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ABSTRACT
Background: Seagrass meadows provide valuable ecosystem services but are
threatened by global change pressures, and there is growing concern that the
functions seagrasses perform within an ecosystem will be reduced or lost without
intervention. Restoration has become an integral part of coastal management in
response to major seagrass declines, but is often context dependent, requiring an
assessment of methods to maximise restoration success. Here we investigate the use
of different restoration strategies for the endangered Zostera capensis in South Africa.
Methods:We assessed restoration feasibility by establishing seagrass transplant plots
based on different transplant source materials (diameter (ø) 10 cm cores and
anchored individual shoots), planting patterns (line, dense, bullseye) and planting
site (upper, upper-mid and mid-intertidal zones). Monitoring of area cover, shoot
length, and macrofaunal diversity was conducted over 18 months.
Results: Mixed model analysis showed distinct effects of transplant material used,
planting pattern and site on transplant survival and area cover. Significant declines in
seagrass cover across all treatments was recorded post-transplantation (2 months),
followed by a period of recovery. Of the transplants that persisted after 18 months of
monitoring (~58% plots survived across all treatments), seagrass area cover increased
(~112%) and in some cases expanded by over >400% cover, depending on type of
transplant material, planting arrangement and site. Higher bioturbator pressure from
sandprawns (Kraussillichirus kraussi) significantly reduced transplant survival and
area cover. Transplant plots were colonised by invertebrates, including seagrass
specialists, such as South Africa’s most endangered marine invertebrate, the
false-eelgrass limpet (Siphonaria compressa). For future seagrass restoration projects,
transplanting cores was deemed the best method, showing higher long-term
persistence and cover, however this approach is also resource intensive with
potentially negative impacts on donor meadows at larger scales. There is a clear need
for further research to address Z. capensis restoration scalability and improve
long-term transplant persistence.
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INTRODUCTION
Seagrasses play fundamental roles in coastal ecology and provide an array of ecosystem
services, such as enhancing coastal resilience and contributing to climate stability (Himes-
Cornell, Pendleton & Atiyah, 2018;Macreadie et al., 2021). Despite increasing global efforts
to conserve seagrasses, most remain under significant pressure, with accelerating rates of
meadow loss and degradation (Waycott et al., 2009; Dunic et al., 2021). As such,
management strategies are urgently needed to facilitate restoration and expansion of
meadows (Unsworth et al., 2019b). A wave of international restoration targets and policies
(e.g., UN Strategic Plan for Biodiversity; Convention on Biological Diversity (CBD), 2014)
have initiated global ecosystem restoration action (Waltham et al., 2020; Nicholson et al.,
2021; Buelow et al., 2022), such as the UN Decade on Ecosystem Restoration (2021–2030).
Numerous efforts to restore seagrass meadows have already been undertaken with variable
outcomes, but many trials have focused on the northern hemisphere, specifically on
Zostera marina (van Katwijk et al., 2016). Seagrass rehabilitation and restoration remains
challenging, with a need for rapid methodological and technological advancements that
can be implemented across different species and sites (Bayraktarov et al., 2016; Unsworth
et al., 2019b).

In South Africa, widespread and cumulative global change pressure has resulted in
population declines and localised extinctions of the endangered Zostera capensis (Adams,
2016; Watson et al., 2023). Distributed across estuaries on the South African coast,
Z. capensis is the dominant temperate seagrass species, but populations are likely isolated
with low levels of gene flow between them (Phair et al., 2019; Jackson, 2022). Declines in
habitat quality, in conjunction with natural dynamics in estuarine conditions have resulted
in fluctuations in meadow cover throughout its range (Pillay et al., 2010; Bandeira et al.,
2014; Adams, 2016) with declines in Z. capensis cover estimated at 8.3 ha yr−1 (Raw et al.,
2023). This has also negatively impacted genomic diversity of some Z. capensis
populations, further threatening the long-term resilience of seagrasses in South Africa
(Phair et al., 2020). Although fast-growing, Z. capensis does not colonise quickly, so
management intervention through restoration of anthropogenically-impacted meadows is
needed in the region (Adams, 2016; Mokumo, Adams & von der Heyden, 2023; Watson
et al., 2023). Presently there is lack of knowledge on how best to implement Z. capensis
restoration, with one restoration trial in Maputo Bay, Mozambique (Amone-Mabuto et al.,
2022) and attempts in Klein Brak and Knysna Estuary, South Africa, presenting variable
success (Mokumo, Adams & von der Heyden, 2023). For example,Mokumo, Adams & von
der Heyden (2023) reported 100% loss of transplants within three months following a
restoration trial, suggesting that environmental variability, as well as local site and seagrass
population dynamics are important considerations for regional restoration attempts.

A key challenge for restoration efforts remains selection of the transplant site and donor
meadow, and refining transplantation methods to maximise transplant survival (Fonseca,
2011; Cunha et al., 2012; Park et al., 2013; van Katwijk et al., 2016). Although Fonseca,
Kenworthy & Thayer (1998) outlined key selection criteria, applicability of this framework
is limited in some cases due to local-scale contextual processes (Calumpong & Fonseca,
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2001; Lange et al., 2022; Mokumo, Adams & von der Heyden, 2023). Site-specific factors
such as water flow, wave action and tidal gradients together with seagrass traits, can have
varying impacts on restoration outcomes (Calumpong & Fonseca, 2001). Planting across
multiple restoration sites can help minimise challenges arising from localised site
dynamics, and spatio-temporally spread risks (van Katwijk et al., 2009), by increasing the
likelihood of seagrass proliferation in suitable growth conditions with low environmental
stress (Short et al., 2002; Leschen, Ford & Evans, 2010; Wendländer et al., 2019). However,
increasing the number of transplantation sites results in additional costs associated with
labour, materials, and importantly, can negatively impact donor meadows (Bayraktarov
et al., 2016). As such, in small-scale transplantation trials, selection of appropriate
restoration and donor sites can improve survival and persistence of transplanted seagrass
(McDonald et al., 2020). For example, there is considerable phenotypic plasticity across
Zostera populations (Peralta et al., 2000; Salo, Reusch & Boström, 2015; Mvungi & Pillay,
2019), therefore, source populations may possess traits that can positively or negatively
influence transplant performance (van Katwijk et al., 1998; Lewis & Boyer, 2014; Novak
et al., 2017), with additional genetic compatibility considerations (Sinclair et al., 2013;
Jahnke, Olsen & Procaccini, 2015; Pazzaglia et al., 2021). Abiotic and biotic conditions in
transplantation sites can similarly determine the degree of transplant survival and
persistence (Siebert & Branch, 2006; van der Heide et al., 2011; van Katwijk et al., 2016;
Ugarelli et al., 2017).

The importance of local biotic processes, such as interspecific-interactions or the
microbiome, for seagrass restoration is gaining traction (Byers et al., 2006; van der Heide
et al., 2011; Ugarelli et al., 2017; Fuggle, Gribben & Marzinelli, 2023). For example,
optimising planting density can promote positive feedbacks resulting from below- and
above-ground self-structuring mechanisms (Bos & van Katwijk, 2007; Valdez et al., 2020).
Aggregated spatial configuration of transplants can also benefit seagrass through nutrient
sharing between rhizomes in stressful conditions (Silliman et al., 2015; Paulo et al., 2019), if
negative feedbacks from self-shading are avoided (Ralph et al., 2007). Seagrasses are
typically transplanted as vegetated sediment-intact cores or bare-rooted shoots (with or
without anchoring) from healthy donor meadows to a restoration site (Ganassin & Gibbs,
2008; Paulo et al., 2019; Curiel et al., 2021; Lange et al., 2022). Transplanting cores is
generally recommended as the root and rhizome system remain relatively intact (Phillips,
1990; Fonseca, Kenworthy & Thayer, 1998) and are translocated with the engineered
microbiome (Fuggle, Gribben & Marzinelli, 2023). Transplanting bare-rooted shoots is
likely to have a lower impact on donor meadows and by selecting the appropriate
anchoring material can also promote growth and prevent uprooting by wave action (van
Katwijk et al., 2016; Lange et al., 2022). For example, uncoated metal pegs may add
otherwise limiting nutrients (e.g., iron) to the seagrass root zone as the peg corrodes,
increasing the absorption capacity for phosphorus and reducing sulphide, thus increasing
plant productivity (Holmer, Duarte & Marbá, 2005; Ruiz-Halpern, Macko & Fourqurean,
2008; Lange et al., 2022). Bamboo pegs have also been successfully deployed, facilitating
moisture and nutrient retention in intertidal sediment (Ward et al., 2020; Lange et al.,
2022) and through degradation, fertilising sediments to prevent nitrogen and phosphorous
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deficiencies during post-transplant recovery, and releasing silica, aiding growth-promoting
bacteria in the root zone (Ruiz-Halpern, Macko & Fourqurean, 2008). As such, there are
numerous considerations when planning seagrass restoration.

In this study, we investigated the effectiveness of transplanting Z. capensis cores and
anchored shorts (using both metal pegs and bamboo pegs) across different tidal zones and
in three planting patterns, followed by monitoring of seagrass population dynamics for 18
months. Specifically, we aimed to investigate the following parameters as determinants of
persistence and cover of transplanted Z. capensis: (i) type of transplant donor material
(cores and anchored shoots); (ii) the effect of planting pattern; and (iii) the effect of site, as
well as the impact of transplanted meadows on seagrass-associated macrofaunal diversity.
This foundational research allowed us to identify factors that facilitate seagrass persistence
and growth, to support upscaling restoration of Z. capensis.

MATERIALS AND METHODS
Site description
Langebaan Lagoon (33�08′ S, 18�03′ E) is a marine protected area forming part of theWest
Coast National Park, covering ~280 km2 and stretches over a 38 km coastline (Fig. 1). It is
the only estuarine tidal lagoon in South Africa, found within the cool-temperate bioregion
(van Niekerk et al., 2019). The lagoon is marine dominated and permanently open to the

Figure 1 Location of the donor and restoration sites. Centre Banks (black circle) served as the donor
site and Oesterwal (black square) as the transplant site in Langebaan Lagoon. Inset: Location of Lan-
gebaan Lagoon in South Africa (boundary and jurisdiction layers from DIVA-GIS, 2017; QGIS, 2022)

Full-size DOI: 10.7717/peerj.16500/fig-1
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sea, with no large freshwater inputs (Day, 1959) and characterised by intertidal mud and
sandflats that support seagrass beds (Pillay et al., 2010). Seagrass extent within Langebaan
Lagoon has been heavily impacted by human activities, resulting in ~38% loss of seagrass
between 1960 and 2007 (Pillay et al., 2010), with some sites losing up to 99% of their
seagrass cover (Pillay et al., 2010).

Transplantation site selection
Within Langebaan Lagoon, site selection was based on qualitative assessments using aerial
photography over the last three decades. Areas showing repeated loss and recolonisation of
seagrass, or presence of growth- limiting macroalgae, were avoided (Hauxwell et al., 2001)
and areas of sandflats with remnants of small stable seagrass patches targeted (Lange et al.,
2022). Pre-transplant field inspections assessed the environmental conditions of potential
transplantation sites, including identifying potential localised human disturbance, any
recently emerged seagrass patches, wave action and water depth range.

The donor site (Centre Banks, 33�07′18″ S, 18�02′42″ E) was selected for
transplantation due to meadow extent and stability, and proximity to the restoration site
(<1 km; Fig. 1). The restoration site (Oesterwal, 33�07′20″ S, 18�03′21″ E) was evaluated in
2020 as meeting the key site selection criteria for restoration (Fonseca, Kenworthy &
Thayer, 1998; Calumpong & Fonseca, 2001) relative to the donor seagrass meadow since it
(1) had comparable wave action, water depths and sediment type (<1.0 m mean sea level
and sandy sediment; Compton, 2001), (2) had a history of supporting seagrass meadows,
(3) had sufficient sandflat area lacking Z. capensis and macroalgae prior to restoration,
(4) had limited human activity, that could lead to disturbance and (5) could support
similar quality seagrass habitat (Fig. 1). All works were conducted under the following
permits: Department of Forestry, Fisheries and the Environment (DFFE: RES2021-68,
RES2022-17) and South African National Parks (SANParks: CRC/2023/017–2020/V1).

Transplantation method
Three transplant methods were carried out using donor seagrass from Centre Banks: (1)
cores (diameter (ø) = 10 cm) with seagrass plants in original intact sediment; three seagrass
shoots bundled and anchored with (2) metal pegs (ø 1.6 mm� ø 15 cm uncoated wire bent
into a U-shaped stake), and (3) pre-soaked bamboo pegs (ø 1.2 cm � ø 15 cm bamboo
cane with a vertical slit to create a V-shape; Fig. S1). Post collection, seagrass cores were
placed in ø 12.5 cm plastic pots lined with cotton sheets to keep the sediment intact. Shoots
were harvested using a spade and washed in seawater, thus ensuring a minimum of three
rhizomal nodes with roots per shoot. During harvest, high density intertidal inner areas of
the donor meadow were targeted over a ∼400 m2 area to minimise localised disturbance.
Donor material was harvested at low tide and transplanted in three intertidal sites (upper,
upper-mid and mid, Fig. S2) at Oesterwal (Fig. 2) over a period of six hours per day with
volunteer help. To prevent plant stress, cores and shoots were stored in large plastic
containers and covered in pre-soaked cotton sheets to prevent desiccation before being
planted by hand. For cores, sediment in the transplant plots was dug out using a corer, then
seagrass cores were inserted. The planting depth of each core was carefully aligned to the
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sediment surface, with displaced sediment redistributed amongst the core and the adjacent
sandflat to create a homogeneous elevation of the planting plot (Paulo et al., 2019). Shoots
were bundled into groups of three per peg, with five pegs per equivalent core (15 shoots/
core, from here on also referred to as cores; Fig. S1). The shoots were anchored with pegs
and the rhizome was gently pushed 10 cm into the sediment (Lange et al., 2022).

Transplantation was conducted in a phased approach in 2021 during the austral winter.
Translocation was staggered to spatio-temporally minimise risks during the
transplantation phase (van Katwijk et al., 2009). Cores were transplanted between 26–28th

May, shoots anchored with metal pegs were transplanted between 27–30th July, and shoots
anchored with bamboo pegs were transplanted between 23–26th August. Each type of
transplant material was planted into spatially discrete transplant plots incorporating nine
cores, using three different planting patterns: line, dense and bullseye (Fig. 2). Planting
patterns were replicated three times per site, using fully crossed and repeated measures
(Fig. 2). To account for differences in water depth, bioturbation, and physical stress
(desiccation and wave stress) along the tidal gradient, treatments were replicated at three
sites from the upper, upper-mid and mid-intertidal zone, separated by 50 m equidistant
intervals (Figs. 2 and S2). A total of 81 transplant plots were planted using 243 cores and
7,290 shoots, with treatment replicates representing ~7.29 m2 of transplanted Z. capensis.

Post-transplant monitoring
All transplant plots were left to acclimate overnight before photos were taken ~1.5 m above
each plot to obtain baseline seagrass area data using an iPad Pro (1st generation, Apple Inc.,
Cupertino, CA, USA) at low tide the following day. Following the transplants, a regular
monitoring protocol was established; at first, monitoring of plots was conducted at low tide
weekly for the first eight weeks post-transplant, then fortnightly for the following two
months, then monthly, for a total of 18 months following transplantation for each planting

Figure 2 Transplantation schematic for restoration sites. Left: Three transplantation sites across tidal
gradient. Right: Transplantation design across each transplant material with planting patterns shown
with transplanted cores: (A) line; (B) dense; and (C) bullseye (Figs. S1 and S2). Photo credit: Katie M.
Watson. Full-size DOI: 10.7717/peerj.16500/fig-2
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material. Transplant plots were monitored over the following dates cores: 28th May 2021–
13th October 2022, shoots anchored with metal pegs: 30th July 2021–15th December 2022,
and shoots anchored with bamboo pegs: 26th August 2021–16th January 2023. Photos of
each transplant plot were recorded to analyse seagrass area cover (cm2) and sandprawn
bioturbator activity (determined by number of excavated K. kraussi holes per plot).
Measures of epiphytic fouling (% relative cover), three seagrass blade lengths (mm) to
determine average canopy height, and abundance of macro-epifaunal species were also
taken for each transplant plot.

Data analysis
Within each transplant plot, area cover (cm2) and excavated K. kraussi hole density were
analysed in ImageJ (version 1.54d; Schneider, Rasband & Eliceiri, 2012). Average canopy
height (mm) was determined at each monitoring point by randomly measuring three
shoots per plot, from the sediment to leaf tip, and taking the average. To calculate
macrofaunal species diversity, the Shannon-Wiener diversity index was calculated with the
vegan package. The transplant plot survival rate was obtained through the following
equation:

ðCurrent no: of seagrass coresÞ
ðInitial no: of transplanted seagrass coresÞ�100

All analyses were carried out in R (version 4.3.0; R Core Team, 2023). Generalized linear
mixed models (GLMM) were used to examine the effect of the response variables on
transplants survival and area cover over time. The response variables: planting material,
planting pattern, site, epiphyte coverage (%) and number of sandprawn holes, were
included as fixed factors. Transplant plot and monitoring timepoint (number of days since
transplantation was used as monitoring was more frequent initially post-transplantation)
were included as random effects, to account for taking repeated measurements of
transplant plots over time. Normality and homoscedasticity of variance were assessed
using the Shapiro-Wilk test and Levene’s tests respectively. Where these assumptions were
not met, data was transformed (log x + 1) and models refitted. Main effects were assessed,
followed by inclusion of interactive effects, then the optimal model structure was
determined by selecting the model with the lowest Akaike’s Information Criterion (AIC)
value. Diversity data were tested for normality, and where deviations found, data was
transformed (log x + 1) and model refitted. Main effects were assessed as aforementioned,
and model structure selected using the lowest AIC value. The ggplot2 package was used for
graphical presentations.

RESULTS
Transplant survival (%)
A total of 243 cores and 7,290 shoots were transplanted across 81 transplant plots, with a
mean survival rate of ~58% after 18 months across all treatments. Across all study
treatments, all transplant plots survived for a minimum of 31 weeks (full dataset: https://
github.com/vonderHeydenLab/Watson_et_al_2023_SeagrassRestoration), after which the
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loss of transplant plots differed across transplant source material, planting pattern and site
(Fig. 3). There were multiple significant main effects and interactions that impacted
transplant survival (Table S1).

Cores outperformed other transplant materials, with a survival rate of ~40% after 18
months across all treatments (Fig. 3). The GLMM showed that cores (p < 0.001), and
shoots anchored with metal pegs (p < 0.001) showed positive, significant effects on survival
(Table S1). Biotic interactions significantly affected survival, with lower numbers of
sandprawn holes (p = 0.02), or lower epiphytic fouling (p < 0.001), leading to increased
survival (Table S1). The interaction between a higher number of sandprawn holes and
transplanted cores (p < 0.001), significantly reduced survival (Table S1).

The upper-intertidal site delivered the best outcomes for long-term survival (mean
survival ~62% across treatments) for transplant plots, across all planting materials and
planting patterns (Fig. 3). Transplant survival was highest in the upper-intertidal site,
using cores planted in a bullseye pattern (mean survival ~93%; Fig. 3). The interaction
between a lower number of sandprawn holes and transplant plots in the upper-mid
(p < 0.001), and mid-intertidal sites (p = 0.01) significantly increased survival (Table S1).

The use of a bullseye planting pattern, in the upper-mid site and a lower number of
sandprawn holes interacted with both cores (p = 0.05), and shoots anchored with metal
pegs to positively affect survival (p < 0.001; Table S1). Similarly, survival significantly
increased in interactions between cores (p = 0.02), or shoots anchored with metal pegs
(p = 0.01) planted in a bullseye pattern and lower numbers of sandprawn holes (Table S1).
The model also showed a significant increase in survival between the interaction of shoots
anchored with metal pegs, planted in the bullseye pattern, in the mid-intertidal site, with
lower numbers of sandprawn holes (p = 0.01; Table S1). In the GLMM intercept,
comprising of shoots anchored with bamboo pegs planted in a line pattern in the
upper-intertidal planting site, was significant (p < 0.001), with negative impacts on survival
(Table S1).

Transplant area (cm2)
In surviving transplant plots, area cover increased on average by ~126% (mean across all
treatments), with some plots expanding in area by over ~400% from across 18 months of
monitoring (Fig. 4A). The GLMM showed using cores (p < 0.001), or shoots anchored with
metal pegs (p < 0.001) had positive effects on area cover (Table S2). Conversely, area cover
decreased when cores (p < 0.001) or shoots anchored with metal pegs interacted with
higher numbers of sandprawn holes (p = 0.01; Table S2). Under the combination of using
cores planted in a bullseye pattern in the upper-intertidal site, area cover increased by
~394% (mean across replicates; Fig. 4). The upper-intertidal site showed an average
increase in area cover by ~191% (mean across all treatments and replicates; Fig. 4). Area
cover was found to be negatively affected by interactions between cores transplanted into
the upper-mid (p = 0.04), or mid-intertidal (p < 0.001) sites, or with higher numbers of
sandprawn holes (p < 0.001; Table S2). Seagrass area cover increased when transplanted
cores interacted with lower number of sandprawn holes in combination with either the

Watson et al. (2023), PeerJ, DOI 10.7717/peerj.16500 8/21

http://dx.doi.org/10.7717/peerj.16500/supp-4
http://dx.doi.org/10.7717/peerj.16500/supp-4
http://dx.doi.org/10.7717/peerj.16500/supp-4
http://dx.doi.org/10.7717/peerj.16500/supp-4
http://dx.doi.org/10.7717/peerj.16500/supp-4
http://dx.doi.org/10.7717/peerj.16500/supp-4
http://dx.doi.org/10.7717/peerj.16500/supp-4
http://dx.doi.org/10.7717/peerj.16500/supp-4
http://dx.doi.org/10.7717/peerj.16500/supp-4
http://dx.doi.org/10.7717/peerj.16500/supp-5
http://dx.doi.org/10.7717/peerj.16500/supp-5
http://dx.doi.org/10.7717/peerj.16500/supp-5
http://dx.doi.org/10.7717/peerj.16500
https://peerj.com/


upper-mid (p = 0.03) or mid-intertidal (p < 0.001) sites (Table S2). The GLMM intercept,
made by shoots anchored with bamboo pegs planted in a line pattern in the upper planting
site, was significant (p < 0.001), with negative impacts on area cover (Table S2).

Figure 3 The effect of transplant material or planting pattern on seagrass area cover (cm2) between
sites over 18 months of monitoring. (A) The effect of transplant material (cores and shoots anchored
with bamboo or metal pegs) on seagrass survival (%) across the upper, upper-mid and mid-intertidal
transplant sites. (B) The effect of planting pattern (line, dense and bullseye) on seagrass survival (%)
across the upper, upper-mid and mid-intertidal transplant sites. Data is represented as mean values
across treatment replicates with standard error (± SE). Full-size DOI: 10.7717/peerj.16500/fig-3
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Figure 4 The effect of transplant material or planting pattern on average seagrass transplant plot
area cover (cm2) between intertidal sites over 18 months of monitoring. (A) The effect of trans-
plant material (cores and shoots anchored with bamboo or metal pegs) on seagrass area cover (cm2)
across the upper, upper-mid and mid-intertidal transplant sites (data collated for replicates across dif-
ferent planting patterns). (B) The effect of planting pattern (line, dense and bullseye) on seagrass area
cover (cm2) across the upper, upper-mid and mid-intertidal transplant sites (data collated for replicates
across different planting materials). Data is represented as mean values across treatment replicates with
standard error (± SE). Full-size DOI: 10.7717/peerj.16500/fig-4
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Transplant area cover increased in transplant plots planted in a bullseye planting
patterns, with ~147% (mean across replicates) average increase in seagrass cover after 18
months (Fig. 4B). However, cores planted in a bullseye pattern, with high numbers of
sandprawn holes caused negative effects on area cover (p = 0.01; Table S2). With a lower
number of sandprawn holes this combination of interacting factors (cores, planted in a
bullseye pattern) positively affected area cover in both the upper-mid (p < 0.001), or
mid-intertidal (p = 0.03) sites (Table S2). Higher numbers of sandprawn holes (p < 0.001),
and higher epiphyte cover (%; p < 0.001) also had negative independent effects on area
cover (Table S2).

All transplant materials were found to undergo a post-transplantation stress phase
where seagrass cover initially decreased at 2 months, and then steadily recovered, as shown
in Figs. 3 and S3. This pattern was observed across treatments, with more significant
recovery in area cover found in transplanted cores, planted in denser planting arrangement
on the upper shoreline (Fig. 3). Over time, transplant plots in the upper-mid and
mid-intertidal sites steadily declined after signs of recovery, irrespective of transplant
material, planting pattern or site (Fig. 3).

Across the monitoring period, 14 macro-epifaunal species were recorded within the
transplant plots, including the endangered false-eelgrass limpet (Siphonaria compressa).
The GLMM indicated that species diversity was positively affected by transplanted cores
(p < 0.001), but negatively affected by shoots anchored with metal (p < 0.001) and bamboo
pegs (p < 0.001; Table S3). Transplanted cores had the highest Shannon diversity index
score, with diversity indices driven by the abundance of sandy anemones (Bunodactis
reynaudi; full dataset: https://github.com/vonderHeydenLab/Watson_et_al_2023_
SeagrassRestoration).

The authors acknowledge that although recovery of the donor meadow was not
explicitly monitored from the study outset, a once-off monitoring visit 18 months
post-transplantation (October 2022) found no evidence of visible holes or long-term
meadow scarring. This suggests that the donor meadow had regenerated across the harvest
area, and that sympathetic study design had facilitated donor meadow recovery without
intervention.

DISCUSSION
Our work describes the first trial showing signs of successful restoration using
transplantation of Z. capensismeadows in South Africa, by transplanting different types of
donor material (cores and anchored shoots), in various planting patterns across different
sites. Our results highlight that for Langebaan Lagoon, transplanted cores, in a bullseye
planting pattern in the upper-intertidal shoreline had the best survival and increase in area
cover. Under this combination of treatments, transplantation resulted in established
seagrass patches that persisted after 18 months of monitoring and increased in area cover
(average ~394% increase). Our work offers valuable insights into the potential for
transplantation to be employed nationally by building the foundational knowledge needed
for cross-site and large-scale seagrass restoration projects in the future.
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Importance of site selection for transplant survival
The significance of site selection in restoration initiatives is well acknowledged by
restoration ecologists. This study employed widely used restoration strategies to determine
the applicability of current transplantation best practise in a South African context,
showing that planting in the upper-intertidal shorelines increases seagrass survival
(average ~62% across all treatments) and area cover (average ~191% across all treatments),
compared to upper-mid and mid sites. Several studies have demonstrated that identifying
sites with suitable growing conditions continues to require a disproportionately high
number of transplantation trials (Leschen, Ford & Evans, 2010; Wendländer et al., 2019;
Lange et al., 2022). By incorporating best practice guidelines to rigorously inspect field sites
prior to transplantation, this likely improved restoration outcomes. For example, targeting
areas with a history of seagrass growth, assessing local environmental conditions, and
ensuring minimal anthropogenic disturbance all improved our understanding of local site
dynamics (Fonseca, Kenworthy & Thayer, 1998; Calumpong & Fonseca, 2001).
Our approach also allowed identification of potential biotic stress factors, including
bioturbation and algal growth, with opportunities to integrate this work into habitat
suitability modelling (Erftemeijer et al., 2023).

The effect of transplantation material and method on seagrass
persistence and expansion
Implementing restoration projects using cores and anchored shoots is typically a trade-off
between the desire for sufficiently resilient transplants (i.e., cores containing an engineered
microbiome), and reducing donor meadow impacts. Post-transplantation stress is reduced
in cores, and the risk of losing the transplanted area due to stochastic disturbance events is
also lowered (van Katwijk et al., 2016; Paulo et al., 2019). In this study, transplanted cores
outperformed other transplant materials, showing the highest survival (average ~40%
across all treatments) and led to significantly increased area cover (average ~126% across
all treatments). This outcome mirrors the results from the global analysis by van Katwijk
et al. (2016), with cores showing higher integrated success than transplanted shoots
anchored with pegs. Monitoring of the donor meadow after 18 months provided evidence
that sensitive removal of donor material does not negatively impact donor meadows in the
long-term.

Experimental seagrass transplant trials have suggested that using more compact
planting patterns promotes long-term transplant persistence, particularly in isolated
transplant plots, as clumping plants mimic dense root mats, promoting self-facilitation via
sediment stabilisation and nutrient sharing (Morris & Doak, 2002; van Katwijk et al., 2016;
Temmink et al., 2020). From our research, more compact patterns (dense and bullseye),
showed higher survival, and the bullseye planting pattern significantly increasing area
cover (average ~147%). This result may be linked to the more influential factor of site
selection, which at a local scale may lead to interactions of spatially isolated Z. capensis
transplant plots with other ecosystem engineering processes, such as bioturbators.
In Langebaan Lagoon, Z. capensis has been shown to be spatially excluded by sandprawns
(K. kraussi) in higher densities, that subsequently increase sediment suspension and
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destabilise sediments (Siebert & Branch, 2005; Hanekom & Russell, 2015). Qualitative field
observations also showed bioturbator pressure from Greater flamingos (Phoenicopterus
roseus) and Lesser flamingos (Phoeniconaias minor) which both form donut-shaped
depressions due to trampling and their circular filter feeding technique, resulting in
sediment resuspension, and increased nutrient flows, causing root destabilisation and
enhanced biofilm production (Gihwala, Pillay & Varughese, 2017; El-Hacen et al., 2018).
Bioturbator interactions in combination with (1) small, spatially isolated transplant plots,
(2) planted at sites across a tidal gradient where sandprawn density is known to increase
towards the lower intertidal zone (Siebert & Branch, 2006), likely led to negative
density-dependent effects and account for significantly lower survival rates and area cover
in the upper-mid and mid-intertidal zones, in comparison to the upper-intertidal zone, in
our study.

Wider impacts of seagrass restoration in Langebaan Lagoon
In this study, re-establishing seagrass patches has a positive impact on seagrass-associated
species, including for South Africa’s most endangered marine invertebrate, the
false-eelgrass limpet (S. compressa), which only lives on Z. capensis and is endemic to
Langebaan Lagoon (Angel et al., 2006). Species diversity was higher in transplanted cores
(Table S3), likely due to the increased survival and area cover (Fig. 3). In total, 14
macro-epifaunal species were recorded, which is lower than recorded by Pillay et al. (2010)
at the nearby Klein Oesterwal, likely explained by the increased survey effort across the
tidal gradient and the inclusion of infaunal species in Pillay et al. (2010). Although species
diversity was not investigated in bare sandflats, previous studies have highlighted that
sandflats without seagrass (including through seagrass loss), have reduced richness and
abundance (Orth et al., 2006; Pillay et al., 2010).

In addition to ecological service provision, this project also provided social benefits.
The community impact of this work resulted in SANParks staff and 40 Project SeaStore
volunteers contributing >1,600 working hours to assist with transplantation and
monitoring, highlighting the project’s success in connecting communities with a typically
lesser-known ecosystem. Longer-term, this is also likely to promote stewardship of
seagrass meadows and aid future conservation efforts (Unsworth et al., 2019b).

Recommendations for future restoration trials in southern Africa
The principal challenge to upscaling Z. capensis restoration is the with vastly different
environmental conditions found within estuaries across its range, therefore restoration
efforts will need to be population and site specific (Adams, 2016). For example, attempts in
two estuarine systems in South Africa, Klein Brak and the Knysna Estuary, both showed a
100% loss of Z. capensis transplants within 3-months (Mokumo, Adams & von der Heyden,
2023), despite following a similar approach to the work presented here. Both estuaries have
strong freshwater inflows and fluctuations in physicochemical conditions, water levels and
turbidity (Mokumo, Adams & von der Heyden, 2023), making their environments more
variable than the conditions found in Langebaan, with changes in salinity a likely variable
in the loss of transplanted cores in Klein Brak. Conversely, a restoration project in a
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relatively protected site characterised by sandy and muddy flats in Maputo Bay,
Mozambique, also without significant freshwater flow, recorded survival rates of 75% after
12 months for transplanted Z. capensis cores (Amone-Mabuto et al., 2022). These studies
highlight that site conditions and seagrass population dynamics are significant
considerations before extending restoration attempts into other South African estuaries.

Another key challenge of working with Z. capensis is the lack of abundant seeds, making
restoration using seeds unfeasible despite having shown considerable success in other
Zostera species (Marion & Orth, 2010; Unsworth et al., 2019a). Work by Jackson (2022)
discovered low intrapopulation clonality, which suggests sexual reproduction is more
prevalent than once thought and a few inflorescences have been documented in several
South African estuaries including Berg, Breede and Olifants in the west, and uMhlathuze,
Mngazana and Swartkops estuaries on the south-east coast. However, without pursing seed
storage (Yue et al., 2019) or controlled assisted evolution (Pazzaglia et al., 2021), it remains
unlikely that the use of seeds for Z. capensis restoration will be an immediately viable
option. Alternatively, pursuing techniques to reduce impacts on donor meadows, such as
in vitro seagrass propagation methods (J Stephens, 2021, unpublished data) or growing
donor material in seagrass aquariums to increase cover before transplanting back into the
field (A Bossert, 2023, unpublished data) could also advance sustainable restoration efforts
of dynamic meadows.

Retrospectively, bioturbator disturbance from flamingos was deemed to have more of an
impact than anticipated, but was not explicitly monitored during this study. To overcome
bioturbator pressure (sandprawns, flamingos and other wading birds), there is an
opportunity for future restoration attempts to pursue ecologically sympathetic bioturbator
exclusion methods. Novel approaches could also employ bird guano fertilisation to
accelerate recovery (Kenworthy et al., 2018), or biodegradable establishment structures that
mimic dense belowground root mats and suppress sediment mobility (Temmink et al.,
2020). It is likely that supporting transplants with bioturbator exclusion measures would
reduce post-transplantation stress and promote long-term persistence.

CONCLUSIONS
In summary, our work describes the first trial to show successful restoration of Z. capensis
meadows in South Africa, highlighting that intertidal site selection, transplantation
material used, and to a lesser degree planting pattern, are significant drivers of transplant
persistence (Fig. 3) and promoted the establishment and expansion of Z. capensis in this
pilot study. This research approach creates a solid foundation from which future projects
can build upon to reverse the anthropogenically-driven losses of seagrass in Langebaan
Lagoon. Further pilot studies are needed to scale our approach across other temperate
South African estuaries where Z. capensis is found. In the global context, Z. capensis is an
endangered species that is endemic to southern Africa, and there have been ongoing calls
for wider management and restoration of Z. capensis across its range (Pillay et al., 2010;
Adams, 2016; Barnes & Claassens, 2020; Amone-Mabuto et al., 2022; Mokumo, Adams &
von der Heyden, 2023). With input from regional stakeholders, the conservation of
Z. capensis requires a concerted combination of adaptive management strategies, including
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restoration, to enable practitioners to implement a holistic approach to regional coastal
management.
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