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ABSTRACT

Background. Southeast Asia has experienced widespread deforestation and change in
land use. Consequently, many reforestation projects have been initiated in this region.
However, it is imperative to carefully choose the tree species for planting, especially in
light of the increasing climate variability and the potential alteration of plantation on
the watershed water balance. Thus, the information regarding water-use characteristics
of various tree species and sizes is critical in the tree species selection for reforestation.
Methods. We estimated tree water use (T') of dominant species including Syzygium an-
tisepticum and Adinandra integerrima, hereafter Sa and Ai, respectively, in a secondary

Submitted 17 July 2023 tropical forest in Khao Yai National Park, Thailand, using sap flow data, and compared
Accepted 5 November 2023 T between species and size classes. Additionally, we evaluated the responses of T of
Published 30 November 2023 both species in each size class to environmental factors including soil moisture and
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INTRODUCTION

Over an annual timescale with negligible change in total water storage, precipitation is
coarsely partitioned into evapotranspiration and runoff in the forest water cycle (Wang ¢
Tang, 2014). Because tree water use (T') constitutes 40-90% of evapotranspiration (Jaseclhko
et al., 2013; Deb Burman et al., 2019), the quantity of T affects the amount of precipitation
that ultimately contributes to runoff, impacting the downstream ecosystems. With the
projected increases of global climate change impacts, T may be altered through changes
in environmental conditions including temperature and precipitation regimes, severity
of weather and climate extremes such as droughts and floods (Menezes-Silva et al., 2019).
Such changes will certainly affect the responses of T to environmental factors, therefore
governing the outflow from forests. Thus, evaluating such responses would provide insights
into environmental management that involves water cycling, such as predicting runoff from
forests which may result in floods or droughts in the downstream ecosystems.

The variations of T' are mainly related to tree size (Meinzer et al., 2005; Jung et al., 2011)
and environmental factors including soil water availability, solar radiation, and vapor
pressure deficit (VPD) which represents atmospheric humidity (Xu ¢ Yu, 2020; Gutierrez
Lopez et al., 2021). Several previous studies reported significant variations of T with tree
size. The relationship between tree diameter and T was found among several species of
angiosperms (Meinzer et al., 2005), Eucalyptus crebra and Callitris glaucophylla in evergreen
woodland in Australia (Zeppel & Eamus, 2008), and trees in a temperate mixed-deciduous
forest in South Korea (Jung et al., 2011). Additionally, different tree sizes have been linked
to different responses to droughts with large trees being more vulnerable than small
trees to drought because of greater exposure to atmospheric demand (Bennett et al., 2015;
Stovall, Shugart & Yang, 2019). However, information of the effects of tree size on T is
still lacking in secondary tropical forests. The effects of environmental factors on T vary
in different forest types and regions. For example, when soil moisture is not limited, T
strongly responds to VPD, which increases when the air humidity decreases, and solar
radiation in an old-growth spruce forest in the Ore Mountains, Germany (Clausnitzer et
al., 2011). Under soil water stress, Brum et al. (2018) found that T could decrease with
increasing VPD during an extreme drought in an Amazonian tropical rainforest. On the
other hand, Spanner et al. (2022) found that the sensitivity of T to soil moisture varied with
species, with some increasing and some decreasing during the dry period in an old-growth
upland forest in the central Amazon. Thus, changing environmental conditions can alter
the response patterns of 7.

Forests in Southeast Asia provide a wide range of important ecosystem services to many
people and communities. Unfortunately, these forests have been disrupted by widespread
deforestation and land use change (Stibig et al., 2014; Zeng et al., 2018), resulting in various
stages of forests in the same area (Curtis et al., 2018). In particular, the areas that were
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previously used for agricultural purposes have been abandoned for several years, and
naturally or artificially transformed into secondary forests. Consequently, many of the
degraded forests may not contribute much to improving biodiversity and mitigating climate
change through carbon dioxide removal from the atmosphere. Therefore, reforestation
projects have emerged in many countries in the tropics, highlighting the use of native
species to avoid competition with other native trees, which can help restore biodiversity
and sequester carbon (Hooper, Condit ¢ Legendre, 2002). However, planting more trees
in existing secondary forests may raise some concerns because trees are potentially heavy
water users and might deplete water resources (Jackson et al., 2005). Also, reforestation may
not be desirable in certain areas because it may reduce water availability for the existing
trees and increase the evapotranspiration rate (Van Kanten ¢ Vaast, 2006) and thus leading
to reductions in runoff (Li, Xu ¢ Sun, 2014). With these regards, an appropriate selection
of tree species for planting is among the priority tasks for forest restoration since species-
specific water-use characteristics play an important role in changing the components of
the forest hydrologic cycle (Van Dijk ¢» Keenan, 2007). However, the availability of such
information is still limited in tropical forests, especially in secondary ones. Hence, it is
imperative to evaluate the response patterns of T to environmental factors in secondary
tropical forests that would offer necessary information on species-specific water-use
characteristics.

Khao Yai National Park (KYNP) is a UNESCO world heritage site. Most of the areas
of KYNP consist of a mosaic of different stages of vegetation succession with more
than 60% of the forests undergoing different stages of regeneration while the remainder
are old-growth forests. Thus, secondary forests in KYNP are important to biodiversity
conservation and climate change mitigation through the regulation of atmospheric carbon.
With these regards, this study was performed in a secondary tropical forest at KYNP,
representing a young forest aged ~10 years. In this study site, the dominant tree species
include Syzygium antisepticumn and Adinandra integerrima. Syzygium antisepticum can be
found as the dominant species in other tropical forests such as tropical evergreen swamp
forests in Cambodia (Theilade et al., 2011), dry evergreen forests in northeastern Thailand
(Bunyavejchewin, 1999) and tropical coastal sand dune in southern Thailand (Marod et
al., 2020). Adinandra integerrima can be found in other parts of Thailand, such as Doi
Inthanon National Park in the northern region (Georgiadis, 2022) and other countries in
the tropics, such as Cambodia, China, Laos, and Vietnam (Tagane et al., 2020). Despite the
widespread presence of these species in Thailand and neighboring countries of Southeast
Asia, the information on the water-use characteristics of both species is still lacking.
Therefore, this study aims to (1) estimate T of Syzygium antisepticum and Adinandra
integerrima in a secondary tropical forest in KYNP, and (2) evaluate the responses of T
to environmental factors of both species in different tree size classes. The collected data
covered a period from 18 September 2020 to 26 November 2022, including a wide range of
environmental conditions. The outcome of this study would improve the understanding
of species-specific water-use characteristics in secondary forests which can support policy
design on the management of tropical forests and water resources. In addition, findings
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from this study may provide a recommendation for selecting appropriate tree species for
forest restoration in the tropical region.

MATERIALS & METHODS

Study site and measurements of the environmental variables

The study was conducted in Khao Yai National Park, Thailand (14°26'31”N, 101°22'55”E).
Khao Yai National Park covers an area of about 200 km? in Nakhon Ratchasima, Saraburi,
Prachinburi and Nakhon Nayok Provinces in Thailand. This region is dominated by
monsoon climate, where the dry season usually lasts from November to April and from
May to October for the wet season (Brockelman, Nathalang & Maxwell, 2017). Based on
recorded data between 1994-2018, the overall mean annual temperature was 22.4 °C.
The mean annual rainfall was 2,100 mm. Khao Yai National Park is characterized by
different stages of forest succession comprising primary forests and various stages of
secondary forests. In this study, we performed the study in a secondary forest representing
a young forest in Nakhon Nayok Province. The study site has an area of 2 ha and an
age of approximately 10 years (Chanthorn, Hartig ¢» Brockelman, 2017). Its mean canopy
height is 15 m and its tree density of 1,226 trees ha~!. The soil is gray-brown ultisol which
was degraded by shifting agriculture by burning before regeneration (Chanthorn et al.,
20165 Chanthorn, Hartig ¢» Brockelman, 2017). The bulk density was 1.24 g cm~2 and soil
texture was sandy clay-loam with the sand contents of 64.4% and 56.4% as measured in
September 2020 and February 2021, respectively (Rodtassana et al., 2021). In 2020, a 20
m tall tower was constructed for installing weather sensors above the forest canopy in the
plot. Environmental conditions that influence T including atmospheric humidity, solar
radiation, and soil moisture have been continuously monitored since then. Air temperature
(T, °C), relative humidity (RH, %), and photosynthetically active radiation (PAR, pmol
m~2 s7!) were measured by a temperature and relative humidity probe (EE181-PT;
Campbell Scientific, Logan, UT, USA) and a quantum sensor (LI190R-PT, Campbell
Scientific), respectively. Soil moisture sensors (Water content reflectometer, CS616-PT-U;
Campbell Scientific) were installed to monitor volumetric soil moisture at 5, 10, 15, and
30 cm depth because tree roots may access water from multiple depths in the soil (Wang
et al., 2019). We randomized the points to install soil moisture sensors around the tower.
Two soil moisture sensors were installed at each depth of 5, 10, and 15 cm. However, soil
moisture at 30 cm depth was monitored by one soil moisture sensor because soil moisture
in subsoil was less sensitive to changing environmental conditions than topsoil (Rong et
al., 2017). Rainfall (mm) was measured by tipping rain gauge bucket (TE525MM-PT;
Campbell Scientific). All sensors were connected to a datalogger (CR1000 series; Campbell
Scientific, Logan, UT, USA) which recorded data every 30 min. Air temperature and relative
humidity are used to calculate vapor pressure deficit (VPD, kPa), which is the difference
between actual vapor pressure and saturated vapor pressure (SVP), from the following
equations (Monteith & Unsworth, 1990).

SVP = 610.7 x 10575+ (1)
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VPD={(1—— ) xSVP. (2)
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Because we did not have any information regarding rooting depth, which determines the
depth of soil moisture data to be used in the analysis, we used the average of soil moisture
data from all soil water probes, covering soil depth up to 30 cm, as the soil moisture data
(0, m>m™2) for further analysis. Based on previous studies in the central Amazon which
reported the most fine root distribution within 20 cm soil depth (Noguchi et al., 2014),
we assumed that the average soil moisture across 30 cm depth represents the soil water
that largely influences tree water use. To facilitate the cross-site comparison with other or
future studies, relative extractable water (REW) was used in the analysis and was calculated
according to Granier, Loustau ¢ Bréda (2000)

_ 60 —0m
" PFC—6m

where 6 is the average soil moisture of all sensors across 30-cm soil depth, 6y, is minimum

REW (3)

volumetric soil moisture and 6pc is the soil water at field capacity. In the plot where
soil water at field capacity has not been measured, maximum volumetric soil moisture
during the study period can be used as Og¢ for the REW calculation (Tor-ngern et al., 2018).
Accordingly, we used the maximum and minimum 6,yerage that were determined from our
data during the study period to represent gc and 6y, respectively.

Species selection and tree sampling

The tree species were chosen based on the relative abundance of basal area in this plot,
which was calculated from the basal area of one species relative to total basal area of all
species within the site. To examine the difference in tree water use, two dominant tree
species with similar leaf phenology were selected for this study. As a result, Syzygium
antisepticumm and Adinandra integerrima, hereafter Sa and Ai, respectively, which have
evergreen leaf habit, were chosen to measure water flow rate. We attempted to select trees
to cover the range of size distribution within the plot, based on the inventory data from the
site (W Chanthorn, pers. comm., 2018), by partitioning the tree size classes into 10-cm
intervals and sampled three trees from each size class. However, due to the requirement
of trees being within 25 m radius from the data logger, 4 trees of Sa and 5 trees of Ai were
selected for the measurement (Table 1).

Sap flux measurement and scaling up from the point measurement
to whole-tree water use

Sap flux density (Js), which represents water mass flowing through a unit area per time in
trees, was measured using self-constructed thermal dissipation probes (TDPs) (Granier,
1985). Each TDP set contains one non-heated and one heated probe being supplied with
a constant ~0.2 W electrical power. Before inserting TDPs into the stems, debarking
around the drilling point was done before drilling the holes for TDP installation. Two
holes were drilled with approximately 10-15 cm spacing between two probes. Based on
previous studies in pine trees, the patterns of radial variation in J; along the sapwood
depth were observed with higher J; in the outer sapwood layers than in the inner sapwood

Ampornpitak et al. (2023), PeerJ, DOI 10.7717/peerj.16525 5/24


https://peerj.com
http://dx.doi.org/10.7717/peerj.16525

Peer

Table 1 Information of the selected study trees. DBH refers to the diameter at breast height in cm.
Sapwood area (in cm?) was estimated using an allometric equation derived from dominant species in
the study site (Yaemphum, Unawong & Tor-Ngern, 2022).

Species DBH Sapwood
(cm) area (cm?)
Adinandra integerrima 13.7 135.92
Adinandra integerrima 6.5 30.64
Adinandra integerrima 11 87.67
Adinandra integerrima 5.3 20.38
Adinandra integerrima 11.3 92.51
Syzygium antisepticum 24.8 444.88
Syzygium antisepticum 224 363.02
Syzygium antisepticum 18.7 253.09
Syzygium antisepticum 17.8 229.34

layers (Ford et al., 2004; Oishi, Oren ¢ Stoy, 2008). Therefore, ignoring the radial variation
of Js may produce an error when scaling up from J; to T. However, previous studies in
tropical forests that use similar sap flow sensors only measured Js at the outer sapwood
because of the unknown pattern of sapwood area in tropical tree species (Horna et al., 2011;
Raquel Salas-Acosta et al., 2022). In addition, most tropical trees have diffuse-porous wood
without distinct annual rings and tend to have a sap flow rate that is similar along the radial
sapwood depth (Lu, Urban ¢ Ping, 2004). Therefore, we assumed that J; was uniform along
the sapwood depth of the selected trees when scaling from single-point measurements to
the whole-tree level, and only measured J; at the outer 2-cm sapwood at breast height
(~1.3 m above ground). In addition, azimuthal variation of J; may produce variation when
scaling up from Js to T (Lu, Miiller &~ Chacko, 2000; James et al., 2002; Tateishi et al., 2008).
This variation depends on the effect of forest canopy shading by neighboring trees. In other
words, trees may be obstructed from sunlight by canopy shading from surrounding trees
leading to varying J; along the circumference. In this study, the surrounding trees were
equally distributed around the measured trees. Nevertheless, we installed two sensors in the
north and the south directions in some trees which may be influenced by canopy shading
at certain times during the day. Data from TDPs were recorded as 30-minute means

of voltage difference between the probes (AV, mV) by the same data logger (CR1000;
Campbell Scientific, Logan, UT, USA) that recorded environmental data. For the analysis,
the voltage difference was converted to J, (g m ™2 s~!) using an empirical equation (Granier,
1987):

(4)

B » AV, — AV 1.231
J;=11899%x 10 "° x| ——

AV

where AVy, is the maximum voltage difference under no flow conditions which usually
occurs at night and when VPD is low. The Baseliner program version 4.0 was used to
select AV, to calculate J (Oishi, Hawthorne ¢ Oren, 2016). The program automatically
determines the maximum daily AV to represent AV,,. Maximum voltage difference may
occur every night if air humidity is very high, or VPD reaches 0 kPa, resulting in potentially
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zero water flow. However, this assumption is not valid for many ecosystems due to
nighttime transpiration (e.g., Caird, Richards & Donovan, 2007; Forster, 2014; Dayer et al.,
2020) or recharge of stem water (Phillips ¢ Oren, 1998). For these reasons, no universal rule
exists for identifying A Vy,. The Baseliner software takes an approach to AV,, estimation
by first identifying points in time where flow is likely zero and allowing the user to visually
inspect and modify those points.

To scale up from Js to T, we employed the following approach. Daily sum J; (g m—2
day~!) was considered in the analysis to avoid issues related to the nighttime recharge of
stem water that may increase as soil moisture becomes more depleted (Phillips ¢ Oren,
1998). When nighttime recharge increases with decreasing soil moisture, the proportions
of sap flux at night relative to sap flux during the day become larger. This problem can be
avoided when calculating T as a daily sum (Phillips ¢ Oren, 1998). For trees with sensors
in the north and the south direction, daily sum J; from both sensors were averaged to a
mean daily Js (Jmean) for each of them (Kunert et al., 2012). The following equation was
used to estimate T

T =1800 X 107 X Jimean X Asg (5)

where T is daily tree water use (L d™1), Jmean is mean daily sum Js (g m~? day 1) and Ag
is sapwood area (cm?). In both species, As was estimated based on an allometric equation
which was derived from 13 dominant species in an old growth and a secondary forest (the
same plot as this study site) at Khao Yai National Park as follows (Yaemphum, Unawong ¢
Tor-Ngern, 2022):

y=0.728x 198 (6)
where y is sapwood area (cm?), x is diameter at breast height (cm).

Data analysis
For the analysis, we used the environmental data and T between 18 September 2020
to 26 November 2022. The data covered two years which represents a wide range of
environmental conditions. To avoid the potential effects of wet canopy conditions that
may inhibit T when the leaf surface is covered with water droplets (Aparecido et al., 2016),
we selected the days under rain-free conditions to perform the analysis.

To evaluate the responses of T to environmental factors including VPD and REW,
we performed a boundary line analysis (Schifer, Oren ¢ Tenhunen, 2000) to obtain
the response of T to environmental factors under non-limiting conditions. Trees were
categorized based on the size distribution of each species as presented in Table 1 into large
trees (DBH > 10 cm for Ai and DBH > 20 cm for Sa) and small trees (DBH <10 cm for Ai
and DBH <20 cm for Sa). This results in 2 trees for both species in the small class, and three
Ai trees and two Sa trees in the large class. After that, T from all trees in the same category
was averaged to mean T (Tiean) for each day. Tree water use varies with VPD, REW and
PAR (Phillips & Oren, 2001). Based on our data during the study period, VPD and PAR
were highly correlated (r =0.79, p <0.001), therefore we focused on VPD and REW as
environmental driving variables. We performed boundary line analysis after partitioning
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data into three REW classes based on the REW distribution including low soil moisture
(REW < 0.1), intermediate soil moisture (REW 0.1—0.4), and high soil moisture (REW
> 0.4). With two classes of tree size (large and small), we had six subsets of data in both
species. Each subset was subjected to the boundary line, designed to select data representing
the maximum Tyean for each tree size in each REW class along the range of VPD. The
upper boundary line was derived by (1) partitioning Tpean data of each REW class into
at least five VPD intervals for appropriate number of data points in regression analysis
(at least five data points per analysis), (2) calculating the mean and standard deviation
Of Tmean in each interval, (3) removing outliers using Dixon’s test, (4) selecting the data
falling above the mean plus one standard deviation and (5) averaging the selected data for
each VPD interval. For each tree size and REW class, the mean Te.n values of all VPD
intervals obtained in step (5) were analyzed by regression analysis. All regression analyses
were performed in SigmaPlot version 12.0 (Systat Software, Inc., San Jose, CA USA). Data
management and analysis were performed with Rstudio, version 1.3.1073 (RStudio Team,
2020).

RESULTS

Environmental conditions in the study site

During the study period, there were 52% rainy and 48% rain-free days. The average daily
VPD and PAR inversely corresponded with rainfall, being low when rainfall occurred and
vice versa. The maximum and minimum values of PAR during the study period were 575
and 57.3 wmol m~2 s~ 1, respectively, with an average of 345.76 4-103.47 jumol m~2 s~ 1,
The average daily VPD was 0.34 £0.23 kPa. Volumetric soil moisture of all depths was
averaged into Oayerage. The maximum and minimum 6Gyyerage during the study period were
0.2 and 0.04 m’m—3, respectively. The Oyyerage Was then used to calculate REW with an
average value of 0.44 £ 0.25. Figure | summarizes the environmental conditions during

the study period.

Tree water use of Syzygium antisepticum and Adinandra integerrima
Tree water uses of both species during the study period are shown in Fig. 2. The average
T values with one standard deviation of Sa and Ai were 21.48 & 7.73 and 10.01 £ 4.04
L d7!, respectively. Comparing T between both species, we found that the T of Sa was
significantly higher than that of Ai under high soil moisture and high light conditions
(p < 0.0001).

Responses of tree water use to environmental factors in different tree
size classes

Figure 3 summarizes the results of the responses of T' to VPD under various REW ranges,
with the regression statistics in Table 2. At low soil moisture (REW < 0.1, black circles),
T of Sa increased with increasing VPD and gradually saturated at high VPD while that of
Ai did not respond to the changing VPD, regardless of tree size. Under intermediate soil
moisture conditions (REW 0.1— 0.4, gray squares), the T of both species in both sizes did
not respond to VPD. Under high soil moisture (REW > 0.4, red triangles), the T of both
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Figure 1 Environmental conditions during the study period. Daily values of (A) vapor pressure deficit
(VPD in kPa; black line) and photosynthetically active radiation (PAR in jimol m~2 s™!; red line) and (B)
rainfall (mm; gray bar) and relative extractable water (REW; red line).

Full-size & DOI: 10.7717/peer;j.16525/fig-1

species in both sizes followed the saturating exponential pattern as previously described
in the case of low soil moisture. However, the sensitivity of increasing T at low VPD was
different between the species and size class. In both species, T of large trees was less sensitive
to rising VPD than small ones (Table 2).

DISCUSSION

Overall, the environmental data during the study period represent a wide range of
environmental conditions which facilitates the analysis of T responses to the environments.
The maximum T of Sa in our data (47.54 L d~!) was higher than the values that were found
in T of Syzygium cordatum in a peat swamp forest in South Africa (Clulow et al., 2013),
ranging from 30 L d~! in the winter to 45 L d~! in the summer. Moreover, our average T of
Sa was within the range of T found in Eugenia natalitia (2 to 28 L d~!), which is the same
family as Sa, as reported by the same study. Although we did not find studies that reported
T values of Ai or similar genus, T of Ai was within the range of T (10 to 1,180 L d™!)
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Figure 2 Daily tree water use. Daily sum of tree water use (L d™') of Syzygium antisepticum (red line)
and Adinandra integerrima (black line), averaged across all trees for each species, throughout the study pe-
riod from 18 September 2020 to 26 November 2022.
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Table2 Summary of regression statistics.

Species Size classes REW classes Relationships r? P
<0.1 T =22.04 x (1 — e~303xVPD) 0.77 0.049
Small (DBH
. 20 cm) 0.1-0.4 n/a 0.14 0.538
Syzygium <20 cm —8.55x VPD
S >0.4 T =27.82x (1—e %>*"P) 0.80 0.042
antisepticum
(Sa) <0.1 T =56.63 x (1 — e +30xVPD) 0.76 0.023
Large (DBH >
0.1-0.4 n/a 0.44 0.56
20 cm)
>0.4 T =51.34 x (1 — e 675%VPD) 0.85 0.027
<0.1 n/a 0.13 0.868
Small (DBH
Adinand <10 cm) 0.1-0.4 n/a 0.21 0.440
inandra
. . >0.4 T =6.65 x (1 —e~ 753 VD) 0.96 0.003
integerrima
(Ai) <0.1 n/a 0.45 0.143
Large (DBH >
0.1-0.4 n/a 0.11 0.589
10 cm)
>0.4 T =29.25 x (1 — e~308xVPD) 0.99 <0.0001
Notes.

T is tree water use (Ld—1), VPD is vapor pressure deficit (kPa) and r? is the coefficient of determination and p value for each regression result. The analyses were based on sig-
nificance level of 0.05. n/a indicates no significant relationship was found.
found in 93 tree species from 52 reviewed publications that estimated whole-plant water
use for trees growing in worldwide natural forests or plantations (Wullschleger, Meinzer ¢
Vertessy, 1998). The study reported that the rates of water use ranged from 10 L d~! for
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Figure 3 Relationship between tree water use and vapor pressure deficit under different soil moisture
conditions. Relationship between tree water use (T; L d™!) and vapor pressure deficit (VPD; kPa) of Syzy-
gium antisepticum in (A) large and (C) small size classes and Adinandra integerrima in (B) large and (D)
small size classes under low soil moisture condition (REW 0.1, circles), under intermediate soil moisture
condition (REW 0.1-0.4, squares), and under high soil moisture condition (REW > 0.4, triangles).
Full-size G4l DOI: 10.7717/peerj.16525/fig-3

trees in a 32-year-old plantation of Quercus petraea L. ex Liebl. in eastern France to 1,180
L d~! for an overstory tree, Euperua purpurea Bth., growing in the Amazonian rainforest.
Overall, the T values of both species in this study were within the wide ranges found in
previous studies in tropical settings (Table 3).

Previous studies showed that the variation of J; among trees of different ages and sizes
is relatively low (Kumagai et al., 2007; Jaskierniak et al., 2016); thus, sapwood area may be
a major determinant of T in this study. Based on our data, J; of trees was similar between
both species (p = 0.278), suggesting the greater contribution of sapwood area or tree size to
the significant difference in T. Additionally, higher water use in large trees may imply their
deeper access to groundwater whereas small trees may only consume water from shallow
soil as previously shown in a study investigating water use by Acer saccharum Marsh. in
different sizes (Dawson, 1996). Moreover, other research in tropical forests reported that
large trees consume much more water relative to small trees as indicated by the positive
relationship between water consumption and tree size (O’Grady, Eamus ¢ Hutley, 1999;
Meinzer, Goldstein & Andrade, 2001; Horna et al., 2011; Aparecido et al., 2016).
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Table 3 Summary of water use of tropical forest trees reviewed in this study.

Reference Location Species Method DBH Tree T Period
(cm) height (Ld-1)
(m)
Dye (1996) Frankfort State Forest in Site 1 (3-year-old Eucalyptus gran- HPM 147 £ 1.17 14.7 £ 1.01 45.8 July 1993
South Africa (24°49'S, trees) dis
30°43'E)
Site 2 (9-year-old Eucalyptus gran- HPM 29.7 £ 4.53 343 £1.15 68.0
trees) dis
Eamus, North Australian Eucalyptus mini- HPM 8.8-30.4 NA 16.1 August—
O’Grady Tropical Transect ate Eucalyptus 4.9-48.7 September 1998
& Hutley -Dry site tetrodonta Eu- 9.7-48.7 (Dry season)
(2000) (130°45'E, 12°30'S) calyptus lati- 6.1-35.6
-Intermediate site folia Eucalyp- 6.1-35.6
(132°39'E, 14°40S) tus Capricornia 9.1-41.6
- Wet site Eucalyptus spp.
(133°46'E, 17°07'S) Eucalyptus ter-
minalis
17.9 March—April
1999 (Wet sea-
son)
Dierick & The Philippines Shorea con- TDP 182+7 16.1£3.5 18.44+19.5 June to August
Halscher (10°45'55"N, 124°47'25"E) torta Parashorea 12404 13.1+1.6 10.6 £ 1.2 2006 and July to
(2009) and (10°44'10”N, 124°48'16"E) malaanonan 11.6 +24 133418 9.1+85 September 2007
Hopea malibato 6.6¢1.0 94+12 40+1.9
Hopea pla- 146+ 1.3 142+1.5 255441
gata Swietenia 204 £55 127+ 1.6 30.7 + 14.6
macrophylla. 221437 11.2£0.6 61.7 £17.0
Vitex parviflora 163 £2.7 132+ 1.1 32.8+16.5
Myrica javan- 19.8+73 13.8+3.0 44.6 £ 18.5
ica Sandoricum 21.9+4.0 18.1+£2.4 27678
koetjape Du-
rio zibethinus
Gmelina arborea
Dierick et al. The Philippines Shorea con- TDP 182+7 16.1 £3.5 18.4 £ 144 June to August
(2010) (10°45'55"N, 124°47'25"'E) torta Parashorea 12404 131+ 1.6 106+ 1.1 2006 and July to
and (10°44’10”N, 124°48'16"E) malaanonan 11.6 £2.4 13.3+£1.8 9.1+6.7 September 2007
Hopea malibato 6.6+ 1.0 94+12 40+13
Hopea pla- 146+ 13 142415 25543.6
gata Swietenia 204455 127+ 1.6 20.7+9.3
macrophylla 221437 11.2+ 0.6 4324125
Vitex parviflora 163 £2.7 132+ 1.1 23.4+12.6
Myrica javan- 19.8+73 13.8+3.0 329+ 148
ica. Sandoricum 219440 18.1+2.4 19.8 £ 6.1
koetjape. Du-
rio zibethinus
Gmelina arborea
Indonesia Theobroma ca- TDP 10.1+ 1.6 45+0.8 10.0 + 4.5 February 2007
(1.552°S, 120.020°E) cao Gliricidia 150 £2.5 10.9 £ 2.1 139+ 4.1 (Dry season)
sepium
Panama Luehea see- TDP 11.8 £ 1.6 8.7+ 1.0 13.1+3.6 June to Septem-
(9.317°N, 79.633°W) mannii Anac- 10.1 £ 0.6 6.4+04 10.5+2.8 ber 2007 (Wet
ardium excelsum 18.0 £2.3 54+1.0 146 +7.6 season)
Hura crepitans 12.0+ 0.6 11.7 £ 1.1 9.9+22
Cedrela odorata 11.5+1.3 74403 7.9+ 0.6

Tabebuia rosea

(continued on next page)
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Table 3 (continued)

Reference Location Species Method DBH Tree T Period
(cm) height (Ld-1)
(m)
Clulow et al. Nkazana Peat Syzygium HPM NA 22.5 30-45 4 September
(2013) swamp forest site cordatum 6.8 2-12 2009 to 4 May
(28°10.176'S, 32°30.070'E) Shirakiopsis el- 2011
liptica
Dune forest Drypetes HPM NA 4.5 5-45
site natalensis 7.5 2-28
(28°12.017'S, 32°31.633'E) Eugenia 7.2 1-4
natalitia
Mimusops caffra
Chen et al. Northwest Ziziphus jujuba TDP 6.69-11.46 1.39-1.63 12.52-19.47 May to October
(2014) China 2012 (growth
(38°11'N, 109°28'E) season)
0-42.0
7.0-27.0
6.0-17.0
Cavaleri et Lowland wet forest on Invaded Metrosideros TDP 9.7.0-19.0 NA 2-25 February to
al. (2014) Hawaii Island forest polymorpha November 2008
(19°42.15'N, plots Cecropia
155°2.40'W ) obtusifolia
Macaranga
mappa
Melastoma
septemnervium
Removal Metrosideros TDP 9.0-42.0 NA 5-43
plots polymorpha
Hardanto et Rubber Rubber TDP 20.3+0.6 13.4+0.4 25.6 +3.7 June to August
al. (2017) monoculture trees 2013
Hevea
brasiliensis
Jungle Rubber TDP 17.8+0.5 140. £ 0.5 241442
rubber trees
Hevea
brasiliensis
Admixed na- TDP 18.034+0.3 14.0£0.2 26.7+22

tive trees Cra-
toxylum suma-
tranum Callerya
atropurpurea
Ixonanthes
petiolaris San-
tiria griffithii
Macaranga cf.
sumatrana Ar-
tocarpus nitidus
Alstonia angus-
tifolia Streblus
elongates Ar-
tocarpus inte-
ger Porterandia
anisophylla Ti-
monius wallichi-
anus

(continued on next page)
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Table 3 (continued)

Reference Location Species Method DBH Tree T Period
(cm) height (Ld-1)
(m)
Brum et al. Mature lowland Canopy trees HPM 30-109 NA 68 + 87 October 2015 to
(2018) Amazon forest April 2016
(2°31708, 48°53'W)
Subcanopy trees HPM 10-30 NA 11 £10.04

Notes.

Mean values (£SD if available) are presented. The abbreviations are DBH, diameter at breast height (—1.3 m above ground); T, tree water use (Ld—1); TDP, thermal dissipation probes; HPM, heat pulse
method. NA indicates not available data.
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The response pattern of saturating exponential function of T with VPD found in this
study is similar to the one observed in various tree species in a wide range of tropical forests,
including a lowland tropical forest of Central and northern South America (Meinzer et
al., 1993), a primary lowland tropical forest in eastern Amazon (Brum et al., 2018) and a
per-humid tropical forest of Central Sulawesi in Indonesia (Horna et al., 2011). A previous
study showed that tree transpiration strongly increases with rising VPD under high soil
water availability; however, such response may become weaker or disappear when soil
moisture is lower, depending on tree species (Butz et al., 2018). In general, we observed
similar responses of T to VPD under wet and dry conditions with stronger responses in
the former; whereas no responses were detected when trees experienced moderate soil
moisture. Under dry conditions, our results indicate that Sa was sensitive to increasing
VPD while Ai can maintain their water use rate regardless of changes in VPD, regardless
of tree size. This implies that Ai may be more tolerant to drought than Sa and may have
strong control over their water use under low soil moisture, regardless of tree size, which
can prevent it from negative effects from droughts. This result agreed with a previous
study that investigated the drought tolerance of both species in this site (Unawong et
al., 2022). Based on tree hydraulic measurement, the study reported that xylem pressure
at 50% loss of hydraulic conductivity (Ps) of Ai and Sa were —5.97 and —4.71 MPa,
respectively. It is implied that species with lower P5y have greater resistance to embolisms,
thus allowing better adaptation to environments where water stress frequently occurs
(Maherali, Pockman ¢ Jackson, 2004). When comparing T in different size classes of Sa,
large trees were less sensitive to rising VPD at lower VPD ranges. The less sensitivity of large
trees to rising VPD leads to a slower decrease in water consumption rate to save water than
small trees, resulting in potentially greater vulnerability to hydraulic failure during drought
in large trees. Previous studies have shown size-dependent sensitivity to droughts in many
ecosystems. A synthetic study using data on tree growth and mortality, which were collected
during 40 drought events in forests worldwide, showed that droughts consistently exerted
negative impacts on the growth and mortality rates of larger trees (Bennett et al., 2015).
Greater vulnerability of large trees to drought could be affected by the higher exposure to
radiation and atmospheric demand because of increasing tree height (Roberts, Cabral ¢»
Aguiar, 1990; Nepstad et al., 2007). Moreover, large trees have to transport water to greater
heights, which is against the effects of gravity, thus facing greater hydraulic failure (Ryan,
Phillips & Bond, 20065 Zhang et al., 2009). Thus, large Sa may be at higher risk of hydraulic
failure when drought is more pronounced, plausibly leading to increasing mortality rates
(Choat et al., 2018). At moderate soil water, the results indicated that both species could
maintain their tree water use, regardless of tree size. Under high soil moisture conditions,
the T of both species in both sizes also followed the saturating exponential pattern as in
the case of low soil moisture conditions. However, the sensitivity of increasing T at low
VPD was different between sizes. In both species, T of large sizes was less sensitive to rising
VPD than small ones. In other words, when the air becomes dry, small trees may decrease
water consumption rate faster to save water than large trees. This may be partly because
small trees mainly use shallow soil water whereas large trees can access water from deeper
soil (Brum et al., 2018), allowing less sensitivity to droughts in large trees. Nevertheless,
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further studies that investigate water-source partitioning of different tree species in the
same forest (e.g., Hasselquist, Allen ¢» Santiago, 20105 Wang et al., 2020), tracing isotopic
signals of water from various soil layers to the stems, may be performed to confirm these
results.

Implications for environmental management

The results from this study imply that Sa may provide ecosystem disservice in dry areas
due to its high water consumption which results in low water supply for the downstream
community, but it may slow down runoff in the region that experiences heavy precipitation.
In contrast, Ai may provide ecosystem benefits by conservatively using water, even under
drought conditions, but may increase runoff when storms come with high rainfall.
Another implication is that Ai may be suitable for reforestation in the area where droughts
frequently occur in downstream ecosystems through its conservative water-use behavior,
thus maintaining runoff from the forests during drought. Moreover, because Ai showed
relatively constant water use regardless of tree size, the species would still provide such
benefits to the ecosystems even when it grows larger in the future. In contrast, Sa may be
appropriate for reforestation in the area with frequent floods because it has high water
consumption during high water availability which may decelerate runoff from forests into
downstream ecosystems. This would benefit the downstream ecosystems when storms
occur. Regardless, mixed planting species seem to be suitable for reforestation in the areas
where extreme events do not frequently occur because both species can maintain their water
use at moderate soil moisture regardless of tree size, therefore preventing the depletion of
soil water availability. In addition, mixed planting species could reduce the competition for
limited water resources because the differences in root structures of different tree species
lead to less competition for water (Schwendenmann et al., 2015). Nevertheless, reforestation
projects should emphasize the use of native species to avoid competition with other native
trees on the site (Hooper, Condit & Legendre, 2002).

CONCLUSIONS

We estimated tree water use (T') of dominant tree species including Syzygium antisepticum
(Sa) and Adinandra integerrima (Ai) in a secondary tropical forest in Khao Yai National
Park from sap flux density ( J;) which was continuously monitored with custom-made
thermal dissipation probes and compared T of both species in different tree size classes.
In addition, we evaluated the responses of T to environmental factors of both species in
different tree size classes. The results showed that T of Sa was significantly higher than
Ai and that large trees had higher T' than small ones which was related to relatively lower
sapwood area in the small trees. Further analysis of the response patterns of T showed
that Sa was more sensitive to increasing VPD than Ai while Ai can maintain their water
use regardless of tree size under low soil moisture. This implies that Ai may be able to
cope with the negative effects of droughts and retain such capacity when they grow. With
ample soil moisture, both species can maintain their tree water use regardless of tree
size. When soil moisture becomes high, the T of both species in both sizes increases with
rising VPD and then saturated at high VPD. Nevertheless, T of both species in large size
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was less sensitive to rising VPD than in small size which may be explained by the deeper
access to groundwater in large trees. For the implications for management, our results
suggest that Ai may be suitable for reforestation in the area where droughts frequently
occur in the downstream ecosystem through its conservative water-use behavior and may
benefit downstream ecosystems with continuous runoff from the forest despite droughts.
Moreover, Ai has conservative water-use behavior regardless of tree size. Thus, Ai would
still provide these benefits to ecosystems when they grow larger in the future. In contrast,
Sa seems suitable for reforestation in the area with frequent floods because it has high
water consumption during high water availability which may slow down runoff from
forest into downstream ecosystems when storms come. However, mixed planting species
may be suitable for reforestation in areas where extreme events do not frequently occur
because both species can maintain their water use at moderate soil moisture regardless of
tree size which prevents the depletion of soil water availability. In this case, depending on
the purposes of reforestation, Sa and Ai may provide either benefits or negative effects to
the ecosystems. In conclusion, this study highlights the dependency of responses of T' to
environmental conditions on tree species and size. Such information would benefit the
selection of tree species for reforestation that could adapt well to certain environments
and support policy design on the management of tropical forests and water resources.
Nevertheless, a further study involving additional field measurements of the physiological
parameters of trees, such as root depth, is needed to support the proposed findings.
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