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ABSTRACT
Step-selection models are widely used to study animals’ fine-scale habitat selection
based onmovement data. Resource preferences andmovement patterns, however, often
depend on the animal’s unobserved behavioral states, such as resting or foraging. As
this is ignored in standard (integrated) step-selection analyses (SSA, iSSA), different
approaches have emerged to account for such states in the analysis. The performance
of these approaches and the consequences of ignoring the states in step-selection
analysis, however, have rarely been quantified.We evaluate the recent idea of combining
iSSAs with hidden Markov models (HMMs), which allows for a joint estimation of
the unobserved behavioral states and the associated state-dependent habitat selection.
Besides theoretical considerations, we use an extensive simulation study and a case
study on fine-scale interactions of simultaneously tracked bank voles (Myodes glareolus)
to compare this HMM-iSSA empirically to both the standard and a widely used
classification-based iSSA (i.e., a two-step approach based on a separate prior state
classification). Moreover, to facilitate its use, we implemented the basic HMM-iSSA
approach in the R package HMMiSSA available on GitHub.

Subjects Animal Behavior, Bioinformatics, Ecology, Zoology, Statistics
Keywords Animal movement, Fine-scale interactions, Habitat selection, Hidden Markov models,
Markov-switching regression, Movement behavior, State-switching, Integrated step-selection
analysis

INTRODUCTION
Combining animal movement and environmental data, step-selection analysis (SSA) and
its extension, the integrated step-selection analysis (iSSA), build a popular framework for
studying animals’ fine-scale habitat selection, while also taking the movement capacity of
the animal into account (Fortin et al., 2005; Forester, Im & Rathouz, 2009;Avgar et al., 2016;
Northrup et al., 2022). Essentially, they explain the animals’ space use based on possible
preferences for or avoidance of environmental features, considering spatial limitations
that the animals’ movement process imposes on the features’ availability. ISSAs have
successfully been applied, for example, to analyze elk response to roads (Prokopenko, Boyce
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& Avgar, 2017), to study the effects of artificial nightlight on predator–prey dynamics of
cougars and deer (Ditmer et al., 2021), and to model space use of Cape vultures in the
context of wind energy development (Cervantes et al., 2023). Besides conventional habitat
use, SSA has also proven suitable for detecting interactions such as avoidance or attraction
between simultaneously tracked individuals (Schlägel et al., 2019).

SSA and iSSA typically use a conditional logistic regression for case-control designs to
compare the characteristics of observed, i.e., used steps against the covariates of alternative
steps available at a given time point. Here, a step is the straight-line segment connecting
two consecutive locations sampled at regular time intervals and is usually described by
the step length and turning angle, i.e., the directional change (Fortin et al., 2005). The
covariates usually correspond to features of the steps’ end point, e.g., vegetation or snow
cover (Stratmann et al., 2021), but can also refer to characteristics along the step, e.g., the
presence of roads on the path (Prokopenko, Boyce & Avgar, 2017). What is considered to
be available at a given time point depends on the assumptions made about the animals’
movement capacities and/or typical movement patterns. This usually translates into
assumptions about the animals’ step length and turning angle distributions (e.g., gamma
and von Mises distributions). Tentative parameter estimates for these distributions can
be estimated from the observed steps. These estimates are usually used in SSA and iSSA
to randomly draw available (also called control) steps. They are, however, biased because
movement and thus the observed steps are influenced by habitat selection (Forester, Im
& Rathouz, 2009). While SSA ignores this potential bias, a correction for the tentative
parameters can be estimated within the iSSA (Avgar et al., 2016; Fieberg et al., 2021). Other
estimation approaches might circumvent this problem arising from the use of conditional
logistic regression (e.g., Schlägel, Merrill & Lewis, 2017), leading to the correct estimates of
the underlying model immediately, but require a more manual implementation. In this
article we generally use the term iSSA for approaches where the movement parameters are
explicitly estimated together with the habitat selection coefficients.

While (i)SSAs seem suitable in numerous instances, it has recently been argued that fine-
scale habitat selection and resource requirements might depend on the animal’s behavioral
modes such as resting or foraging (illustrated in Fig. 1). Ignoring such states in the analysis
might thus lead to biased results and misleading conclusions (Roever et al., 2014; Suraci et
al., 2019). With telemetry-based location data, however, the underlying behavioral states
are usually unobserved. Therefore, it has been suggested to first classify the movement data
into different states, e.g., based on hidden Markov models (HMMs, Zucchini, MacDonald
& Langrock, 2016), and to split the step observations accordingly into state-specific data
sets, which can then be used to fit state-specific (i)SSAs in a second step (Roever et al.,
2014; Karelus et al., 2019; Picardi et al., 2022). This two-step approach, hereafter named
TS-(i)SSA, accounts for the unobserved state structure and is convenient as it can be based
on existing software implementations (e.g., R-package moveHMM for HMM-based state
separation and R-package amt for subsequent step selection analysis;Michelot, Langrock &
Patterson, 2016; Signer, Fieberg & Avgar, 2019). It has, however, twomajor drawbacks. First,
the state classification is purely based on movement patterns without considering habitat
selection. Thus, habitat selection and selection-independent movement processes can be
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Figure 1: Illustration of how behavioural states can affect animals habitat selection and
movement patterns. The state “foraging” is related to search for food such as small insects
in an open landscape, while the state “resting” is associated to a retreat in its shelter.
Usually, the behavioural states are unobserved, thus hidden, and serially correlated. This
structure corresponds to the basic dependence structure of a Markov-switching step-
selection model.
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Figure 1 Illustration of how behavioral states can affect animals’ habitat selection andmovement pat-
terns. The state ‘‘foraging’’ is related to search for food such as small insects in an open landscape, while
the state ‘‘resting’’ is associated with a retreat in its shelter. Usually, the behavioral states are unobserved,
thus hidden, and serially correlated. This structure corresponds to the basic dependence structure of a hid-
den Markov step-selection model.

Full-size DOI: 10.7717/peerj.16509/fig-1

confounded when defining the states. This can affect the validity of the state classification
and can lead to a bias in the estimated movement and selection parameters (Prima et al.,
2022). Second, the uncertainty in the HMM state classification is completely ignored in
the follow-up (i)SSA. Possible misclassification can again lead to biased movement and
(habitat) selection coefficients. Furthermore, confidence intervals and standard p-values
are no longer reliable as the uncertainty of both the HMM parameter estimation and the
state classification are not taken into account. Consequently, also the TS-iSSA might lead
to biased results and misleading conclusions. How serious this is in practice, however,
has rarely been quantified. Prima et al. (2022) evaluated a population-level version of the
TS-iSSA in a simulation study and found good classification and prediction performances
in the scenarios considered, but also biased parameter estimates. By focusing on the
population level, however, they did not provide results on the variation, uncertainty
quantification and estimation accuracy of the individually fitted TS-iSSA models.

The above mentioned problems can be avoided by combining step selection models
and HMMs in a single model to allow for a joint estimation of the underlying state,
habitat selection and movement processes. First proposed by Nicosia et al. (2017) and
recently extended byKlappstein, Thomas & Michelot (2023), this hiddenMarkovmodel step
selection function(HMM-SSF) approach renders a prior state classification unnecessary.
All model parameters can be jointly estimated using a case-control Markov-switching
conditional logistic regression framework. Since in this article we only consider the
approach involving explicit estimation of themovement parameters, we refer to themethod
as HMM-iSSA. Similar to Klappstein, Thomas & Michelot (2023) we use a numerical
maximum likelihood estimation, but constrain all parameters to their natural parameter
space to avoid problems in model interpretation (e.g., a negative shape parameter for
an assumed gamma distribution for step length). For state decoding, i.e., to assign a
state to each step observation after parameter estimation, we consider the well-known
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Viterbi algorithm. It computes the most likely state sequence underlying the data given the
estimated model parameters.

The aim of this article is two-fold. First, we provide a broad overview of the HMM-iSSA
framework by discussing the underlying movement model, its relation to alternative
approaches (iSSA, TS-iSSA, HMMs) and, most importantly, its practical implementation,
which we further facilitate through release as an R package. Second, we investigate whether
and to what extent either the complete neglect of underlying states in the analysis (iSSA)
or their incorporation through a prior HMM-based state classification (TS-iSSA) affects
the estimation results compared to the HMM-iSSA approach. For this, we use an extensive
simulation study to compare the estimation and, if applicable, classification performance of
iSSAs, TS-iSSAs and HMM-iSSAs in three state-switching scenarios. Thereby, we showcase
different ways in which behavioral states could influence the animals’ movement decisions.
A supplementary simulation covers a scenario without underlying state-switching. We
further compare the three approaches in a case study on fine-scale interactions of bank
voles (Myodes glareolus), which are small ground-dwelling rodents. Using a movement
data set of synchronously tracked individuals, as analyzed in Schlägel et al. (2019), we test
whether HMM-iSSAs can detect meaningful biological states and whether they provide
new insights into interactions, such as attraction, avoidance, or neutrality towards other
conspecifics compared to iSSAs. Portions of this text were previously published as part of
a preprint (https://doi.org/10.48550/arXiv.2304.12964).

METHODS
Hidden Markov step-selection model
We use {x0,1,x0,2,...,x0,T } to denote the sequence of two-dimensional animal locations
observed at regular time intervals, which forms the observed movement track. We here use
the subscript ‘‘0’’ to distinguish these used locations from control locations (introduced
below). Conditional on the previous location x0,t−1, a step from the current location x0,t
to the next location x0,t+1, is characterized by its step length l0,t+1, i.e., the straight-line
distance between the two consecutive locations, and its turning angle α0,t+1, i.e., the
directional change. The corresponding covariate vector Z0,t+1 stores the feature values of
the step, and we use Z to denote the collection of covariate values for all possible locations
in the given spatial domain D in which the animal moves.

In the hidden Markov step-selection model (Nicosia et al., 2017; Klappstein, Thomas
& Michelot, 2023; Prima et al., 2022), we assume the observed steps to be driven by an
underlying hidden state sequence {S1,S2,...,ST } with N discrete states. Thus, each state
variable St at time t can take one of N state values (St ∈ {1,...,N }). These states serve as
proxies for the unobserved behavioral modes of the animal that influence its movement and
habitat selection (illustrated in Fig. 1). We assume the state sequence to be a homogeneous
N -state Markov chain, characterized by its transition probabilities γij =Pr(St = j|St−1= i)
to switch from state i to state j, summarized in the N ×N transition probability matrix 0,
and the initial state distribution δ which contains the probabilities to start in a certain state.

Each state i (i= 1,...,N ) is associated to a state-dependent density fi generating the
next location. Its functional form is similar to the basic step-selection model (Forester,
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Im & Rathouz, 2009), but with movement and habitat selection parameters being state-
dependent. Thus, conditional on locations x0,t−1 and x0,t , and covariates Z, the current
state St = i determines the following distribution for a step to location x0,t+1:

fi(x0,t+1|x0,t ,x0,t−1,Z;θi,βi)=

movement kernel︷ ︸︸ ︷
φ(x0,t+1|x0,t ,x0,t−1;θi)·

selection function︷ ︸︸ ︷
ω(Z0,t+1;βi)∫

x̃∈D
φ(x̃|x0,t ,x0,t−1;θi) ·ω(Z̃;βi)d x̃︸ ︷︷ ︸

normalizing constant

, (1)

where Z̃ in the integral denotes the covariate vector of location x̃. The density consists of
three components: (i) The movement kernel φ(·) describes the space use in a homogeneous
landscape and is usually defined in terms of step length l0,t+1 (e.g., gamma distribution)
and turning angle α0,t+1 (e.g., von Mises distribution). The corresponding state-dependent
parameters for state i are summarized in the movement parameter vector θi; (ii) The
movement kernel is weighted by the selection function ω(·) which indicates a possible
selection for or against the covariates in Z0,t+1. It is usually assumed to be a log-linear
function of the (state-dependent) selection coefficient vector βi,

ω(Z0,t+1;βi)= exp
(
Z>0,t+1βi

)
,

where a positive selection coefficient indicates preference for, and a negative coefficient
avoidance of a corresponding covariate; (iii) The integral in the denominator ensures
that fi integrates to one. Usually, it is analytically intractable and must therefore be
approximated, for example, using numerical integration methods. We provide an example
of state-dependent step-selection densities in a 2-state scenario in Fig. S1.

There are important relations between the hiddenMarkov step-selection model and two
alternative movement models: (i) If all states share the same parameters, i.e., θ1= ...= θN
and β1= ...=βN , or if the number of states is set to one, i.e., N = 1, the model reduces to
the basic step-selection model without state-switching (Forester, Im & Rathouz, 2009); (ii)
If all selection coefficients are equal to zero, i.e., β1= ...=βN = 0, the model reduces to
a basic movement HMM(Langrock et al., 2012, Patterson et al., 2017) with state-dependent
step length and turning angle distributions as implied by the movement kernel φ(·) but
without habitat selection. These relations are very convenient, for example in the context of
model comparison andmodel selection, as it allows the use of standard tests or information
criteria to select between these three candidate models.

We can simplify the step-selection density fi by assuming step lengths follow a
distribution from the exponential family (with support on non-negative real numbers, e.g., a
gamma distribution) and turning angles follow either a uniform or von Mises distribution
with fixed mean (Avgar et al., 2016; Nicosia et al., 2017). In this case, the product of the
movement kernel φ(·) and the exponential selection function ω(·) is proportional to a
single log-linear function of the corresponding model parameters and fi reduces to:

fi(x0,t+1|x0,t ,x0,t−1,Z;θi,βi)=
exp

(
C>0,t+1θi+Z

>

0,t+1βi− log(l0,t+1)
)∫

x̃∈Dexp
(
C̃>θi+ Z̃>βi− log(̃l)

)
d x̃

, (2)
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where C̃, Z̃ and l̃ depend on location x̃. The vector C0,t+1 can be interpreted as a
movement covariate vector that contains different step length and turning angle terms.
Its exact form depends on the chosen step length and turning angle distributions (Table
S1, see also Avgar et al., 2016, Nicosia et al., 2017). For example, for gamma-distributed
step length and von-Mises-distributed turning angles with either mean zero or π , we
have C0,t+1 = (log(l0,t+1),−l0,t+1,cos(α0,t+1))>. The corresponding state-dependent
movement coefficient vector is θi = (ki− 1,ri,κi)> with ki and ri being the shape and
rate parameter of the gamma-distribution belonging to state i, respectively, and |κi|
being the state-dependent concentration parameter of the von-Mises distribution(κi< 0
indicates a von Mises distribution with mean π ; Nicosia et al., 2017). Thus, in this reduced
representation of the step-selection density fi, the parameterisation of the movement kernel
might differ from the commonly used parameterisation of the corresponding step and angle
distributions (e.g., ki−1 instead of ki), but there is a direct relationship between the two
(Tables S1 and S2). The negative log step length included in the exponential function is
necessary to correctly represent the movement kernel in a Cartesian coordinate system.

The reduced form of fi is very convenient. Justified by the law of large numbers, it allows
for a joint parameter estimation of the state, movement and selection parameters based
on a Markov-switching conditional logistic regression for case-control designs with M
control, i.e., available, locations per observed, i.e., used, location (Nicosia et al., 2017, see
also Avgar et al. 2016 for step-selection models without state-switching). This forms the
basis for the standard HMM-iSSA.

Parameter estimation
The HMM-iSSA workflow is similar to the one of the standard iSSA. For each observed
step, we choose M control steps, usually using a suitable parametric proposal distribution
for step length and turning angle, respectively, and extract the corresponding habitat and
movement covariate values. This builds the case-control data set. Themodel parameters are
then estimated using a Markov-switching conditional logistic regression, i.e., a conditional
logistic regression in which the regression coefficients depend on an underlying latent
Markov chain. As Klappstein, Thomas & Michelot (2023), we use the forward algorithm,
which is well-known especially in the context of HMMs (Zucchini, MacDonald & Langrock,
2016) to efficiently evaluate the corresponding likelihood. This allows for a numerical
maximum likelihood estimation based on standard optimization procedures such as nlm
in R (R Core Team, 2022). Afterwards, it is possible to decode the states, for example, using
the Viterbi algorithm (Viterbi, 1967), which calculates the most likely sequence of states
given the fitted model and the case-control data.

More precisely, for each step from location x0,t to x0,t+1 (t = 2,...,T −1), we create a
choice set x̃t+1= {x0,t+1,x1,t+1,...,xM ,t+1} that includes the observed and the M control
locations for the end point of the step. Usually, the control steps are randomly drawn from
a suitable proposal distribution for step length and turning angle (Forester, Im & Rathouz,
2009). However, it is also possible to use a grid or a mesh (Arce Guillen et al., 2023). Here
the devil is in the detail, as depending on the sampling procedure, the interpretation of
the models’ movement coefficients might differ (see Section S2). The interpretation of the
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selection coefficients, however, remain unaffected if M is chosen large enough to provide
stable results.

In this case-control setting, we model the state-dependent choice probability p0,t ,i of
choosing the step to the observed location x0,t+1 from the choice set x̃t+1 given the current
state St = i, as:

p0,t ,i(x0,t+1|x̃t+1,C,Z;θi,βi)=
exp

(
C>0,t+1θi+Z

>

0,t+1βi
)∑M

m=0exp
(
C>m,t+1θi+Z

>

m,t+1βi
) , (3)

with Cm,t+1 and Zm,t+1 being the movement and habitat covariate vectors belonging to
location xm,t+1 for m= 0,...,M . This case-control step-selection probability is closely
related to direct numerical integration, which offers an alternative way to approximate the
step-selection density fi. Note that in contrast to Eq. (2), the term −log(l·,t+1) does not
appear in Eq. (3) because we change from Cartesian to polar coordinates when sampling
control steps (i.e., step lengths and turning angles).

We derive the likelihood of the Markov-switching conditional logistic regression by
plugging p0,t ,i into the HMM likelihood (Zucchini, MacDonald & Langrock, 2016),

L(θ,β;x̃3,x̃4,...,x̃T ,C,Z)= δ>P(x̃3)0P(x̃4)0 ···0P(x̃T )1, (4)

where P(x̃t+1)= diag(p0,t ,1,...,p0,t ,N ) is a diagonal matrix including the state-dependent
step-selection probabilities, 0 and δ are the transition probability matrix and the initial
distribution of the underlyingMarkov chain, respectively, and 1 is anN -dimensional vector
of ones. We can then estimate the model parameters using a numerical maximization
of the log-likelihood (for details, see Zucchini, MacDonald & Langrock, 2016). In our
implementation, we restrict the movement parameters to always remain in their natural
parameter space, e.g., the shape and rate parameters of the gamma distribution are
constraint to values greater than zero.

For initialization, the numerical maximization requires a set of starting values for the
model parameters. To avoid ending up in a local maximum of the log-likelihood, it is
necessary to test several sets of starting values, for example by randomly drawing initial
values for each model parameter. We discuss this in more detail in Section S3.

Two-step approach
The TS-iSSA is based on the same idea as the HMM-iSSA. However, the TS-iSSA relies on
a prior classification of the movement data into different movement states. Thus, in a first
step, an N -state HMM with state-dependent step length and turning angle distributions as
defined for the movement kernel is fitted to the data, e.g., using a gamma distribution for
step length and a von Mises distribution for turning angles. Then, the Viterbi algorithm is
used to assign each observed step to one of the N HMM movement states. Alternatively,
local state decoding can be used. In the second step, state-specific (i)SSAs are applied to the
N state-specific data sets using a case-control design and conditional logistic regression (e.g.,
Roever et al., 2014; Karelus et al., 2019). The control steps for the state-specific case-control
data sets are usually sampled based on the respective state-dependent HMM step length
and turning angle distributions.
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Figure 2. Gamma and von Mises distributions for step length and turning angle, respectively, as used in
the simulation study (movement kernel). Parameters are denoted by k (shape), r (rate) and κ
(concentration). The distributions for state 1 are shown in blue and for state 2 in orange, except for
Scenario 2 in which both states share the same movement kernel (in orange).

estimated the parameters of a 2-state HMM-iSSA with movement but without habitat covariates. This257

corresponds to a basic movement HMM, but fitted to the same case-control data as the candidate models.258

After parameter estimation, we computed AIC and BIC values (Burnham and Anderson, 2002) and259

standard p-values for the estimated selection coefficients. For TS-iSSAs and HMM-iSSAs we further260

computed the state missclassification rate, i.e. the percentage of states that were not correctly classified261

using the Viterbi algorithm. These metrics and the parameter estimates were used to evaluate the estimation262

and classification accuracy of the candidate models, and to assess the performance of standard model263

selection procedures.264

Case Study on bank vole interactions265

To illustrate the use of HMM-iSSAs on empirical data, we applied them to existing movement data of266

synchronously tracked bank vole individuals (Myodes glareolus) as analyzed in Schlägel et al. (2019). The267

original sample included 10 group-level replicates with 4 animals each, combining animal personalities268

(not part of this study) and sex. All bank vole females were sexually mature, but not gravid or lactating.269

All bank vole males were mature. Individuals within a replicate were synchronously tracked in fenced270

quadratic outdoor enclosures of 2500m2 for 3-5 days using collars with small radio telemetry transmitters271

(1.1 g, BD-2C, Holohil Systems Ltd., Canada) and a system of automatic receiving units (Sparrow272

systems, USA). For bank vole individuals tracked under natural conditions, the estimated home range273

sizes were on average 2029m2 with a core area of 549m2 (Schirmer et al., 2019). Thus, the size of the274

enclosures allowed the individuals to express their natural movement and space use. The original sample275

size allowed for potential technical failures of tracking equipment or escapes of single individuals from276

semi-natural enclosures, which indeed reduced the sample size to 8 populations with 2 males and 1-2277

females each and a total of 28 animals. The tracking system produced 6-minute location data. Due278

to daily system maintenance, locations were missing for approximately one hour per day. Otherwise,279

movement paths were complete. Depending on the replicate, this resulted in 602–1200 locations per280

individual split into 3-5 bursts of around 23 hours each. After the experiment animals were captured from281

the enclosures, transmitter collars were removed, and animals were returned to the wild at their individual282

capture location. For more details on the bank vole capture and location data, see Schlägel et al. (2019).283

Details on animal care approvals and research permissions are provided in the Supplementary Material284

(S6.1).285

To study interactions between the bank vole individuals, i.e. attraction, avoidance or neutral behavior286

towards each other, Schlägel et al. (2019) applied SSAs to each individual of each replicate, respectively,287

using occurrence estimates of the conspecifics as covariates. The occurrence estimate of an individual288

provides a map of the individual’s space use during a certain time window, indicating areas of higher289

and lower probability of occurrence during that time period. It is estimated from the discrete sample of290

observed locations through kriging (Fleming et al., 2016). To account for the movement of individuals,291

occurrence estimates were computed using a rolling time window (here 4 hours).292

The analysis focused on interactions between males and females: Males were expected to mainly293

show attraction towards females, while females could show any of the three behaviors depending on294

their reproductive state (Schlägel et al., 2019). The authors suggested that the relatively large number295
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Figure 2 Gamma and vonMises distributions for step length and turning angle, respectively, as used
in the simulation study (movement kernel). Parameters are denoted by k (shape), r (rate) and κ (concen-
tration). The distributions for state 1 are shown in blue and for state 2 in orange, except for Scenario 2 in
which both states share the same movement kernel (in orange).
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Simulation study
Weused a simulation studywith three state-switching scenarios to evaluate the performance
of our HMM-iSSA approach and to demonstrate possible consequences of either ignoring
the underlying latent states in the traditional iSSA or ignoring the uncertainty of prior
state-decoding in the TS-iSSA. For each scenario, we generated movement data from
a hidden Markov step-selection model with 2 states and state transition probabilities
γ11 = γ22 = 0.9. A realization of a Gaussian random field with covariance σ 2

= 1 and
range φ = 10, computed using the function grf from the R-package geoR (Ribeiro Jr et
al., 2022), served as the habitat covariate Z (Fig. S2). For the movement kernel, we used
state-dependent gamma and zero-mean von Mises distributions to model step length and
turning angle, respectively (Fig. 2).

Table 1 summarizes the movement and selection parameters for each of the three
simulation scenarios. Scenario 1 is chosen to represent a typical inactive-active scenario
in which the first state (‘‘inactive’’ state) is associated to small step length, less directive
movement and no selection, while the second state (‘‘active’’ state) corresponds to larger
step length, more directed movement and attraction to the landscape feature Z. The second
and the third scenarios cover the rather extreme cases in which either the selection or the
movement parameters are shared across states: In Scenario 2 (‘‘switching preferences’’),
the two states only differ in their selection patterns with avoidance of the feature in state
1, and attraction to the feature in state 2. In Scenario 3 (‘‘HMM’’), only the movement
patterns differ across states while there is no selection for or against the landscape feature
in either state. This corresponds to a basic movement HMM. To check the robustness
of the HMM-iSSA, we additionally covered a fourth scenario without state-switching in
which the data are generated based on a standard step-selection model (Section S5.2).
Furthermore, to check the influence of the spatial variation in the habitat feature on the
estimation results, we also considered a second landscape feature map with weaker spatial
heterogeneity (Section S5.3).
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Table 1 Overview of the hiddenMarkov step-selection model parameters for each simulation sce-
nario. The selection coefficients βi for state i ( i= 1,2) belong to the selection function of the model. The
movement kernel parameters are the shape ki and rate ri of gamma distribution for step length and the
concentration parameter κi of the von-Mises distribution for turning angle. Scenario 4 does not include
any state-switching and is covered in the Supplementary Material.

state 1 state 2

select.
fun.

Movement kernel select.
fun.

Movement kernel

Scenario β1 k1 r1 κ1 β2 k2 r2 κ2

1 (active-inactive) 0.00 1.20 1.25 0.30 2.00 2.50 0.29 1.00
2 (switching preferences) −2.00 2.50 0.29 1.00 2.00 2.50 0.29 1.00
3 (HMM) 0.00 1.20 1.25 0.30 0.00 2.50 0.29 1.00
4 (iSSA, Supp. Mat.) 2.00 2.50 0.29 1.00 – – – –

In each of the 100 simulation runs per scenario, we simulated movement paths of
length T = 1000 from the corresponding hidden Markov step-selection model and then
applied 2-state HMM-iSSAs, 2-state TS-iSSAs and iSSAs to corresponding case-control
data sets with randomly drawn control steps using a uniform distribution for turning
angle and a proposal gamma distribution for step length, respectively (Section S2). To
check whether the parameter estimates converge to stable values, we considered M = 20,
M = 100 and M = 500 control locations per observed step. For model selection purposes,
we further estimated the parameters of a 2-state HMM-iSSA with movement but without
habitat covariates. This corresponds to a basic movement HMM, but fitted to the same
case-control data as the candidate models. After parameter estimation, we computed AIC
and BIC values (Burnham & Anderson, 2002) and standard p-values for the estimated
selection coefficients. For TS-iSSAs and HMM-iSSAs we further computed the state
missclassification rate, i.e., the percentage of states that were not correctly classified using
the Viterbi algorithm. These metrics and the parameter estimates were used to evaluate
the estimation and classification accuracy of the candidate models, and to assess the
performance of standard model selection procedures.

Case study on bank vole interactions
To illustrate the use of HMM-iSSAs on empirical data, we applied them to existing
movement data of synchronously tracked bank vole individuals (Myodes glareolus) as
analyzed in Schlägel et al. (2019). The original sample included 10 group-level replicates
with 4 animals each, combining animal personalities (not part of this study) and sex.
All bank vole females were sexually mature, but not gravid or lactating. All bank vole
males were mature. Individuals within a replicate were synchronously tracked in fenced
quadratic outdoor enclosures of 2,500 m2 for 3–5 days using collars with small radio
telemetry transmitters (1.1 g, BD-2C, Holohil Systems Ltd., Canada) and a system of
automatic receiving units (Sparrow systems, USA). For bank vole individuals tracked
under natural conditions, the estimated home range sizes were on average 2,029m2 with
a core area of 549m2 (Schirmer et al., 2019). Thus, the size of the enclosures allowed
the individuals to express their natural movement and space use. The original sample
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size allowed for potential technical failures of tracking equipment or escapes of single
individuals from semi-natural enclosures, which indeed reduced the sample size to 8
populations with 2 males and 1–2 females each and a total of 28 animals. The tracking
system produced 6-minute location data. Due to daily system maintenance, locations were
missing for approximately one hour per day. Otherwise, movement paths were complete.
Depending on the replicate, this resulted in 602–1,200 locations per individual split into
3–5 bursts of around 23 h each. After the experiment animals were captured from the
enclosures, transmitter collars were removed, and animals were returned to the wild at
their individual capture location. For more details on the bank vole capture and location
data, see Schlägel et al. (2019). Details on animal care approvals and research permissions
are provided in the Section 6.1.

To study interactions between the bank vole individuals, i.e., attraction, avoidance or
neutral behavior towards each other, Schlägel et al. (2019) applied SSAs to each individual of
each replicate, respectively, using occurrence estimates of the conspecifics as covariates. The
occurrence estimate of an individual provides a map of the individual’s space use during a
certain time window, indicating areas of higher and lower probability of occurrence during
that time period. It is estimated from the discrete sample of observed locations through
kriging (Fleming et al., 2016). To account for the movement of individuals, occurrence
estimates were computed using a rolling time window (here 4 h).

The analysis focused on interactions between males and females: Males were expected to
mainly showattraction towards females, while females could showany of the three behaviors
depending on their reproductive state (Schlägel et al., 2019). The authors suggested that the
relatively large number of non-significant selection coefficients, especially found for male
interactions with females, might be caused by unobserved mixtures of different underlying
behavioral modes. Bank voles are polyphasic with resting phases of approximately 3h and
active phases of approximately 1h following each other (Mironov, 1990). We therefore
applied 2-state HMM-iSSAs to the same data to investigate (i) if the state-switching model
is capable to detect meaningful biological states, and (ii) if we find different significant
selection coefficients using the state-switching approach.

For each individual, we used a 2-state HMM-iSSA with state-dependent gamma
distributions for step length, and uniform distribution for turning angle, respectively.
Occurrence estimates of each conspecific within the same replicate were used as covariates
for the selection part of the model (Schlägel et al., 2019). As interactions were analyzed
within replicates, i.e., only for animals tracked simultaneously in same enclosure, a
nested approach controlled for potential confounds such as differences among enclosures.
We did not include a resource covariate, as vegetation was sufficiently homogeneous
within enclosures. Furthermore, we chose to use M = 500 control steps per used
step, as preliminary analysis with increasing values for M provided stable results for
this choice (Fig. S9). Thus, with M = 500 control steps, the corresponding selection
covariate vector for individual k at time t and locations xm,t , m= 1,...,500, was given
by Zk,m,t = ({O−k,m,t }), where {O−k,m,t } denotes the set of occurrence estimates of the
respective conspecifics withing the same replicate. The corresponding movement covariate
vector was Ck,m,t = (log(lk,m,t ),−lk,m,t ). Parameters were then estimated using 50 sets of
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Table 2 Percentage of simulation runs in which the selection coefficients are estimated to be signifi-
cantly different from zero at a significance level of α= 0.05, for each scenario and fitted model, respec-
tively.

Scen. 1 Scen. 2 Scen. 3

model no. cont. β1= 0 β2= 2 β1=−2 β2= 2 β1= 0 β2= 0

20 100 57 16
iSSA 100 100 57 17

500 100 58 17
20 40 100 58 5 6

TS-iSSA 100 42 100 57 4 6
500 39 100 57 4 5
20 2 100 100 100 4 5

HMM-iSSA 100 3 100 100 100 2 5
500 1 100 100 100 5 6

random starting values. Formodel comparison, we further applied corresponding iSSAs (no
state-switching) andHMM-iSSAs without selection covariates (i.e., HMM approximations;
no selection) to the same case-control data set for each individual. For the 2-state TS-iSSAs
(prior state-classification), control steps were sampled using the estimated state-dependent
distributions of the movement HMMs fitted in the first step of the TS-iSSA.

Both the simulation and the case study were implemented in R (R Core Team, 2022).
We used custom code for HMMs and HMM-iSSAs and the clogit-function from the R
package survival (Therneau, 2020) for the iSSA and corresponding parts of the TS-iSSA.
The R code is available in Supplementary Information 2.

RESULTS
Simulation study
Overall, the HMM-iSSA performed very well across all simulation scenarios and did not
produce any evident bias even in the extremer Scenarios 2 (‘‘state-switching preferences’’)
and 3 (‘‘HMM’’; Fig. 3, Tables S3 and S4). The TS-iSSA was able to detect two suitable states
in both scenarios with state-dependent movement kernels (Scenarios 1 and 3), although
there was a small but evident bias for some parameters, for example, for the selection
coefficients in scenario 1 (0.18 in state 1, −0.13 in state 2 for M = 500), and for the shape
parameter in scenario 3 (0.12 in state 2 for M = 500). For Scenario 1 (‘‘active-inactive’’),
this is also reflected in the rather large percentage of significant selection coefficients across
the simulation runs in state 1 (39–42% at a significance level of α= 0.05, Table 2), although
the true coefficient is equal to zero. Thus, in contrast to the HMM-iSSA, the p-values of
the TS-iSSA are not reliable in this active-inactive setting.

The iSSA is by its nature unable to distinguish between the underlying states and thus,
did not recover the true underlying parameters in either scenario. Especially in Scenario
2 (‘‘switching preferences’’), the iSSA selection coefficients were estimated close to zero
and the associated p-values would misleadingly indicate no selection for or against the
landscape feature in 42%−43% of the simulation runs (Table 2). Note that the TS-iSSA
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Figure 3 Boxplots of the parameter estimates across the 100 simulation runs for each applied method,
simulation scenario and number of control locationsM , respectively. The rows refer to the estimated
selection coefficient (β), the shape and rate of the gamma-distribution for step length and the concentra-
tion parameter (κ) of the von Mises distribution for turning angle, respectively. The columns refer to the
three different simulation scenarios. For each method (iSSA, TS-iSSA and HMM-iSSA) and state (state
1: blue, state 2: orange, no state differentiation: black), the three adjacent boxplots refer the use ofM =
20,M = 100 andM = 500 control locations per used location for the parameter estimation. Note that in
Scenario 2, the TS-iSSA is naturally not capable to distinguish between two states as both share the same
movement kernel. Thus, there are only results for a single state.

Full-size DOI: 10.7717/peerj.16509/fig-3

produced similar results to the iSSA in this scenario, since the inherent HMM classification
was not able to distinguish between states that share the same movement kernel, and
therefore all steps were classified to belong to the same state.

For all three simulation scenarios, the number of available stepsM only slightly affected
the estimation results in this simulation exercise, especially the results for M = 100 and
M = 500 are very similar (Fig. 3). Thus, the results seem to be stable. The HMM-iSSA with
M = 500 available steps achieved the lowest missclassification rate (Table 3). As the data
in Scenario 3 were simulated from an HMM, the HMM classification was equally accurate
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Table 3 Meanmissclassification rate (in %) with standard deviation in parentheses across the 100
simulation runs for each scenario and fitted state-switching model, respectively. The missclassification
rate is calculated as the percentage of states incorrectly classified using the Viterbi sequence. The lowest
missclassification rate for each scenario is highlighted in bold face.

HMM-iSSA

scenario 20 100 500 HMM

1 (active-inactive) 4.05 (0.83) 3.76 (0.82) 3.70 (0.79) 5.93 (1.47)
2 (switching preferences) 2.12 (0.53) 2.00 (0.52) 1.94 (0.50) 49.01 (4.38)
3 (HMM) 2.49 (0.49) 2.42 (0.51) 2.38 (0.55) 2.39 (0.53)

Table 4 Percentage of simulation runs in which the three candidate models are selected by either AIC
or BIC for each simulation scenario and number of control points used for model fitting, respectively.
The cells belonging to the true underlying model are highlighted using bold face.

AIC BIC

Scenario no. cont. iSSA HMM* HMM-iSSA iSSA HMM* HMM-iSSA

20 0 0 100 0 0 100
Scen. 1 100 0 0 100 0 0 100

500 0 0 100 0 0 100
20 2 0 98 2 0 98

Scen. 2 100 2 0 98 2 0 98
500 2 0 98 2 0 98
20 0 88 12 0 100 0

Scen. 3 100 0 91 9 0 100 0
500 0 86 14 0 100 0

Notes.
*Here, HMM corresponds to the HMM-iSSA fitted without selection covariates, which provides an approximation to the
movement HMM.

in this scenario. Overall, the HMM-iSSA clearly outperformed the other candidate models
in its estimation and classification performance in all scenarios.

As the TS-iSSA involves an a-priori HMM classification, it does not provide a proper
maximum likelihood value. It is therefore not possible to calculate corresponding AIC or
BIC values for model selection. Thus, we only considered iSSAs without state-switching,
HMMs without selection (fitted to the same case-control data sets) and HMM-iSSAs as
candidate models to evaluate information-criteria based model selection in this modeling
framework. For Scenario 1 and 2, AIC and BIC performed very well and selected the
true underlying model in 100 and 98% of the simulation runs, respectively (Table 4). In
Scenario 3 (‘‘HMM’’), the AIC tended to select the true HMM model in most of the cases
but occasionally selected the more complex HMM-iSSA (9−14% of the runs), while the
BIC again selected the correct model in all simulation runs.

Overall, the simulation runs with lower spatial variation in the landscape variable
produced similar results (Section S5.3). However, the lower spatial variation reduces the
influence of the habitat selection function on space use. Therefore, the variance in the
estimates slightly increased, the HMM missclassification rate decreased in Scenario 1
and the HMM-iSSA missclassification rate increased in Scenario 2. In the supplementary
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state HMM-iSSAs for each individual in replicates 1–8, respectively. The distributions are weighted by
the relative state occupancy frequencies derived from the Viterbi sequence. The gray histograms in the
background show the distribution of the observed step lengths.

Full-size DOI: 10.7717/peerj.16509/fig-4

simulation scenario without state-switching, the HMM-iSSA was able to recovered the true
underlying values in state 1, but produced unusable estimates in state 2 (Section S5.2).

Case study on bank vole interactions
For most bank vole individuals, the HMM-iSSA approach could reasonably distinguish
between two activity levels. State 1 was always associated to shorter step lengths compared to
state 2 which could correspond to a rather inactive behavior (Fig. 4; mean of the estimated
gamma distribution for step length ranging from 1.43 to 7.38 in state 1, and from 8.13 to
20.85 in state 2, respectively). According to the Viterbi decoded state sequences, the ‘‘less
active’’ state 1 was occupied between 15.29% and 66.71% of the observed time period
(Table S7), except for male 1 in replicate 4 which spent 96.43% of the time in state 1
according to its decoded state sequence. It is also the individual with the largest estimated
mean step length in both states (7.38 in state 1, 20.85 in state 2). Thus, for this male,
interpretation must be taken with care. The TS-iSSA provided mostly similar results for
the movement kernel and state classification (Fig. S11).
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For 21 of the 28 bank vole individuals, the HMM-iSSA results implied neutral behavior
towards conspecifics in state 1 as all selection coefficients were non-significant (α= 0.05;
Fig. 5 and Fig. S10). This matches well with the interpretation of a less active/inactive
state. For two individuals, the results indicated avoidance behavior in state 1. In state 2
(‘‘active state’’), most bank voles showed attraction to at least one bank vole of opposite sex
as implied by the positive and significant selection coefficients. However, for four males
and four females, the coefficients for occurrence of individuals with opposite sex were
non-significant in both states. These are mainly the individuals for which the iSSA also
implied neutral behavior (Fig. 5). However, for 3 individuals, i.e., male 1 in replicate 7,
female 1 in replicate 4, and female 1 in replicate 8, the HMM-iSSA indicated attraction
towards another individual of opposite sex, while the iSSA indicated neutrality. The
opposite is true for female 1 in replicate 7 for which only the iSSA indicated attraction. The
selection coefficients for occurrence of individuals with same sex usually implied neutral
behavior in state 1, and neutral or attraction behavior in state 2 (Fig. S10).

Overall, the results of the TS-iSSA are in line with the results of the HMM-iSSA (Figs.
S10, S12), although the implications are slightly different for nine individuals. Regarding
information-criteria basedmodel selection, formost bank voles, AIC andBICpointed to the
hidden Markov step-selection model (Table S8). However, for 10 individuals, including
half of the female individuals, BIC selected a simpler model, i.e., iSSA or HMM. The
selection of HMMs mainly corresponded to cases with many non-significant HMM-iSSA
selection coefficients. The iSSA was preferred by BIC for male 1 in replicate 4 and female 2
in replicate 8.

DISCUSSION
In this article, we discussed the relationship between standard iSSA without underlying
behavioral states, the two-step approach TS-iSSA, which accounts for behavioral states via
a classification of the movement data prior to performing iSSA, and the joint approach
HMM-iSSA, which accounts for underlying behavioral states by combining HMMs and
iSSAs in a single model. In particular, we compared the three approaches in both a
simulation and a case study and highlighted possible consequences of either ignoring
underlying behavioral states or using a prior HMM-based state classification to take
them into account. This provides important implications for the practical application of
fine-scale habitat selection analyses.

Combining ideas of iSSAs and HMMs in a single model, HMM-iSSAs build a convenient
modeling framework to study state-dependent movement and habitat selection based on
animal movement data (Klappstein, Thomas & Michelot 2023; Nicosia et al., 2017; Prima et
al., 2022). This makes a prior state classification unnecessary, which, as demonstrated in the
simulation study, could otherwise lead to biased estimates and misleading conclusions (see
also Prima et al., 2022). In particular, the HMM-iSSA accounts for uncertainties in both
the latent state and the observation process which allows for further inference, while the
TS-iSSA completely ignores the uncertainties in the state decoding. This renders classical
p-values of the TS-iSSA invalid.
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Figure 5. Estimated iSSA and HMM-iSSA selection coefficients (solid points/triangles) of interaction
behavior between individuals of opposing sexes within the eight replicates (1–8), including 95%
confidence intervals (solid lines). Each replicate consisted of two males (male 1 and male 2) and one or
two females (female 1 and female 2) such that each individual could respond to up to two opposite-sex
individuals (dot: response to female/male 1, triangle: response to female/male 2 within a replicate).
Non-significant coefficients (p-values below 0.05) are grayed out. The horizontal dashed line indicates
zero (i.e. neutral behavior); positive coefficients indicate attraction, while negative coefficients would
indicate avoidance.
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Figure 5 (A–B) Estimated iSSA and HMM-iSSA selection coefficients (solid points/triangles) of inter-
action behavior between individuals of opposing sexes within the eight replicates (1–8), including 95%
confidence intervals (solid lines). Each replicate consisted of two males (male 1 and male 2) and one or
two females (female 1 and female 2) such that each individual could respond to up to two opposite-sex
individuals (dot: response to female/male 1, triangle: response to female/male 2 within a replicate). Non-
significant coefficients (p-values below 0.05) are grayed out. The horizontal dashed line indicates zero
(i.e., neutral behavior); positive coefficients indicate attraction, while negative coefficients would indicate
avoidance.

Full-size DOI: 10.7717/peerj.16509/fig-5

Moreover, the HMM-iSSA can detect states associated to same movement but different
selection behavior (Scenario 2 in the simulation study), which is not possible using a prior
classification that ignores the selection patterns.While Scenario 2 (‘‘switching preferences’’)
might cover a rather extreme case, one could imagine, for example, an underlying hungry
and a thirsty state where the animal is searching for either food or water, or an attraction
and neutrality/avoidance state where the animal is either attracted to another individual
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or ignoring/avoiding possible social interactions. Even if the movement patterns might
not be completely the same across these states, they might largely overlap and therefore
lead to problems and high uncertainties in the prior state decoding of the TS-iSSA. This is
contrasted with Scenario 3 (‘‘HMM’’) of the simulation study which does not include any
habitat selection, the states are solely associated with different movement kernels. Here, an
HMM-based classification is suitable, and the TS-iSSA and HMM-iSSA perform equally
well. Still, the TS-iSSA does not propagate the uncertainties of the state-decoding.

Although the main focus of the HMM-iSSA is habitat-selection analysis, it can also
serve for behavioral classification. In this sense, it extends the classic HMM for state
inference based on positional data (Langrock et al., 2012; Patterson et al., 2008) to account
for habitat selection. However, various other data sources and classification methods have
also proven useful for classifying animal behavior. Tri-axial accelerometer, which measure
acceleration in three dimensions and provide information about energy expenditure, are
particularly promising (Nathan et al., 2012). Here, especially supervised machine learning
methods such as random forests and XGBoost show a good performance and allow for
a fine distinction of behavioral categories (Dentinger et al., 2022; Nathan et al., 2012; Sur
et al., 2023; Yu & Klaassen, 2021). However, supervised learning requires labeled data,
i.e., direct observations of animal behavior in the field or semi-natural enclosures, which
are often not available. Unsupervised approaches, on the other hand, infer behavioral states
completely data-driven without the need of direct observations. For accelerometer data,
unsupervised K-means, mixture models or HMMs have, for example, been used in this
context (Leos-Barajas et al., 2017; Sur et al., 2023). In general, such data-driven approaches
require a careful interpretation of the inferred behavioral states, which also holds for
the HMM-iSSA described in this article. If, on the other hand, information about the
underlying states is available from auxiliary data or observations, the HMM-iSSAs can also
be estimated in a (semi-)supervised manner.

It is straightforward to integrate other classification methods and additional data such
as accelerometer data into the first step (prior state classification) of the TS-iSSA. This
might improve its performance, although uncertainty quantification remains a problem.
In principle, hidden Markov step selection models could also be extended to include
additional data streams in the observation process, as briefly discussed in Klappstein,
Thomas & Michelot (2023). However, care must be taken that the resolution of all data
streams matches and that the (in-)dependency assumptions of the model are appropriate.

Our simulation study demonstrates that ignoring underlying behavioral states
completely by using standard iSSA can lead to biased and misleading results on selection
behavior. While theoretically expected, a systematic evaluation and quantification of this
effect had been lacking. Our study shows that iSSA tends to average out different selection
behaviors in different behavioral states. This can lead to simple over- or underestimation of
selection strength, keeping the overall direction of selection (i.e., avoidance or attraction)
correct. However, it can also lead to more serious problems when selection behavior has
opposing directions in different states. In this case, we found that selection was estimated
to be non-significant, which would lead to a strongly erroneous biological conclusion.
This result corroborates the surmise that small effect sizes or non-significant results in
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step-selection analyses may in fact be due to ignored underlying behavioral state switching
(Schlägel et al., 2019) and more generally the caveat that failure to detect an effect does not
necessarily imply lack of an affect.

While we have only considered fairly simple model formulations in this article, a major
advantage of iSSA is the possibility to include covariate effects also on the movement
kernel (Avgar et al., 2016). By using interaction terms between movement covariates (e.g.,
step length) and environmental or temporal covariates, an iSSA can, for example, model
the step-length distribution depending on time of day, snow depth or presence of roads
(Prokopenko, Boyce & Avgar, 2017; Signer et al., 2023). Similarly, it is possible to include
interaction terms of selection covariates (e.g., landcover and distance to water) to allow for
more flexible habitat selection patterns. In certain cases, it might thus be possible to capture
some behavioral variability, e.g., across environmental conditions or over time, in an iSSA
with suitable interaction terms. But the resulting model will generally be more difficult
to interpret and reflect the state-switching patterns described in this article (i.e., abrupt
pattern changes) only to a limited extent, unless the state process is observed or itself
completely driven by an observed covariate such as ‘‘day or night’’.

Recently, Klappstein, Thomas & Michelot (2023) have extended the HMM-iSSA for the
case that the latent state process, more precisely its transition probability matrix, is indeed
influenced by other observed covariates. This can improve the biological realism of the
model. Furthermore, Nicosia et al. (2017) discusses the inclusion of angular covariates
to approximate a multi-state biased correlated random walk. Thus, HMM-iSSAs can be
adapted to various situations and research questions. They have successfully been applied to
study habitat selection of bison and zebra in encamped and exploratory states (Klappstein,
Thomas & Michelot 2023; Nicosia et al. 2017; Prima et al. 2022), to detect the onset of mule
deer migration and to evaluate the behavioral response of bison on the presence of wolves
(Prima et al., 2022). In our case study, we extend the scope of application to fine-scale
interactions of simultaneously tracked bank voles. Here, the 2-state HMM-iSSA provided
a reasonable separation into a rather inactive state mostly associated with neutral behavior
towards the conspecifics, and an active state often associated with attraction behavior.
However, according to the decoded state sequences, the voles spend more time in the
active state as expected based onMironov (1990) (62.73% of the time on average). For one
male bank vole individual, the state-classification within the HMM-iSSA was different. Its
second state captured only rare observations with large displacement, while the first state
accounted for all other observations. Here, the Viterbi sequence assigned over 96% of the
observations to state 1 and the estimated HMM-iSSA showed larger mean step lengths in
the estimated state-dependent gamma distributions than for all other individuals. Thus,
the second state either captured rare events or outlying observations. This demonstrates
that similar care is needed when interpreting the HMM-iSSA states as for general HMMs
in an unsupervised learning context (McClintock et al., 2020).

In the active state, we generally expected males to look for females, while females might
show different interactions with males depending on the reproductive state (Schlägel et
al., 2019). For example, females in estrous may actively seek out males to generate mating
opportunities away from the nest to lower the risk of infanticide (Eccard et al., 2018).
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In contrast, females that are not in estrous state might show avoidance or neutrality
toward males. In line with Schlägel et al. (2019), for the male bank voles, we found either
attraction or neutral behavior toward the females in the active state. This was, however,
also the case for the female responses to male occurrences. While this might reflect the
true individual interaction patterns, it might also be an artifact of measurement errors or
the fence around the enclosures that limited the space use. Furthermore, some selection
coefficient estimates had rather large confidence intervals possibly associated to the small
number of observations for the rather complex model structure. This also prevented the
use of a 3-state model that might have been able to differentiate between pure foraging and
social interaction states.

With behavioral states being unobserved, it is usually unclear whether they manifest
themselves in a given empirical data set. In both the bank-vole and simulation study, we
therefore considered information criteria to select between the candidate models iSSA,
HMM and HMM-iSSA. Especially the BIC performed well in our simulation study. For
the TS-iSSA, such likelihood-based criteria cannot be applied as there is no proper joint
maximum log-likelihood value for the state and observation process. This is another
drawback of the two-step approach. Besides indicating if the inclusion of states or the
inclusion of the selection function are appropriate for a given application, information
criteria could also be used to select between HMM-iSSAs with different covariate sets
or generally to select an appropriate number of meaningful biological states N . In the
context of HMMs, however, the latter has proven difficult, as information criteria,
especially the AIC, tend to select overly complex models with a rather large number
of states (Celeux & Durand, 2008; Pohle et al., 2017). We expect this to be the case also
for HMM-iSSAs. Therefore, besides information criteria, the selection of the number
of states should further be based on a close inspection of the fitted models, and involve
expert knowledge (‘‘pragmatic order selection’’, Pohle et al., 2017). This is also highlighted
in the supplementary simulation scenario which does not include any state-switching.
Furthermore, future research could focus on the development of appropriate model
checking methods for (Markov-switching) step-selection models.

It is important to note that the resolution of the data in time and space can strongly
influence the model results and interpretation. Data sets with different resolutions might
reflect different state, movement and selection patterns of an animal (Mayor et al., 2009;
Adam et al., 2019). For example, an individual can exhibit many different behaviors during
a long time interval, e.g., during 24 h. Thus, a coarse time resolution might hinder the
model to detect biological states such as resting and foraging or provide only crude state
proxies. However, migration modes might be reflected in the data. On the other hand,
movement and selection patterns might not directly be expressed in steps at very fine
time resolution, e.g., based on one location every second (Munden et al., 2021). Thus, the
temporal resolution of the data must match the time scale in which the animal expresses
its state, movement and selection patterns of interest. Moreover, if the spatial resolution
of a covariate map is too coarse, important habitat features might be overlooked in the
analysis (Zeller et al., 2017). Thus, the resolution of the data is a key factor in HMM-iSSAs.
However, once movement and habitat data are available at a suitable resolution in space
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and time for a given species and research question at hand, the HMM-iSSA approach can
flexibly be applied to study fine-scale state-dependent movement and habitat selection.

In our study we systematically compared the performances of two methods to
incorporate behavioral modes into step-selection analysis with the approach to simply
ignore it. We found that the more complex yet more elegant way to use the combined
HMM-iSSA yielded considerably better results. Therefore, to facilitate its use, the basic
HMM-iSSA is implemented in the R-package HMMiSSA available on GitHub (Pohle
& Signer, 2023). With this implementation, we hope to encourage the method’s wider
application in habitat selection studies. Obtaining more accurate estimates of habitat
selection will improve our understanding of the driving forces of animal movement as well
as predictions of space use, and may thus ultimately serve conservation efforts such as the
planning of protected areas or movement corridors.
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