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The cultivation of cashew crops carries numerous economic advantages, and countries
worldwide that produce this crop face a high demand. The effects of wind speed and wind
direction on crop yield prediction using proficient deep learning algorithms are less
emphasized or researched. We suggest employing a combination of advanced deep
learning techniques, specifically focusing on Long Short-Term Memory (LSTM) and random
forest models. We intend to enhance this ensemble model using Dynamic Time Warping
(DTW) to assess the spatiotemporal data similarities within Jaman North, Jaman South, and
Wenchi. These three regions play a significant role in cashew production within the Bono
region of Ghana. Among these three municipalities, Jaman South achieved the highest
overall model evaluation scores (RMSE = 0.883, MBE = 0.22, and R2 = 0.835) when
comparing actual and predicted values. In terms of the annual average wind direction,
Jaman North recorded (270.5 SW°), Jaman South recorded (274.8 SW°), and Wenchi
recorded (272.6 SW°). The DTW similarity distance for the annual average wind speed
across these regions fell within specific ranges: Jaman North (±25.72), Jaman South
(±25.89), and Wenchi (±26.04). Following the DTW similarity evaluation, Jaman North
demonstrated superior performance in wind speed, while Wenchi excelled in wind
direction. This underscores the potential efficiency of DTW when incorporated into the
analysis of environmental factors affecting crop yields, given its invariant nature. The
results obtained can guide further exploration of DTW variations in combination with other
machine learning models to predict higher cashew yields. Additionally, these findings
emphasize the significance of wind speed and direction in vertical farming, contributing to
informed decisions for sustainable agricultural growth and development.

PeerJ reviewing PDF | (2023:07:88267:1:2:NEW 20 Sep 2023)

Manuscript to be reviewed



1

2 Effects of wind speed and wind direction on crop yield 

3 forecasting using dynamic time warping and an 

4 ensembled learning model  
5

6

7 Bright Bediako-Kyeremeh1*, Ting Huai Ma2*, Huan Rong3, Benjamin Kwapong Osibo2, Lord 

8 Amoah2, Isaac Kofi Nti4, Lorenzo Mamelona Ambinintsoa1 

9

10 1 School of Electronic and Information Engineering, Nanjing University of Information Science 

11 and Technology, Nanjing, Jiangsu, China

12 2 School of Computer Science, Nanjing University of Information Science and Technology, 

13 Nanjing, Jiangsu, China

14 3School of Artificial Intelligence, Nanjing University of Information Science and Technology, 

15 Nanjing, Jiangsu, China

16 4 Department of Information Technology, University of Cincinnati, Ohio, USA

17

18 Corresponding Author:

19 Bright Bediako-Kyeremeh1

20 219 Ning Liu Road, Nanjing, Jiangsu, 210044, China

21 Email address: brytkyeremeh@gmail.com.com

22

23 Abstract

24 The cultivation of cashew crops carries numerous economic advantages, and countries 

25 worldwide that produce this crop face a high demand. The effects of wind speed and wind 

26 direction on crop yield prediction using proficient deep learning algorithms are less emphasized 

27 or researched. We suggest employing a combination of advanced deep learning techniques, 

28 specifically focusing on Long Short-Term Memory (LSTM) and random forest models. We 

29 intend to enhance this ensemble model using Dynamic Time Warping (DTW) to assess the 

30 spatiotemporal data similarities within Jaman North, Jaman South, and Wenchi. These three 

31 regions play a significant role in cashew production within the Bono region of Ghana. Among 

32 these three municipalities, Jaman South achieved the highest overall model evaluation scores 

33 (RMSE = 0.883, MBE = 0.22, and R2 = 0.835) when comparing actual and predicted values.

34 In terms of the annual average wind direction, Jaman North recorded (270.5 SW°), Jaman South 

35 recorded (274.8 SW°), and Wenchi recorded (272.6 SW°). The DTW similarity distance for the 

36 annual average wind speed across these regions fell within specific ranges: Jaman North 

37 (±25.72), Jaman South (±25.89), and Wenchi (±26.04). Following the DTW similarity 

38 evaluation, Jaman North demonstrated superior performance in wind speed, while Wenchi 
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39 excelled in wind direction. This underscores the potential efficiency of DTW when incorporated 

40 into the analysis of environmental factors affecting crop yields, given its invariant nature.

41 The results obtained can guide further exploration of DTW variations in combination with other 

42 machine learning models to predict higher cashew yields. Additionally, these findings emphasize 

43 the significance of wind speed and direction in vertical farming, contributing to informed 

44 decisions for sustainable agricultural growth and development.

45 Introduction

46 Recently, there has been a significant focus on crop yield, which is influenced by various factors 

47 such as crop genotype, environment, and management practices (Khaki et al., 2020). Machine 

48 learning and deep learning models have been used in different forms to predict crop yield, 

49 providing valuable insights throughout the supply chain from pre-production to post-production. 

50 In the global economy, one crucial objective of accurately predicting crop yield is to ensure an 

51 adequate food supply for nations, including livestock feed and energy resources. This 

52 necessitates the development of a crop prediction model that can deliver high-precision results to 

53 facilitate effective decision-making. Can it be demonstrated that Dynamic Time Warping (DTW) 

54 can be utilized to assess the similarity of targeted features, such as wind speed and wind 

55 direction, in a spatial dataset of cashew crops and produce better predictions than what has been 

56 claimed in the literature about Time-Weighted Dynamic Time Warping (TWDTW) being 

57 superior to DTW? Can DTW be integrated into a learning mechanism to achieve a more accurate 

58 model? To address these questions, we have adopted a learning mechanism framework that 

59 combines Long Short-Term Memory (LSTM), Dynamic Time Warping (DTW), and Random 

60 Forest Regressor (RF). DTW will enhance spatial analysis within the framework by 

61 incorporating specific environmental features obtained from the Predictable of Worldwide 

62 Energy Resources, enhanced Data Access Viewer (POWER | DAVe, n.d.) to predict yield in a 

63 selected cashew-growing geographical area. Machine learning is a set of statistical methods 

64 designed to solve specific tasks such as classification or regression by automatically detecting 

65 patterns and anomalies in data and making decisions or acquiring skills similar to humans, 

66 improving their learning independently over time (Nti et al., 2022; Sagan et al., 2021). Deep 

67 learning models, including CNN and LSTM, have been employed by various authors (Cao et al., 

68 2020; Srivastava et al., 2022; X. Wang et al., 2020) to predict crop yield in wheat and other 

69 crops. Hybrid deep-learning models have also been studied (Khaki & Wang., 2019) to predict 

70 crop yield based on environmental and genotype features. Additionally, machine learning models 

71 have been utilized by (Kumar et al., 2015; Ganapathi et al., 2020; Kalimuthu et al., 2020) and to 

72 predict crop yield. Over the years, deep learning techniques have been extensively applied to 

73 predict crop yield with high accuracy in various crops by authors such as (Khaki & Wang., 2019; 

74 Khaki et al., 2020; X. Wang et al., 2020; Sagan et al., 2021; Tian et al., 2021) investigated crop 

75 yield enhancement in winter wheat using LSTM and remote sensing data. LSTM, a special type 

76 of Recurrent Neural Network (RNN), is capable of capturing long-term dependencies 

77 (Bhimavarapu et al., 2023). It can bridge long time intervals between inputs and analyze 

78 temporal patterns at different frequencies, which is advantageous for analyzing crop-growing 
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79 cycles of varying lengths (Omdena, 2022). Bhimavarapu et al. (2023) also highlighted that 

80 LSTM considers historical values, adjusts itself based on complete patterns, and makes future 

81 forecasts. Furthermore, machine learning regression models have proven to be effective for crop 

82 yield prediction, as demonstrated by authors such as (L. Wang et al., 2016; Rale et al., 2019; 

83 Keerthana et al., 2021; Panigrahi et al., 2023). In fact, (L. Wang et al., 2016) showed that the 

84 random forest model produced more accurate estimates in their research. DTW, as defined by 

85 (Xiao et al., 2023), is an effective method for limited-samples-based crop classification that 

86 compares the similarity between two time-series curves, exhibiting reduced sensitivity to training 

87 samples. We aim to integrate DTW into an ensemble of LSTM and RF models to achieve a 

88 higher accuracy model. Peng et al. (2023) investigated and demonstrated that the revised 

89 TWDTW effectively utilizes crop phenological information and improves the accuracy of 

90 extracting summer crop planting areas on a large scale. This indicates that the initial TWDTW 

91 model did not achieve the desired accuracy, necessitating its reinforcement in their research. 

92 Therefore, we believe that adopting a learning mechanism integrated with DTW to assess 

93 similarities and differences in instrumental environmental features is essential for predicting crop 

94 yield. 

95  

96 Materials & Methods

97 Data

98 We utilized a dataset compiled from various sources by the Ghana Meteorological Agency (GMet, 

99 2021). This dataset included environmental variables like solar radiation, relative humidity, and 

100 rainfall, collected throughout the entire year from 1999 to 2018, encompassing a span of 20 years. 

101 This dataset specifically covered the three municipalities where cashew is grown.

102 We sought cashew yield production data from the Ministry of Food and Agriculture (MoFA, 2021) 

103 for the municipalities being investigated. The data encompassed the study period of 1999-2018 

104 and were focused on cashew-growing regions, namely Jaman North, Jaman South, and Wenchi.

105 We acquired remote sensing information for the three designated study regions from (POWER | 

106 DAVe, 2023). The provided weather parameters included soil moisture, wind speed at 2m, and 

107 wind direction at 10m, spanning the study period of 1999-2018. These supplementary parameters 

108 are vital for ensuring sustainable crop yields, particularly in practices like vertical farming (van 

109 Delden et al., 2021). Figure 1 illustrates the geographical positions of our study areas.

110

111 Model framework

112 LSTM has shown promising results in crop cultivation, as demonstrated by the study conducted 

113 by (J. Wang et al., 2022). Additionally, similar positive outcomes have been observed with 

114 machine learning regressors, as highlighted by (Rale et al., 2019). A prospective avenue involves 

115 integrating mapping techniques to enhance crop prediction by considering land use and land 

116 cover, a concept explored in the works of (Chaves et al., 2021; Feng et al., 2021). 

117 Our proposed model is a fusion of LSTM and RF regression, incorporating Dynamic Time 

118 Warping (DTW). This combined approach is well-suited for time series regression tasks. DTW 
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119 serves as a valuable tool to measure the similarity between two-time series sequences, 

120 particularly when the parameters may have varying lengths or exhibit evidence of time-based 

121 warps. The key purpose of integrating DTW is to align the sequences through warping and 

122 temporal stretching, thus identifying the optimal alignment that minimizes discrepancies among 

123 corresponding nodes. In Figure (2), we illustrate the framework of DTW integrated into the 

124 ensemble deep learning model.

125

126 Model Construction

127 The cashew production dataset was loaded into pandas and ensure data quality by removing 

128 missing values using the dropna function. Outliers were filtered using the interquartile 

129 percentage technique. To scale the features, we applied the MinMax scaler. For the target 

130 variable transformation scaling, we used a one-hot-encoding technique on the categorical feature 

131 and production. To analyze the temporal dependencies in the time series data and identify 

132 essential patterns, we employed an LSTM model. The data was split into training (70%) and 

133 testing (30%) sets. The LSTM model had 50 neurons in the LSTM units and 1 dense unit. The 

134 activation function used was sigmoid. We compiled the model using an Adam optimizer with a 

135 mean square error loss. The LSTM model was trained for 20 epochs with a batch size of 32.

136 Next, we applied the DTW algorithm to compare the predicted sequence with the ground truth 

137 sequence. This allowed us to measure the similarities of environmental features through feature 

138 engineering. We calculated the DTW distances between each time series in the training dataset 

139 and the test dataset. We then printed the DTW distance and the optimal alignment path, which 

140 indicates the indices of the points in time_series1 (wind speed) and time_series2 (wind 

141 direction). The matrix representation of Dynamic Time Warping (DTW) can be computed using 

142 the dot product (DP) between matrices.

143

   
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1 1
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144 Where  stores distance  at the power q
 1,qD x y  1

,i jd x x

145

146 Algorithm for DTW

147 Input: X(t), 0 ≤ t ≤ nT + L is the historical wind speed/direction time series

148 T: represents the length of a complete cashew seasonal period

149 N: represents the number of seasonal periods

150 L: represents the length of the time series of the last incomplete season

151 Output: XnT + L + 1, XnT + L + 2, � XnT + L + predicted length

152 for i = 0: predict length -1 do

153 A = {XnT + i, XnT + 1 + i, XnT + 2 + i, � XnT + L + i}

154 For j = 0:nT � L do

155 Bj  = {Xj, Xj + 1, Xj + 2, �.Xj + L}

156  Cj = DDTW(A,Bj) //{The methods for calculating DTW distance}
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157 End for

158 K = minindex(C)

159 XnT + L + i + 1 = Xk + L + i + 1

160 End for

161 Return XnT + L + 1, XnT + L + 2, � XnT + L + predict length

162 The framework incorporated a random forest regression model to enhance the prediction of the 

163 target variable. This was achieved by utilizing DTW similarity scores for wind direction and wind 

164 speed as additional features, along with other relevant input features, to improve the accuracy of 

165 yield prediction. The random forest model was constructed using a library like sci-kit-learn. The 

166 input features were a combination of LSTM and DTW, while the target variable was the output. 

167 The model was configured with 100 estimators and a random state of 42. To assess the 

168 performance of the random forest regression model, metrics such as Mean Bias Error (MBE), Root 

169 Mean Square Error (RMSE), and coefficient of determination (R2) were used to evaluate the 

170 goodness of fit. The expressions for these regression metrics are as follows:

171 ��� =
1�∑�� = 1

(�� ‒ ��)
172 Where Oi is the observation value and Pi is the predicted value

173 ���� =

�∑� ‒ 1

(�� ‒  ��)2�
174 Where  the predicted value  is the observed value, n number of a given dataset.�� ��
175 �2

= 1 ‒
�∑� = 1

(�� ‒  ��)2

�∑� = 1

(�� ‒ ��)2

176 Where  is the predicted value and  is the mean value�� ��
177 Results

178 LSTM is highly effective in handling time series data, thanks to its ability to control data flow 

179 through its gates. DTW is used to assess similarities in additional features, while the random 

180 forest regressor helps evaluate model errors and biases. The accuracy of the model was measured 

181 using various metrics for three municipalities: Jaman North (MBE= 0.231, RMSE= 0.802, R2= 

182 0.742), Jaman South (MBE= 0.22, RMSE= 0.883, R2= 0.835), and Wenchi (MBE= 0.212, 

183 RMSE= 0.746, R2= 0.702). Table 1 displays the metric scores, and Figure 3 illustrates a bar 

184 chart with scattered plots showing the annual average scores of the targeted features over a 16-
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185 year study period. Providing a comprehensive view of the relationship between actual values and 

186 predicted values across the study areas in a single snapshot.

187 These scores indicate the exceptional performance of our model, which aligns with the findings 

188 of (J. Wang et al., 2022). The dynamic time-warping technique allowed us to evaluate 

189 similarities in spatiotemporal data such as wind speed and wind direction. Unlike (Chaves et al., 

190 2021), who only considered the harvest period, we analyzed the entire year, including the 

191 flowering and fruit development stages of the cashew crop, as well as the impact of wind speed 

192 and direction during the harvest period on yield. Figure 4 (a), (b), and (c) showcase a line 

193 regression chart for RMSE, R2, and MBE. These charts utilize evaluation metrics to visually 

194 illustrate the correlation between the model (wind speed and wind direction) and observed 

195 (production) variables in the dataset. This is crucial as production is primarily influenced by 

196 environmental factors, particularly wind speed and wind direction.

197 The chart, which has a slope trend line of 1:1, visually demonstrates the performance of the three 

198 municipalities based on the metric index. The blue "dot" symbols represent a variable (wind 

199 speed, wind direction, and production). 

200 The annual average wind direction for Jaman North was (270.5 SW), Jaman South was (274.8 

201 SW), and Wenchi was (272.6 SW). The DTW similarity distance for the annual average wind 

202 speed ranged from (±25.72) for Jaman North, (±25.89) for Jaman South, and (±26.04) for 

203 Wenchi. Graphical representations in Figure 5 (a) and (b) showcase the performance of the DTW 

204 model in relation to wind speed (measured in km/h) and wind direction (measured in xº) across 

205 the three municipalities and the twenty-year duration of the study. 

206 Discussion

207 We evaluated our model using metrics such as MBE, RMSE, and R2 for the three (3) cashew 

208 crop-growing areas over the study period of 1999 to 2018. To compare the similarity or calculate 

209 the distance between two arrays or time series with different lengths, we used Dynamic Time 

210 Warping (DTW) since it is invariant to time shifts between series. Our research aimed to 

211 calculate the average wind speed in km/h and wind direction in the North, South, East, and West 

212 on the cardinal directional compass for the three study areas of the cashew crop and assess their 

213 effects on crop yield. 

214 Previous research, such as that by (X. Wang et al., 2020), focused on using the LSTM model 

215 with Modis LAI products and the time-weighted dynamic time warping (TWDTW) variant of 

216 DTW to predict the yield of winter wheat in Henan Province, China, but did not consider the 

217 effects of wind speed and wind direction on yield. Similarly, (Chaves et al., 2021; J. Wang et al., 

218 2022) discussed the role of TWDTW in determining the area of the crop but overlooked the 

219 impact of wind speed and wind direction. Our results align with their findings, showing high 

220 yields in Jaman South, Jaman North, and Wenchi, and highlighting the influence of wind speed 

221 and direction in the under-studied municipalities.

222 The matrix table indicates that Jaman South performed the best among the cashew-growing 

223 areas, excelling in wind speed determination, while Wenchi ranked second and performed better 
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224 in wind direction. The geographical location of Wenchi on the western side of Jaman North and 

225 South may explain its higher wind direction. Jaman South had a high wind speed, which 

226 contributed to its high-yield production. The DTW model effectively analyzed the similarity of 

227 spatial data, demonstrating its effectiveness for spatiotemporal analysis. 

228 While previous studies have used TWDTW as a standalone model for classification, our research 

229 suggests that using DTW with the right ensemble deep learning models can yield better results 

230 when identifying key environmental parameters for crop yield. The DTW model accurately 

231 captures the appropriate wind speed for Wenchi, aligning with its production levels, while Jaman 

232 South experiences a notable influx of air in its direction. The significance of wind speed and 

233 wind direction in cultivating crops, especially cashew crops, supports the implementation of 

234 vertical farming for sustainable agriculture, as emphasized by (Kalantari et al., 2018; Beacham et 

235 al., 2019; van Delden et al., 2021).

236 Conclusions

237 The necessity of increasing crop yield to meet growing supply demands has been emphasized, 

238 and cashews are no exception due to their significant benefits. This highlights the need for 

239 further research to enhance cashew yield using DTW and its variants. Our study aimed to explore 

240 how DTW could be utilized to identify similarities in targeted features (wind speed and wind 

241 direction) within the cashew spatiotemporal dataset, surpassing previous claims that TWDTW is 

242 superior to DTW in terms of prediction accuracy. Additionally, we aimed to determine the most 

243 effective integration of DTW into a learning mechanism to achieve a higher accuracy model. Our 

244 proposed model yielded successful results, exhibiting fewer errors with regression metrics such 

245 as MBE, RMSE, and R2.

246 Our proposed method leverages LSTM for sequence modeling and DTW for similarity 

247 assessment. Additionally, the method incorporates random forest regression for ensemble-based 

248 predictions.
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Figure 1
Study Area of Three Municipalities (Jaman North, Jaman South, and Wenchi). Insert map
of West Africa and Ghana. Source: ArcGIS

Geographical map showing the location of the three municipalities known for large cashew
production in Ghana
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Figure 2
The architecture of LSTM/DTW/RF

The model architecture informs readers how the inception point of the model where data is
accepted through the LSTM model, then the DTW model where the targeted
variable/parameter similarity evaluation is computed then thr last layer where random forest
predict result through best decision
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Figure 3
Overall model performance visualization with an overlay bar-with-scatter Plot
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Figure 4
Regression Charts for the study area performance evaluation metric (RMSE, MBE and
R2)
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Figure 5
Study Area Performance on Wind Speed and Wind Direction Results Line Chart
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Table 1(on next page)

Regressor Matrix Score for the model ablation of the cashew crop-growing
municipalities

MBE/RMSE can range from 0 to (n), where the closer the score is to 0 the better performing
the model is. R2 0.75 - 1 a substantial amount of variance simplified
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1 Table 1. Regressor Matrix Score for the model ablation of crop-growing municipalities

   Municipalities             MBE                    RMSE R2

   Jaman North

   Jaman South

   Wenchi

             0.231

             0.22

             0.212 

            0.802

            0.883

            0.746

0.742

0.835

0.702

2
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