tRNA Ser (AGN) that lacked 26 
a dihydrouridine (DHU) arm. Phylogenetic analysis based on 13 PCGs of 34 Acrididae species 27 
and 7 outgroup species revealed that differences in the shape of antennae within the family 28 
Acrididae should be given less weight as a taxonomic character for higher-level classificaiton. 29 
Moreover, the divergence time estimates indicates that in Gomphocerinae, the species with 30 
clubbed antennae were formed within the nearest 18 Mya, and Pacris xizangensis is more 31 
ancient.  32 
 33 
Introduction 34 

Insects originated about 479 Mya in the Early Ordovician, and a pair of antennae can be found 35 
in the evolutionary lineage, which have evolved into various shapes during the subsequent 36 
evolution (Misof et al., 2014). Antennae are important structures for receiving and transmitting 37 
information, sensing chemical odors, humidity, and temperature of the external environment, and 38 
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playing an important role in finding hosts, mating, and defense (Lan, Xiang & Zhu, 2022). The 47 
shape of antennae, the number of segments, the location of antennae and sensilla on the surface of 48 
antennae vary with different insect species.  Li et al. studied the antennal sensilla types and 49 
distribution of 6 species in 3 genera in tribe Mylabrini on the preliminary determination of the 50 
interrelationship and taxonomic status in genus category (Li, Ren & Wang, 2013). Wang et al. 51 
studied the antennal morphology of representative insects in the family Cicadidae, focusing on 52 
the selection of trait characteristics of antennal sensilla and constructing a matrix to reveal the 53 
affinities between related taxa from the perspective of phylogenetic analysis (Wang, Li & Wei, 54 
2018). In Acrididae, the shape of antennae is variable, the external morphology of the antennae in 55 
most species is filiform (antennal flagellum with a circular or ovoid cross section and 56 
approximately equal diameter in cross section), while other grasshoppers are ensiform (antennal 57 
flagellum with some enlarged segments at the base and a triangular cross section) or club shaped 58 
(antennal flagellum with an enlarged end that resembles a club). There are quite different taxa 59 
with clubbed antennae within Acrididae, e.g.: Egnatiinae, Eremogryllinae, Oedipodinae and 60 
Gomphocerinae etc. In addition, clubbed antennae do not occur exclusively in Acrididae. Similar 61 
antennal shapes are found in some closely related groups such as the Eumastacidae ( 62 
Myrmaleomastaxand Pentaspinula) and Tetrigidae (Discotettix), and in distantly related species 63 
such as most butterflies in Lepidoptera, Ascalaphidae in Neuroptera, and some Coleoptera.  64 

Gomphocerinae, a subfamily of Acrididae (Orthoptera), has the type genus Gomphocerus 65 
Thunberg, 1815. Priority for family-group names based on Gomphocerus was established by 66 
Fieber in 1853, and the first use as Gomphocerinae was by Uvarov in 1966 (Cigliano et al., 67 
2023). This subfamily is composed of 192 genera and 1,274 species (Song et al., 2018), it is one 68 
of the most diverse and species-rich taxa in Acrididae, with its main habitats being tundra and 69 
swamps, extreme deserts, and tropical rainforests (Otte, 1981). In this subfamily, the species are 70 
distinguished due to presence of stridulatory mechanism that produces reproductive sounds, 71 
located in the internal femur region (Jago, 1971). Many researchers followed the original 72 
definition of the subfamily, whereas it suggests that the stridulatory mechanism may be a 73 
characteristic originated from convergent evolution which emerged in different moments during 74 
the Gomphocerinae diversification or that originated in the Gomphocerinae ancestral and was lost 75 
in some lineages according to some literature (Chapco & Contreras, 2011; Nattier et al., 2011; 76 
Amorim et al., 2020).  77 

“Gomphocerinae” is derived from the Greek word “gomphos” that meaning “inflated” and 78 
“ceros”, indicating that the distal end of the antennae of some male species has club shape. 79 
According to Yin's perspective, he classified only those species with clubbed shaped antennae in 80 
the subfamily of Gomphocerinae (Yin, 1982). Based on morphological observations, the clubbed 81 
antennae are divided into two types: one with a distinctly inflated in the antennae end, such as the 82 
Dasyhippus Uvarov, 1930 and Gomphocerus Thunberg, 1815, and the other with a slightly 83 
inflated in the antennae end, such as Myrmeleotettix Bolívar, 1914 and Aeropedellus Hebard, 84 
1935. However, most orthopterists believe that the shape of antennae within the Gomphocerinae 85 
is not uniform. In some genera (e.g., Stenobothrus), males and females may have different 86 
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antennae. Moreover, both morphological, karyology, comparative analysis of molecular data on 118 
both nuclear and mitochondrial genomes show that members of this subfamily have quite 119 
different antennae, from filiform to ensiform or clubbed (Sukhikh et al., 2019; Hawlitschek et al., 120 
2022), this could be the result of convergent evolution.  121 

As major consumers of plants, grasshoppers play a crucial role in the functioning of global 122 
ecosystems, are an important component of food chains, and represent important agricultural 123 
pests (Song et al., 2018; Hawlitschek et al., 2017; Naz et al., 2020). Therefore, accurate 124 
identification of species is important for pest control, and requires traditional morphological 125 
methods and further verification from a molecular perspective. With the development of 126 
sequencing technology, molecular phylogenetic can use the differences in DNA sequences 127 
between species at the genetic level to further explore species identification and phylogenetic 128 
relationships. 129 

Insect mitochondrial genomes comprise a double stranded circular DNA molecule structure 130 
with the size of 14kb to 20kb, including 13 protein-coding genes (PCGs), 22 transfer RNAs 131 
(tRNAs), 2 ribosomal RNA genes (12SrRNA, 16SrRNA) and one A+T control region (Boore, 132 
1999; Cameron, 2014; Curole & Kocher, 1999). Because of strict matrilineal inheritance and 133 
highly conserved characteristics, mitochondrial genomes have become important for studying 134 
phylogeny and evolution (Yan et al., 2021; Lu, Huang & Deng, 2023; Zhang et al., 2023). The 135 
phylogenetic relationships of species of Gomphocerinae have already reported by different 136 
molecular phylogenetic analyzes (Zhang et al., 2013; Hawlitschek et al., 2022; Sukhikh, et al., 137 
2019). However, phylogenetic relationships remain largely uncertainwithin Gomphocerinae 138 
(Bugrov et al., 2006; Chapco & Contreras, 2011; Nattier et al., 2011).  In order to investigate the 139 
true phylogenetic position of species within the subfamily Gomphocerinae in the Acrididae, more 140 
powerful molecular markers are needed for further exploration. 141 

In this research, complete mitogenomes of Dasyhippus peipingensis, Myrmeleotettix palpalis, 142 
and Aeropedellus prominemarginis were sequenced and analyzed. We compared the genomic 143 
organization and composition with other Gomphocerinae species and established its phylogenetic 144 
position in Acrididae using two different methods. In addition, we constructed divergent time 145 
trees using BEAST to assess the taxonomic status of these species in Acrididae. The results also 146 
provide contribute to further understanding in taxonomy and phylogeny evolution of the 147 
Acrididae. 148 
 149 
Materials & Methods 150 
Sample collection and DNA extraction 151 

The samples used in this study are shown in Table 1. Specimens were preserved in 95% 152 
alcohol and then transferred to 4°C for cryopreservation. We performed an accurate identification 153 
under stereomicroscope based on its morphological characteristics. Using the Animal 154 
Tissues/Cells Genomic DNA Extraction Kit and according to the manufacturer's instructions, 155 
total genomic DNA was extracted from the hind femora muscle. The quality of the total DNA 156 
was checked with a 1% agarose gel and the concentration was measured with a Nanodrop 2000 157 
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spectrophotometer. DNAs were stored at -20°C for long term storage and further molecular 192 
analyses. 193 
DNA Sequencing and Assembly 194 

Complete mitochondrial genomes were sequenced using the Illumina Novaseq 6000 platform 195 
with 151 bp paired end reads at Personalbio, Shanghai, China. Using the invertebrate genetic 196 
code in Genious 8.1.3 (Kearse et al., 2012), by using the closely related known grasshoppers as 197 
reference sequences, complete mitochondrial genomes of Dasyhippus peipingensis, 198 
Myrmeleotettix palpalis, and Aeropedellus prominemarginis were assembled and aligned by 199 
using ClustalW (Larkin et al., 2007). Complete mitochondrial genome sequences were manually 200 
proofread in Genious 8.1.3 to check the accuracy of the assembly. 201 
Mitogenome assembly and annotation 202 

The mitochondrial genome sequences were annotated using Genious 8.1.3 and online website 203 
GeSeq (https://chlorobox.mpimpgolm.mpg.de/ge-seq.html). The mitochondrial genome map was 204 
visualized by Proksee (https://proksee.ca/). The tRNA Scan-SE v. 1.21(Lowe & Eddy, 1997) was 205 
used to identified tRNAs and confirmtheir secondary structure, and the secondary structure was 206 
visualized using Adobe lllustrator 2020. The nucleotide composition, base composition skew, 207 
codon usage and relative synonymous codon usage (RSCU) of protein-coding genes were 208 
analyzed by PhyloSuite v1.2.2 (Zhang et al., 2019). The skew values were calculated using the 209 
formulae: GC skew = [G - C]/ [G + C] and AT skew = [A - T]/ [A + T] (Perna & Kocher, 1995). 210 
The “ggplot2” package in the RStudio was used tovisualize relative synonymous codon usage 211 
(RSCU). Nucleotide diversity (Pi) and sliding window analysis (sliding window: 100 bp, step 212 
size: 25 bp) of 13 PCGs among 10 Gomphocerinae species was performed using DnaSP 5.0 213 
(Librado & Rozas, 2009). Non-synonymous substitutions (Ka) and synonymous substitutions 214 
(Ks) were calculated for total PCGs by KaKs Calculator Toolbox 2.0 (Wang et al., 2009), and the 215 
evolutionary rate of PCGs was assessed by Ka/Ks value. 216 
Phylogenetic analyses and divergence time estimate 217 

The complete mitochondrial genomes of 34 species from 13 subfamilies within family 218 
Acrididae were selected as ingroup, and seven species within Pamphagidae, Pyrgomorphoidea, 219 
and Tetrigoidea were chosen as outgroups (Table 2). The heterogeneity of nucleotide divergence 220 
of two matrixes were analyzed by AliGROOVE 1.5 (Kück et al., 2014). The nucleotide sequences 221 
of the 13 protein-coding genes were analyzed. Substitution saturation of PCGs based on Xia's test 222 
implemented in DAMBE (Xia, 2017). The 13 PCGs were extracted by PhyloSuite v1.2.2 and 223 
aligned using MAFFT v7.313 (Katoh & Standley, 2013). Intergenic gaps and ambiguous sites 224 
were removed by Gblocks v 0.91b (Castresana, 2000), and the 13 protein-coding genes were 225 
concatenated in PhyloSuite v1.2.2.  226 

The best-fit models of each gene were selected by ModelFinder (Lanfear et al., 2017), and 227 
Maximum likelihood (ML) and Bayesian Inference (BI) were selected based on AICc, the results 228 
are presented in Table S1 and S2.  ML and BI analyses were performed in IQ-TREE (Nguyen et 229 
al., 2015) and MrBays v3.2.7 (Ronquist & Huelsenbeck, 2003), respectively. The ML 230 
phylogenetic analyses were using "Ultrafast" algorithm (bootstrap number=5000). In BI 231 
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phylogenetic analyses, Markov chain Monte Carlo (MCMC) run for 10,000,000 generations, 245 
sampling trees every 10,000 generations with the 25% burn in. The data were imported into 246 
Tracer v.1.7.2 (Rambaut et al., 2018), ESS > 200 proving that the data were converged. The 247 
consensus trees were displayed and managed visually by iTOL (https://itol.embl.de) (accessed 248 
February 2023). 249 

Divergence time in Aricidiae was estimated using the 13 PCGs with relaxed molecular clock 250 
model in BEAST 1.10.4 (Drummond et al., 2012). Coalescent: Constant Size model was used for 251 
the prior tree, ModelFinder was used to find the best model GTR+G+F4. Divergence time tree 252 
nodes from Chang et al. (2020) were used for calibration (separation time 115 Mya for 253 
Tetrigoidea; 71 Mya for Chrotogonidae; 56 Mya for Pamphagidae; 35 Mya for Catantopinae; 33 254 
Mya for Oedipodinae). The Markov chain was run 100,000,000 generations. sampling every 255 
10,000 generations, 25% was burn in. The stability of the results was verified by Tracer v1.7.2 256 
with most parameters having more than 200 effective sample size (ESS) values. Online website 257 
https://www.chiplot.online/tvbot.html was used to visualize maximum clade credibility tree with 258 
95% highest probability density (95% HPD). 259 
Results and Discussion 260 
Genome content and organization. 261 

We sequenced and annotated the whole mitochondrial genomes which performed visual 262 
editing. The complete mitogenome sequence of Dasyhippus peipingensis, Myrmeleotettix 263 
palpalis, and Aeropedellus prominemarginis were 15628 bp, 15621 bp, and 15629 bp, 264 
respectively. These mitogenomes showed typical insect mitogenome structure, which composed 265 
of circular double-stranded DNA molecules (Fig 1). Each mitogenome includes 13 protein-266 
coding genes (PCGs), 22 tRNA genes, 2 rRNA genes and an A+T rich region (control region). 267 
There were 23 genes (including 9 PCGs and 14 tRNAs) are encoded on majority-strand(J-strand) 268 
and 14 genes (including 4 PCGs, 8 tRNAs and 2 rRNAs) are transcribed from the minority-269 
stand(N-strand) (Table 3). 270 

The nucleotide compositions of the three mitochondrial genomes revealed a distinct A/T bias: 271 
75.7% (Dasyhippus peipingensis), 75.2% (Myrmeleotettix palpalis), and 75.0% (Aeropedellus 272 
prominemarginis). All mitochondrial genomes were positive for A+T skew and negative for GC 273 
skew (Table 4). The complete mitochondrial genomes and PCGs of three grasshopper species had 274 
A+T contents higher than 64% at different compositional sites and locations. The control regions 275 
(A+T-rich region) of the mitochondrial genomes were all located between tRNA-Ile and rrnS, 276 
with sizes of 729 bp (Dasyhippus peipingensis), 728 bp (Myrmeleotettix palpalis), and 735 bp 277 
(Aeropedellus prominemarginis), and the A+T content was >83%, which were also referred to as 278 
AT-rich regions. The structures and nucleotide compositions of the three species are generally 279 
consistent with the mitochondrial genome structure of the Acrididae (Zhang et al., 2023; Zheng 280 
et al., 2021), indicating that these mitochondrial genome’s structure is highly conserved (Wei et 281 
al., 2010). 282 

The total lengths of the 13 PCGs of Dasyhippus peipingensis, Myrmeleotettix palpalis and 283 
Aeropedellus prominemarginis are 11190 bp, 11193 bp and 11190 bp, respectively (Table 4), 284 
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accounting for 71.6%, 71.7%, and 71.6% of the whole mitochondrial genome, respectively. The 290 
size of the PCGs ranges from 162 bp (ATP8) to 1719 bp (ND5). Among the 13 PCGs, 9 PCGs 291 
(ATP6, ATP8, COX1, COX2, COX3, CYTB, ND2, ND3, and ND6) are encoded on the J-strand, 292 
while 4 PCGs (ND1, ND4, ND4L, and ND5) are encoded on the N-strand. The third codon 293 
position has the highest A + T content, while the second codon position has the lowest A + T 294 
content. All the initiation codons in the mitogenomes of the three species were ATN, with ATG 295 
being the most frequently used, termination codons were TAN, and TAA was the most frequently 296 
used termination codon. 297 

To indicate the frequency of codon usage, the relative synonymous codon usage (RSCU) 298 
values of the three mitochondrial genomes were visualized (Fig 2; Table S3). Comparative 299 
analysis showed that the synonymous codon preferences were highly conserved among three 300 
mitochondrial genomes. The most frequently used codons are TTT, TTA, ATT, and ATA, 301 
therefore, Phe, Leu (UUR), IIe, and Met are most frequently used amino acids, accounting for 302 
7.86%, 9.67%, 9.31%, and 5.81% of total, respectively. In addition, RSCU analysis also showed 303 
a bias towards using more A/T at the third codon position rather than G/C. Similarly, the 304 
frequency of codon usage indicates the preference of nucleotide A/T in three species. 305 

As other insects, the mitochondrial genome of three species contain 22 tRNA genes with 306 
lengths ranging from 62-71 bp (Table 3), the total length of tRNAs is ranging from 1475 bp 307 
(Dasyhippus peipingensis) to 1476 bp (Myrmeleotettix palpalis and Aeropedellus 308 
prominemarginis). The A+T content of tRNAs is 73.2%, 72.6%, and 72.7% for three 309 
mitochondrial genomes, with positive AT skew and GC skew. Most tRNAs could be folded into 310 
the typical cloverleaf secondary structure, except that tRNA-Ser (AGN) lacked a dihydrouridine 311 
(DHU) arm and formed a simple loop (Fig 3). The secondary structure of tRNAs is usually 312 
conserved in the amino acid acceptor arm and anticodon loop, while DHU and TψC are more 313 
variable. In addition to the classic base pairs A-U and C-G, there are also noncanonical base 314 
pairings (G-U and A-C)  and mismatched base pairs (A-A and A-G) distributed throughout the 315 
tRNA arms, with G-U noncanonical base pairs being the most abundant. 316 

The two ribosomal RNA genes are encoded on the N-strand among three grasshoppers (Table 317 
3), rrnL is located between tRNA-Leu (CUN) and tRNA-Val, while rrnS is flanked by tRNA-Val 318 
and A+T rich regions. The rrnL of Dasyhippus peipingensis, Myrmeleotettix palpalis and 319 
Aeropedellus prominemarginis are 1319 bp ,1316 bp and 1312 bp in length, contains the A + T 320 
content ranging from 77% to 78%, The rrnS is 843bp in Dasyhippus peipingensis and 321 
Myrmeleotettix palpalis, 844 bp in Aeropedellus prominemarginis, with AT content ranging 322 
from73.6% to 75.5%. Therefore, there were no significant differences in rRNAs among three 323 
species. Both rrnL and rrnS exhibit negative AT-skew and positive GC-skew in three 324 
mitogenomes. 325 

Nucleotide diversity analysis can identify regions with large nucleotide divergence, which is 326 
useful for designing species-specific markers in groups within taxa where morphological 327 
identification is difficult and taxonomic boundaries are blurred (Ma et al., 2019; Xie et al., 2011; 328 
Yuan et al., 2022). The nucleotide diversity (Pi values) of 10 species was analyzed by sliding 329 
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window analysis (Fig 4). In the mitochondrial genomes of the 10 gomphocerine species, 332 
nucleotide diversity is highly variable. Nucleotide diversity ranges from 0.08 to 0.132, with 333 
higher nucleotide diversity in genes ND2, ND6, and ATP8, which are 0.132, 0.121, and 0.115, 334 
respectively. In contrast, the nucleotide diversity of COX1, ND1, and ND4L is lower, with 0.094, 335 
0.084, and 0.080, respectively. This indicates that COX1, ND1, and ND4L are relatively 336 
conserved genes. 337 

Ka/Ks indicates the ratio between the non-synonymous substitution rate (Ka) and the 338 
synonymous substitution rate (Ks) of two protein-coding genes, which can be used as an 339 
important marker to estimate the evolutionary rate. We calculated the Ka/Ks values of the 340 
mitochondrial genomes among 10 species of gomphocerine (Fig 5; Table S4). The Ka/Ks values 341 
of all PCGs were less than 1, indicating that these genes evolved under purifying selection and 342 
were evolutionarily conserved in the mitochondrial genome. ND6 had the highest Ka/Ks value, 343 
followed by ATP8 and ND5 and COX1 had minimum Ka/Ks value (Ka/Ks= 0.058) and low 344 
evolutionary rate, indicating that the COX1 gene had strong purifying selection and evolutionary 345 
conservation, which could be used as an important marker to identify relatedness among species, 346 
therefore, a partial fragment of COX1 is often used as DNA barcodes for inferring species 347 
phylogenetic relationships (Hebert, Ratnasingham & deWaard, 2003). In contrast, ND6 had the 348 
highest Ka/Ks value (Ka/Ks=0.293), showing a faster evolutionary rate with less selection 349 
pressure in PCGs, which undergone relatively weak purifying selection. It can be used to assess 350 
intraspecific relationships and is more suitable as a potential molecular marker in population 351 
genetics (Yuan et al., 2021; Pu et al., 2022; Chen et al., 2021). 352 
Phylogenetic analysis. 353 

The heterogeneity sequence divergence of the two matrixes PCG123 and PCG12 was assessed 354 
(Fig 6), both indicated that the mitochondrial genomes of gomphocerine species showed lower 355 
heterogeneity (the similar scores for pairwise sequence comparisons were the lowest). 356 
Furthermore, among the species in Gomphocerinae, Orinhippus tibetanus shows higher 357 
heterogeneity than others. Substitution saturation of PCGs of 41 sequences were tested, and Xia's 358 
analysis showed Iss<Iss.c and p<0.05, revealed that base substitutions had not saturated and 359 
phylogenetic analysis could be performed.  360 

We investigated the phylogenetic position of species among Gomphocerinae within Acrididae 361 
(Fig 7). Tree topologies were consistent from both BI and ML analysis with high bootstrap values 362 
(BS) and Bayesian posterior probability values (PP) in most clades. In Gomphocerinae, except 363 
for Orinhippus tibetanus, all other species showed significant monophyly (PP=100, BS=1). 364 
Orinhippus tibetanus and the species of Oedipodinae are recovered as sister groups, which is 365 
greatly supported (PPs = 1, BSs = 100). The results further support the reclassification of 366 
Orinhippus tibetanus as a member of the Oedipodinae using molecular systematics by Gao et al 367 
(2017). In addition, by means of species descriptions of the genus and type species of the 368 
Orinhippus, previous research has classified the genus as a member of Locustinae 369 
(=Oedipodinae) (Uvarov, 1921; Bey-Bienko & Mistshenko, 1951), and our results corroborate 370 
this ancient view from a molecular point of view.  Therefore, we believe that antennal structure is 371 
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of lesser importance as a higher order taxonomic character for grasshoppers. Moreover, this study 382 
clarifies the phylogenetic status of the genus Aeropedellus in Gomphocerinae, which is recovered 383 
a sister group with the genus Dasyhippus. 384 

Phylogenetic analysis showed that the filiform antennae tend to be ancestral, while the 385 
condensed and expanded antennal flagellum which ends gradually to form a clubbed shape, 386 
appears to be more evolutionarily advanced (Fig 8). This may first occur in micro-club-shape 387 
antennae of plateau species Pacris xizangensis, and the subsequently differentiated genera 388 
Myrmeleotettix and Aeropedellus show similar antennal morphology, in which the male antennal 389 
ends are slightly expanded at 5-7 segments, forming antennal ends that are twice as wide as long. 390 
Starting from Dasyhippus, the male antennal ends are very expanded at 7-8 segments, forming 391 
antennal ends that are significantly wider than long. Similar antennal morphology occurs in 392 
Gomphocerus and Gomphocerippus. The results indicated a possible antennal evolutionary trend 393 
in Acrididae, in which the filiform antennae are more ancient and gradually evolved into clubbed 394 
shape antennae. 395 

Convergent evolution refers to independent lineages evolving similar phenotypes under similar 396 
selective pressures (Fraser & Whiting, 2019), but the phenomenon of convergent evolution is not 397 
easy to identify in evolution. Both Orinhippus tibetanus and Pacris xizangensis are distributed in 398 
Tibet, with very similar altitudes and environmental factors in their habitat, both species are 399 
classified in Gomphocerinae. However, based on phylogenetic analysis using mitochondrial 400 
genomes, Orinhippus tibetanus and Pacris xizangensis are on two independent clades. This study 401 
speculated that Orinhippus tibetanus and Pacris xizangensis may have been subjected to similar 402 
environmental selection pressures that formed similar antennal morphology convergently. 403 

The phylogenetic relationships among Melanoplinae, Catantopinae, and Oxyinae are unclear in 404 
this tree, which may be the result of incomplete sampling. However, since they are not the focus 405 
of this research, no further discussion has been conducted. The low confidence level may be due 406 
to insufficient sampling, and in further studies, a wide range of sampling and multiple methods 407 
may be used to explore the phylogenetic relationships of these subfamily units in Acrididae. 408 
Further understanding of the triggering factors for evolution and the convergence of ecological 409 
forms in entire tree of life may help clarify genomic constraints and historical contingencies that 410 
have led to convergent evolution. 411 
Divergence time estimation 412 

The divergence time estimates (95% HPD) of each species based on the topology recovered 413 
from BEAST analysis were exhibited in Fig 9. The divergence time tree indicated that 414 
Orinhippus diverged first, early in the Oligocene 33 Mya (32-35 Mya, 95% HPD), while the 415 
divergence events of the other clubbed antennae species occurred in late Miocene 19 Mya (15-23 416 
Mya, 95% HPD).The divergence between micro-clubbed-shape and clubbed-shape antennae 417 
occurred between Aeropedellus and Dasyhippus, and before divergence of Gomphocerus and 418 
Gomphocerippus, which was about 8-11Mya. 419 
According to the BEAST analysis, the formation of club shape antennae occurred approximately 420 
18 Mya in Pacris, after which there were two independent evolutionary events, resulting in 421 
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extreme enlargement of the antennal ends (Gomphocerus and Dasyhippus) and slight 458 
enlargement (Myrmeleotettix and Aeropedellus). The clubbed shape antennae are an important 459 
taxonomic characteristic at the family level, which is occurred only in species of the 460 
Gomphocerinae (Yin, 1982; Yin & Xia, 2003). However, the divergence times indicate that the 461 
earliest clade of the gomphocerine grasshoppers, Pacris xizangensis, diverged at approximately 462 
18 Mya (15-23 Mya, 95% HPD). Compared with the divergence times of subfamilies such as 463 
Oedipodinae, Acridinae, and Melanoplinae, the clubbed antennae grasshoppers have a relatively 464 
brief divergence history, may not to reach the family category, which confirms the current 465 
classification system that places them in Gomphocerinae under the tribe Gomphocerini (Otte, 466 
1981).  The results of the divergence time estimates reconfirmed that antennal morphology 467 
should be given less weight as a taxonomic character for grasshoppers higher-level classification. 468 
It also suggests that species within the subfamily Gomphocerinae are not monophyletic. 469 

The limitations of selecting gene fragments or ancestral polymorphism may be the possible 470 
reasons for the inconsistencies. Feng et al. (2022) suggested that constructing a species 471 
relationship tree based on only partial genes and phenotypes may not be reliable, and genome-472 
wide data is the gold standard for reconstructing the evolutionary history of species. However, the 473 
genome of grasshoppers is significantly larger than other insects (Alfsnes, Leinaas &Hessen, 474 
2017; Husemann et al., 2020), whole genome sequencing is expensive and it is difficult to 475 
analyze the data. Therefore, it is often more practical to select more conservative molecular 476 
markers to explore the true evolutionary relationships among species in Acrididae. In addition, 477 
incomplete lineage sorting and convergent evolution may also cause contradictions between 478 
morphology and molecular data. The taxonomic category of clubbed antennae grasshoppers in 479 
Acrididae requires deeper investigation using larger scale sampling. 480 
 481 
Conclusions 482 

The mitochondrial genomes of three Gomphocerinae species, Dasyhippus peipingensis, 483 
Myrmeleotettix palpalis and Aeropedellus prominemarginis were sequenced, annotated, and 484 
analyzed. The results demonstrated that size and structure of the mitochondrial genomes in the 485 
three species were conservative and identical to others in Acrididae. The nucleotide composition 486 
of three species showed a strong AT bias in mitochondrial genome. The codon usage of protein-487 
coding genes was highly conserved, except for tRNA-Ser (AGN), which lacks a dihydrouridine 488 
(DHU) arm, all other tRNAs could fold into a typical cloverleaf structure. There was no 489 
significant difference in the size of rRNAs among three species. The Ka/Ks values of all PCGs 490 
were <1, indicating that these genes evolved under purifying selection.  491 

This study used complete mitochondrial genomes to explore the phylogenetic relationships 492 
among several grasshoppers within Gomphocerinae  and determined the phylogenetic status of 493 
the genus Aeropedellus. The results provide new and important information about the 494 
classification of Gomphocerinae.  In Acrididae, differences in antennal shape should be given 495 
less weight as a taxonomic character for higher-level classification. To deeply explore the 496 
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phylogenetic relationships among grasshoppers, increased sampling of taxa and selection of 629 
multiple genes is needed to reconstruct more comprehensive phylogenetic relationships. 630 
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