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ABSTRACT
Genomic vulnerability analyses are being increasingly used to assess the adaptability
of species to climate change and provide an opportunity for proactive management
of harvested marine species in changing oceans. Southeastern Australia is a climate
change hotspot where many marine species are shifting poleward. The turban snail,
Turbo militaris is a commercially and culturally harvested marine gastropod snail
from eastern Australia. The species has exhibited a climate-driven poleward range
shift over the last two decades presenting an ongoing challenge for sustainable
fisheries management. We investigate the impact of future climate change on
T. militaris using genotype-by-sequencing to project patterns of gene flow and local
adaptation across its range under climate change scenarios. A single admixed, and
potentially panmictic, demographic unit was revealed with no evidence of genetic
subdivision across the species range. Significant genotype associations with
heterogeneous habitat features were observed, including associations with sea surface
temperature, ocean currents, and nutrients, indicating possible adaptive genetic
differentiation. These findings suggest that standing genetic variation may be
available for selection to counter future environmental change, assisted by
widespread gene flow, high fecundity and short generation time in this species.
We discuss the findings of this study in the content of future fisheries management
and conservation.
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INTRODUCTION
Rapid climate change is impacting the physical state of the world’s oceans and directly
threatening the structure and function of marine ecosystems. In particular, ocean warming
and marine heatwave events, ocean acidification and deoxygenation, changes to ocean
currents, and sea-level rise are already impacting many marine ecosystems and associated
socioeconomic and cultural values at a global scale (Brierley & Kingsford, 2009; Doney
et al., 2011; Orr et al., 2005; Poloczanska et al., 2013, 2016; Scavia et al., 2002). Shifts in the
physical ocean climate pose a direct threat to many of the world’s commercial fisheries,
causing changes in species distributions and abundances, altering habitats, decoupling
critical trophic interactions, and pushing species beyond their physiological limits
(Holland et al., 2021; Hollowed et al., 2013; Roessig et al., 2004; Sumaila et al., 2011). These
effects are expected to reduce harvestable biomass in many fisheries (Brander, 2013), with
studies predicting reductions in catch of up to 40% for tropical fisheries alone under the
RCP8.5 scenario (Lam et al., 2020). Projections suggest that climate change will continue
to be an ongoing challenge for sustainable fisheries management into the future (Cheung
et al., 2010), highlighting the importance of research aimed at understanding the resilience
of individual fisheries to climate change effects, and identifying interventions capable of
‘climate-proofing’ vulnerable fisheries (Fankhauser & Schmidt-Traub, 2011; Harte et al.,
2019).

Evidence suggests the ability of many marine species to track their thermal niche via
migration is likely to be outpaced by rapid climate change (Hiddink et al., 2012; Vranken
et al., 2021). This typically applies to less vagile organisms whose persistence will depend
more on their ability to adapt to new thermal environments, either through plasticity or
genetic evolution (Donelson et al., 2019; Munday et al., 2013; Somero, 2010). Species with
wide latitudinal ranges often show genetically based clines across thermal gradients (Berger
et al., 2013; Jenkins et al., 2019; Pereira, Sasaki & Burton, 2017), suggesting standing
genetic variation in quantitative traits might be available for adaptation to new
environments (Barrett & Schluter, 2008; Sasaki et al., 2022). Yet it is anticipated that
selection itself may fail to keep pace with rapid climate change, particularly in long-lived
organisms (Vranken et al., 2021;Wood et al., 2021). In such cases, gene flow is likely to play
a critical role in the adaptation process, particularly when strong biological connections
among locally adapted populations from thermal environments are present (Miller et al.,
2019; Sork et al., 2010). Consequently, species with high connectivity among locally
adapted populations may be deemed less at risk than those species with limited gene flow
and poor dispersal capabilities (Ayre & Hughes, 2004; Coleman, 2015). In such cases,
strategic intervention measures may be needed to maximise the adaptive capacity of
threatened fish stocks, such as augmentation activities that include deliberately
introducing genotypes from warm adapted populations to those at risks of maladaptation
(Aitken & Whitlock, 2013; Hagedorn et al., 2018; Layton et al., 2020; Hoffmann, Miller &
Weeks, 2021). Consequently, the challenge for fisheries managers is understanding when
interventions of this nature will be necessary in order to mitigate the risks of climate
change.
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Population genetics has played a key role in characterising structure and patterns of
gene flow among populations, especially in commercially important marine species over
the last few decades (Miller et al., 2019; Smith, Francis & McVeagh, 1991;Ward, 2000; van
Oppen & Coleman, 2022). This field of research has been revolutionised by modern DNA
sequencing technologies that now allows for genome wide estimates of genetic variation,
providing unprecedented power for resolving fine scale patterns of genetic structure
(Cheng et al., 2021; Milano et al., 2014; Sağlam et al., 2021) and signatures of adaptive
genetic differentiation among fishing stocks spanning environmental gradients (Quigley,
Bay & van Oppen, 2020; Riquet et al., 2013). Combined, this information can greatly assist
fisheries management by providing insights into the availability of standing variation for
adaptation to future environmental challenges, and the potential role of gene flow in
assisting the adaptation process (Mason et al., 2022; Papa et al., 2020; Valenzuela-
Quiñonez, 2016). Importantly, this information can help to identify fish stocks most at risk
of maladaptation, and to guide stock augmentation programs aimed at introducing novel
genotypes for selection to act upon to help combat future environmental challenges
(Bernatchez et al., 2017; Reiss et al., 2009; Waples & Naish, 2009).

Marine gastropod snails support many commercial and recreational fisheries around
the world (Dolorosa et al., 2010; Foale & Day, 1997; Leiva & Castilla, 2002), many of which
are expected to be susceptible to climate change effects (Ortíz, Arcos-Ortega & Navarro,
2022; Valles-Regino et al., 2022). Specifically, evidence suggests that ocean warming has the
potential to suppress larval development, delay gonad maturation, reduce fecundity, stunt
growth, and increase susceptibility to disease in many species, while increased ocean
acidification is expected to compromise shell production in others (Holland et al., 2021;
Leung, Russell & Connell, 2020; Zacherl, Gaines & Lonhart, 2003). However, some marine
gastropods have broad latitudinal distributions and show genetically determined clines
across thermal gradients, and strong biological connections over vast geographic distances
due to long pelagic larval dispersal stages (Kelly & Palumbi, 2010; Miller et al., 2016;
Neethling et al., 2008; Villamor, Costantini & Abbiati, 2014). These findings suggest that
some species might possess heritable genetic variation for adaptation to future thermal
environments, which maybe assisted by extensive gene flow across thermal gradients
(Johansson, 2015; Sanford & Kelly, 2010; Zardi et al., 2011). However, information for
some marine gastropod groups is still lacking and is urgently needed to inform future
management.

Benthic marine gastropods represent approximately 2% of the global marine mollusc
fishery (Department, Food and Agriculture Organization of the United Nations. Fisheries,
1997, 2012), with some species having high economic value being targeted in small-scale
artisanal fisheries (i.e Haliotis spp., Strombus spp., Busycon spp, and Concholepas spp.).
In recent decades commercial landings have grown with wild-stock catch increasing from
75 k metric tonnes (mt) in 1979 to 103 k mt in 1996 (Department, Food and Agriculture
Organization of the United Nations. Fisheries, 1997), however, some gastropod fisheries
have been identified as being significantly threatened by climate change (Carranza &
Matías, 2023; Ramos et al., 2022). Unfortunately, information of the genetic structure and
resilience of many commercially important gastropods is lacking, including trochid snails.
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To date, only a handful of studies have investigated patterns of population genetic
structure among trochoid fisheries (Berry et al., 2019; Díaz-Ferguson et al., 2010; Nikula,
Spencer & Waters, 2011), and, to our knowledge, no study has investigated patterns of
adaptive genetic variation across the entire range of any trochid species using a dataset that
includes thousands of genome-wide variants. Turbo militaris Reeve, 1848, is a large
intertidal and shallow subtidal turbinid (Family Turbinidae) from south-eastern
Australian coast that is traditionally and recreationally harvested for human consumption
(Yearsley, Last & Ward, 1999) and supports a 6.6 tonne turban snail commercial fishery in
New South Wales (NSW) (NSW Department of Primary Industries, 2019). Like many
trochids, T. militaris is showing signs of climate stress, with evidence of a poleward range
shift since the turn of the century (Atlas of Living Australia (ALA), 2018; GBIF, 2016,
Benkendorff & Przeslawski, 2008). Given that range shifts in commercially important
marine species can have socio-economic and management implications (Madin et al.,
2012; Bonebrake et al., 2018), it is prudent to explore the capability of T. militaris to adapt
to ongoing environmental change in order to maintain extant populations.

In this study we investigated patterns of population genetic structure in T. militaris
using genotype-by-sequencing and a sampling regime encompassing the species’ entire
distribution spanning seven degrees of latitude and a difference of 3.9 �C in mean annual
sea surface temperature. We explore patterns of gene flow and population connectivity
across the sampling distribution and integrate genomic and geospatial data to tests for
genotype-environmental associations (GEAs) indicative of adaptive genetic differentiation
between populations. Findings from this study provide valuable insights into the spatial
scales of gene flow and the availability of standing genetic variation for adaptation to future
environmental conditions. We discuss the findings of this study in the context of future
fisheries management.

MATERIALS AND METHODS
Sampling
Eight rocky shore locations (0 to 5 m depth) were selected for sampling (Table 1) spanning
the known range of T. militaris from Hastings Point (northern NSW) to Jervis Bay
(southern NSW) (Fig. 1), representing a seven-degree latitudinal and a 3.9 �C annual mean
sea surface temperature gradient. Additionally, to sample a known cross-shelf gradient of
temperature (less confounded by distance and unconfounded by latitude), three locations
at varying distances from shore and under different temperature regimes were selected:
Nambucca Heads (mainland), Split Solitary Island (3 km from the mainland) and South
Solitary Island (7 km from the mainland). These represent inshore, mid-shelf, and offshore
positions, respectively, with an annual mean sea temperature varying by about 1 �C from
inshore to offshore (Malcolm, Jordan & Smith, 2010). Notably, South and Split Solitary
islands are remote from shore and are also likely to have very low to no harvesting
pressure. Between 25 and 30 T. militaris individuals were collected from each location
(Table 1). As internal foot muscle tissue was found to yield clean, high molecular-weight
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DNA, it was necessary to narcotise specimens. Field collections were carried out under a
scientific collection permit granted by the NSWDPI Fisheries under section 37 of the NSW
Fisheries Management Act 1994 (#P01/0059(A)-4.0).

Figure 1 Map of Turbo militaris collection sites from the eastern seaboard of Australia.
Full-size DOI: 10.7717/peerj.16498/fig-1
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DNA extraction and genotyping
Approximately 25 mg of foot muscle tissue was sampled from each specimen using
sterilised scalpel and forceps, avoiding the inclusion of mucous-rich epidermal tissue.
Tissue samples were immediately placed in 2.0 mL Eppendorf snap-lock microcentrifuge
tubes containing 500 µL of hexadecyltrimethylammonium bromide (CTAB) lysis buffer
(100 mM TrisHCl, 20 mM EDTA, CTAB 2% w/v, NaCl 1.5 M) and refrigerated at 4 �C for
2 weeks. Proteinase K (30 µL at 20 mg/mL) was added to the samples which were incubated
in a Allsheng shaking incubator at 60 �C, 200 rpm overnight. Samples were cooled to room
temperature and purified by addition of an equal volume of 24:1 chloroform isoamyl. After
centrifugation, the aqueous phase was retained and DNA was precipitated by the addition
of 800 µL of dilute CTAB buffer (100 mM TrisHCl, 20mM EDTA, CTAB 2% w/v) to each
tube which were incubated in an Aosheng MSC-100 shaking incubator at 60 �C at 400 rpm
until DNA/CTAB complexes were visible. After centrifugation, the DNA formed a pellet
which was twice cleaned with 70% ethanol by repetitive inversion. The DNA pellet was
air-dried to remove residual ethanol and subsequently resuspended in sterile lab-grade
water. Extracted DNA was quality checked using NanoDrop, Qubit assay and gel
electrophoresis.

For single nucleotide polymorphism (SNP) genotyping, 20 mL of extracted DNA was
sent to Diversity Arrays Technology Pty Ltd (Canberra, Australia) (DArT). The DArT
organisation provides a process pipeline of whole-genome profiling, without the need for a
reference genome (Jaccoud et al., 2001). High-throughput DArTseq technology was used
to genotype Turbo militaris DNA. Here, the PstI-based complexity reduction method
(Wenzl et al., 2004) was applied for the enrichment of genomic representation with single
copy sequences. This method involved the digestion of DNA samples with a cutting
enzyme PstI, paired with a set of secondary frequently cutting restriction endonucleases,
ligation with site-specific adapters, and amplification of adapter-ligated fragments. Post
digestion with a restriction enzyme pair, a PstI-overhang-compatible oligonucleotide
adapter was ligated, and the adapter-ligated fragments were amplified in adherence to
standard protocol (Wenzl et al., 2004). To develop SNPs, the DArTseq technology was

Table 1 Details of samples, sampling location and location based environmental covariables for Turbo militaris in New South Wales.

Location Latitude Longitude Date collected N samples SST (�C) Temp range (�C) EKE CHL a

Hastings Point 28�21′38.09″S 153�34′44.21″E 30 Mar 2021 25 23.35 8.91 0.1391 2.1094

Woody Head 29�21′47.70″S 153�22′25.96″E 08 Apr 2021 25 22.34 9.52 0.0632 3.8472

South Solitary Island 30�12′19.31″S 153�16′01.24″E 12 May 2021 25 22.42 10.17 0.1204 0.9517

Split Solitary Island 30�14′24.07″S 153�10′50.71″E 12 May 2021 30 22.37 10.14 0.0741 2.0323

Nambucca Heads 30�38′47.49″S 153�01′15.10″E 26 Mar 2021 23 22.23 10.23 0.1223 2.0319

Crowdy Head 31�50′16.91″S 152�45′04.54″E 28 Apr 2021 22 21.34 9.94 0.0820 2.7083

Newcastle 32�57′31.70″S 151�45′02.72″E 12 Apr 2021 31 20.39 9.12 0.0178 2.2840

Jervis Bay (Plantation Pt) 35�06′16.15″S 150�41′53.70″E 20 Aug 2021 25 19.46 10.24 0.0311 2.9248

Total 206

Note:
N, number; SST, sea surface temperature; Temp range, temperature range; EKE, eddy kinetic energy; CHLa, chlorophyll a.
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optimized using two PstI-compatible adapters corresponding to two different restriction
enzyme overhangs. The genomic representations were generated following the procedures
described by Kilian et al. (2012). Next-generation sequencing technology was implemented
using HiSeq2000 (Illumina, USA) to detect SNP markers. Sequence data was analysed
using DarTsoft14 and DArTdb (Kilian et al., 2012).

SNP calling
In total, 208 individual T. militaris were initially genotyped with the DArTseqTM platform
yielding a total of 19,837 SNP loci with a mean read depth of 15.31 and 10.73% missing
data. To improve SNP quality, while optimising the number of loci available for population
genomic analyses, quality control filters, based on the descriptive statistics from the
DArTseqTM pipeline, were applied to data using the R package dartR v.2.7.2 (Gruber et al.,
2019; Mijangos et al., 2022). Prior to SNP quality control, we checked for the presence of
genetically related individuals, as their inclusion can lead to biased genetic estimations of
downstream analyses. We calculated a similarity genetic distance matrix for individuals on
the proportion of shared alleles per pairs of individuals with the function gl.propShared in
dartR. Two individuals, one fromNambucca Heads (NAM07) and one from South Solitary
Island (SSI16) were characterised as closely related and were removed from downstream
analyses.

Two SNP datasets were generated for analyses: dataset ‘1’ for the analysis of overall
genetic structure, and dataset ‘2’ for tests of GEAs and the identification of candidate loci.
Both datasets were generated by retaining a single SNP per tag, removing secondaries,
applying a locus and individual call rate of 80%, reproducibility threshold of 80%, and a
Hamming distance threshold of 0.2 to control for the influence of linkage disequilibrium
between loci. SNPs were called for dataset ‘1’ by applying a minor allele frequency (MAF)
threshold of 0.03 and removing all loci departing from Hardy–Weinberg expectations.
In contrast, SNPs were called for dataset ‘2’ by setting MAF to 0.01, and not filtering out
SNP loci deviating from by Hardy–Weinberg expectations (all loci included). Finally, we
also used poppr (Kamvar, Tabima & Grunwald, 2014) in the R package to calculate the
number of private alleles found in each population, and remove these SNPs using gl.drop.
loc in package dartR. After filtering, a total of 3,527 and 6,852 SNP loci for 206 individuals
(Table 2) were retained for data sets ‘1’ and ‘2’, respectively.

Tests for population differentiation
Several estimates of genetic diversity were generated using the poppr package in R,
including observed (HO) and expected (HE) heterozygosity and allelic richness (AR) (Joop
Ouborg, Angeloni & Vergeer, 2010). For AR, allele counts were rarefied by the minimum
number of individuals genotyped using the allelic.richness command in the R package
hierfstat (Weir & Goudet, 2017). Statistical differences in genetic diversity measures among
sites was estimated using the Hs.test function in the R package adegenet (Jombart, 2008).
Departures from random mating were calculated using FIS (inbreeding coefficient) for the
overall dataset and for each sample location using the basic.stats function in hierfstat.
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Tests for population genetic structure were subsequently performed, by calculating
global population differentiation (FST) with 95% confidence limits (Weir & Cockerham,
1984), and population pairwise measures of FST with significance determined using
permutation (999) in the dartR. Multiple testing effects were corrected for using the
Benjamini–Hochberg FDR procedure (Benjamini & Hochberg, 1995). An analysis of
molecular variation (AMOVA) was performed in the R package poppr (Kamvar, Tabima
& Grunwald, 2014), using a model that partitioned variation among sample sites and
within sample sites, with significance based on a randomization test with 999
permutations. A mantel test of isolation by distance (IBD) was carried out using the gl.ibd
(Rousset, 1997) function in the R package dartR (Gruber et al., 2019) with results visualised
in a scatterplot. A discriminant analysis of principal components (DAPC) was performed
using adegenet package in R (Jombart, 2008). The find.clusters function was used to detect
the number of clusters in the population. The best number of subpopulations has the
lowest associated Bayesian Information Criterion (BIC). A cross validation function (Xval.
dapc) was used to confirm the correct number of PCs to be retained. Finally, we used
sparse non-negative matrix factorisation (sNMF) implemented in the R package LEA
(Frichot & François, 2015) in R. This algorithm estimates the genetic ancestry components
for each sample. For this study, 15 runs were performed with a = 100 for each K value (one
to eight). The selection of the best number of putative ancestral populations was guided by
the cross-entropy criterion (wherein, for K, a plot of the cross-entropy curve formed a
‘knee’) and the results from the best run were visualised using the barplots function.

Environmental variables
Physical oceanographic data were downloaded from the Copernicus Marine Environment
Monitoring Service (https://marine.copernicus.eu), using a 20-year historical time-series
encompassing 2001–2020 (daily temporal resolution) matched to each sampling location.
These variables included temperature, water flow and productivity: sea surface
temperature (SST) at 0.05� spatial resolution; remotely-sensed eddy kinetic energy (EKE)
at 0.25� spatial resolution; and remotely-sensed chlorophyll a concentration (CHLa) at
0.04� spatial resolution (Table 2). The native spatial resolutions of oceanographic variables
were used when matching daily data to sampling locations. Mean values were calculated
for each variable by averaging the daily data. In addition, the lowest and highest SST for

Table 2 Predictor variables sourced from copernicus marine environment monitoring service used in genotype by environmental association
analyses.

Predictor Description Spatial
resolution

Units

SST Daily global sea surface temperature reprocessed (level 4) from Operational SST and Ice Analysis system
downloaded from CMEMS (product #010_011).

0.05� �C

CHLa 8-day composite mass concentration of chlorophyll a in seawater (level 4) from Globcolour downloaded from
CMEMS (product #009_082).

4 km mg m−2

EKE Daily eddy kinetic energy computed from zonal and meridional velocity components from the Sea Level
Thematic Assembly Centre downloaded from CMEMS (product #008_047).

0.25� m2s−2

Nimbs et al. (2023), PeerJ, DOI 10.7717/peerj.16498 8/28

https://marine.copernicus.eu
http://dx.doi.org/10.7717/peerj.16498
https://peerj.com/


each location was extracted, and an absolute temperature range variable (temp.range) was
calculated by subtracting the minimum from the maximum. A pairs.panels scatter plot of
matrices was generated in the R package psych to confirm a lack of (Pearson’s) correlation
between variables (r2 ≤ 0.8), which were subsequently used in GEA analyses (described
below).

Genome–environment association (GEA) analyses
To detect putative genomic signatures of selection, tests for GEAs were conducted using
two complementary models: latent factor mixed models (LFMM2) (Caye et al., 2019), and
the Bayesian method available in BayPass V1.01 (Gautier, 2015). BayPass and LFMM
accounted for potentially confounding allele frequency differences due to population
structure in a mixed linear model framework, but in different ways: LFMM estimates
GEAs when simultaneously correcting for population structure with latent factors, while
BayPass uses a neutral covariance matrix constructed from population allele frequencies.
The subset of environmental variables described above were used as predictor variables for
both analyses.

Genotype-environment associations were explored with Baypass V1.01 (Gautier, 2015)
under the auxiliary (AUX) covariate model (-covmcmc and -auxmode flags). The first core
model (without the environmental data) was run to estimate a covariance matrix (Ω) of
population allele frequencies, which is an approximation of genomic differentiation
between populations caused by demographic history. In order to reach convergence and
reproducibility of the MCMC estimates, five independent runs, each with a randomly
chosen seed were performed using default parameters, except for: pilot runs length of 1,000
iterations, number of sampled parameter values of 1,000, and a burn-in period length of
2,500 iterations. Secondly, the average of the five covariance matrices were used as input
for the auxiliary covariate model to detect evidence of an association corrected for
population structure. Environmental variables were scaled using the “-scalecov” option
and the same running parameters as the core model were applied. Finally, the strength of
association between genotype and the covariates was assessed by calculating the average of
the log-transformed Bayes Factor (BF) in deciban units (dB) for each locus and
environmental predictor. Significance was determined following Jeffrey’s criterion for
decisive associations (BFis ≥ 20) (Jeffreys, 1939).

Latent factor mixed models (LFMM2) tested for linear relationships between
environmental variables and genetic variants with random latent factors using a
least-square method. Population structure was inferred by estimating individual ancestry
coefficients based on sparse non-negative matrix factorisation (SNMF) method
implemented in the snmf function in the R package LEA v3.10.2 (Frichot & François, 2015).
Ancestry coefficients were determined for 1–8 ancestral populations (K) by generating an
entropy criterion that evaluates the fit of the statistical model to the data using a
cross-validation technique (Frichot & François, 2015). The K with the lowest cross-entropy
value using 100 repetitions for each K value was selected. Subsequently, the optimal factor,
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K = 1, was used to inform the LFMM to identify whether allele frequencies were correlated
with any of the environmental variables. To increase the statistical power of associations,
missing genotype data were imputed via the ‘impute’ function in the LEA package, using
the most common allele frequency observed in each K with the method ‘mode’. Next, we
used the function lfmm_ridge to compute a regularised least-squares estimate using a ridge
penalty. Individual associations between each SNP frequency and each environmental
variable were assessed using statistics test calibrated using genomic inflation factor
(function lfmm_test). Corrections for multiple comparisons were applied with the
Benjamini-Hochberg algorithm with a false discovery rate (FDR) threshold of 5%
(Benjamini & Hochberg, 1995). Significance associations were determined using a
threshold of 0.001, since the probability of finding a false positive result increases with
lower thresholds (Ahrens, Byrne & Rymer, 2019).

The gradient forest (GF) algorithm was subsequently used to describe the strength of the
associations of spatial, environmental variables and candidate loci and to map spatial
patterns of allelic turnover in climate space (Ellis, Smith & Pitcher, 2012; Fitzpatrick &
Keller, 2015). Gradient forest is a machine learning method initially developed to model
the turnover of ecological community assemblages in relation to environmental gradients
(Ellis, Smith & Pitcher, 2012). Recently, this method has been adapted as a landscape
genomics toolbox, substituting allele frequencies at genetic loci for species to model allelic
turnover in climatic space (Fitzpatrick & Keller, 2015). The turnover functions in gradient
forest allow for inference of the environmental predictors driving observed changes in
allele frequency (Fitzpatrick & Keller, 2015). Analyses were implemented in the R package
gradientForest (Ellis, Smith & Pitcher, 2012), using a regression tree-based approach to fit a
model of responses between genomic data and environmental variables (Capblancq et al.,
2020). Specifically, adaptive genetic variation turnover were modelled on the seascape
using the candidate SNPs (derived from LFMM, and BayPass) set as the response variables.
The machine learning algorithm partitioned allele frequencies at numerous splits values
along each environmental gradient and calculated the change in allele frequencies for each
split. The split importance (i.e., the amount of genomic variation explained by each split
value) was cumulatively summed along the environmental gradient and aggregated across
alleles to build a non-linear turnover function to identify loci that are significantly
influenced by the predictor variable (Ellis, Smith & Pitcher, 2012). The analysis was run
over 500 regression trees for each of the four environmental variables with all other
parameters at default settings. The cumulative goodness-of-fit among SNPs was
represented as an R2 value indicating how well a predictor explained changes in allele
frequency and which predictors were most important in predicting genomic changes.
The resulting multidimensional genomic patterns were summarised using principal
component analysis (PCA), allowing the relative importance of predictor variables on
allelic turnover to be visualised. Finally, using the top gradient forest model, we
interpolated genetic composition and allelic turnover across the sampling range of eastern
Australia.
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RESULTS
Overall population genetic structure
Patterns of genetic diversity did not differ greatly across the eight sample locations
(HO = 0.186–0.212; AR = 1.630–1.640; Table 3). Most sites showed a weak excess of
heterozygotes (FIS = 0.048–0.118), however these estimates did not differ significantly from
zero (p > 0.01; Table 3). Overall genetic differentiation was found to be significant, but
weak and close to zero (global FST = 0.002, p < 0.001) indicating a lack of genetic structure
among sampling locations (Table 3). These findings are further supported by weak, yet
significant, estimates of genetic differentiation among all pairs of sampling locations
(FST = 0.000–0.004, Table 4). AMOVA also indicated a lack of overall genetic structure
indicating genetic variance attributed to differences among sites to be non-significant
(0.212, p > 0.05) while the majority of variance was explained by genetic variation between
individuals within sites (99.86, p > 0.05). Similarly, DAPC and LEA analyses indicated a
lack of genetic structure, both identifying a single population cluster (K = 1). Finally,
Mantel tests revealed no significant relationship between genetic differentiation and
distance between sampled locations (R2 = 0.03356, p = 0.278) providing further evidence
of panmixia.

Genotype x environment associations
BayPass and LFMM each identified a number of candidate SNP loci exhibiting significant
genotype-by-environment associations for each of the environmental predictors tested
(Fig. 2). BayPass detected between 0 and 2 SNPs with significant correlations (log10(BF) >
20) for each of the environmental predictors, with zero overlap in candidates between
predictors. In contrast, LFMM detected between 5 and 12 SNPs that were significantly
correlated with each of the environmental predictors (Fig. 2), but with only two loci
overlapping between the EKE and SST predictor variables. Concordance of candidate SNP
loci between methods was low (three loci only; Fig. 2) but expected given these methods
have varying sensitivities to detecting loci under selection, use different methods for
controlling for demography, and adopt different association algorithms. Given that

Table 3 Summary of descriptive statistics.

Location n AR HE H O FIS

Hastings Point 25 1.635 0.218 0.190 0.110

Woody Head 25 1.633 0.216 0.189 0.107

Split Solitary Island 30 1.632 0.217 0.189 0.111

South Solitary Island 25 1.638 0.219 0.202 0.076

Nambucca Heads 23 1.640 0.221 0.212 0.048

Crowdy Head 22 1.633 0.217 0.188 0.111

Newcastle 31 1.630 0.215 0.186 0.118

Jervis Bay 25 1.630 0.217 0.194 0.096

Note:
Sample size (n), mean allelic richness (AR), and genetic diversity indices including expected (HE) and observed (HO)

heterozygosity, and inbreeding coefficients (FIS) at each site, based on the complete filtered dataset (n = 207 individuals).
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T. militaris exhibits panmixia, its lack of population structure was likely to influence the
inference of omega matrix and K clusters on BayPass and LFMM respectively.
Furthermore, LFMM tests for relationships between individual-based allele frequencies
whereas BayPass is at population level. Additionally, sampling design is likely to have had
an influence, wherein a strategic sampling design accommodated to environmental
heterogeneity and spatial variation on a landscape is essential to potentially identify and
validate patterns of local adaptations across natural populations. Overall, GEAs indicated

Table 4 Pairwise estimates of pairwise FST among sample locations.

Nambucca Heads Woody Head Newcastle Hastings Point South Solitary Is Crowdy Head Split Solitary Is Jervis Bay

Nambucca Heads 0.0037 0.0037 0.0031 0.0033 0.0028 0.0028 0.0043

Woody Head 0.00 0.0022 0.0019 0.0034 0.0029 0.0027 0.0038

Newcastle 0.00 0.00 0.0017 0.0024 0.0016 0.0014 0.0021

Hastings Point 0.00 0.00 0.01 0.0018 0.0007 0.0014 0.0017

South Solitary Is 0.00 0.00 0.00 0.00 0.0016 0.0020 0.0031

Crowdy Head 0.00 0.00 0.00 0.11 0.00 −0.0002 0.0016

Split Solitary Is 0.00 0.00 0.00 0.00 0.00 0.69 0.0020

Jervis Bay 0.00 0.00 0.00 0.01 0.00 0.00 0.00

Note:
Bolded FST values were found to be significant after multiple corrections (p < 0.05).
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that a larger proportion of SNPs were significantly associated with temp range (13) and
CHLa (11), followed by EKE (7) and SST (5).

Gradient Forest modelling used the unique candidate adaptive loci detected by both
LFMM and BayPass (Luo et al., 2021), with 39 in total, four in BayPass and 35 in LFMM,
but three were shared between both analyses and one was shared within LFMM (variables
EKE and SST) (thus 39—3—1 = 35 unique candidate loci). Gradient forest analyses
showed 14 of the 35 candidate SNP loci to be significantly correlated with environment (R2

values > 0; mean = 0.08, range 0.003–0.3). Overall, EKE, CHLa and SST were found to be
the most important predictors of genomic variation, while temp range had less of an effect
(Fig. 3). Turnover functions from the GF model show the weighted cumulative importance
values and sharp turnovers for all environmental predictors, but again with temp.range
having lower importance relative to all other predictors (Fig. 3A). Biplots based on the first
two principal components captured approximately 99% of the total variation and point to
EKE and SST as the most prominent drivers of genomic variation (Fig. 3B). A spatial
depiction of genomic composition in multi-dimensional climatic space based on PCA is
provided in the allelic turnover map (Fig. 3C). The map indicates that the turnover of
putatively adaptive allelic variation tracks closely with latitude, with the genomic
composition of northern and southern most sampling locations being distinct from those
from geographically intermediate locations (Fig. 3D).

DISCUSSION
Understanding spatial patterns of gene flow and local adaptation can help predict species
responses to climate change and to identify populations most at risk of maladaptation
(Hoffmann & Sgrò, 2011; Sexton et al., 2009). Such information is critically important for
assisting with the adaptive management of commercially important marine species, many
of which are already showing signs of climate stress (Cheung et al., 2013; Pinsky et al., 2018;
Sunday et al., 2015). This study represents the first population genomic analysis of
T. militaris, a commercially and culturally important trochid marine gastropod from the
east coast of Australia, with the purpose of informing fisheries managers about
vulnerability of this species to future climate change. Analyses of SNP genotypes across the
species’ entire distribution spanning seven degrees of latitude and 3.9 �C in mean annual
sea surface temperature indicate the presence of a single admixed, and potentially
panmictic, demographic unit with no evidence of genetic subdivision along the entirety of
its range. Furthermore, significant genotype associations with heterogeneous habitat
features were observed at regional spatial scales, including associations with sea surface
temperature, ocean currents, and nutrients, indicating possible adaptive genetic
differentiation among sample locations. Combined, these findings provide insights into the
potential resilience of T. militaris to changing marine climates and the potential influence
of gene flow and selection on future adaptive responses.

Evidence of panmixia
Our analyses point to a lack of genetic structure across the entire distribution of T. militaris
indicating widespread gene flow along the eastern seaboard of Australia. Such genetic
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patterns are also found amongst other trochoid taxa with long pelagic larval phases which
are expected to facilitate long distance dispersal (Berry et al., 2019; Díaz-Ferguson et al.,
2010; Nikula, Spencer & Waters, 2011; Silliman, Grosholz & Bertness, 2009). Several other
eastern Australian marine invertebrates also exhibit high gene flow facilitated by larval
traits including the Crown-of-thorns sea star (Acanthaster spp.) (Pratchett et al., 2015), the
surf bivalve Donax deltoides Lamarck, 1818 (Murray-Jones & Ayre, 1997; Miller et al.,
2013) and the black sea-cucumber Holothuria (Mertensiothuria) leucospilota (Brandt,
1835) (Chieu et al., 2023). Here gene flow and population structure has been linked to the
long-distance dispersal of pelagic larvae facilitated by a fast-flowing East Australian
current (EAC). While knowledge of the reproductive biology or larval competency of
T. militaris is poor, our results suggest that the species may also generate long-lived,
planktotrophic larvae contributing to high levels of biological connectivity across its
distribution (Cowen & Sponaugle, 2009). Overall, these findings are consistent with
previous genetic studies on trochoid taxa indicating population admixture over vast
geographical areas. In this case we have provided evidence of gene flow among potentially
locally adapted populations spanning major environmental gradients.

Evidence of local adaptation
Despite a lack of overall genetic structure across the sampling distribution, significant
genotype associations with heterogeneous habitat features were observed across the
sampling distribution, including associations with annual mean sea surface temperature,
sea surface temperature range, EKE and productivity (CHLa). Drift processes leading to
neutral genetic structure are often suppressed in broadcast spawning marine organisms
with large population sizes (Gélin et al., 2017; Palumbi, 2003; Pinsky & Palumbi, 2014), but
numerous studies have shown that adaptive genetic divergences can still be established and
maintained under strong selection pressure (Hendry, 2017; Nosil, 2012; Schluter, 2000).
In fact, many studies have demonstrated that adaptive variation can be maintained despite
high levels of gene flow specifically in marine invertebrates, including gastropod snails
(Miller et al., 2019; Sandoval‐Castillo et al., 2018). However, these findings are based on
correlative tests only and should be interpreted with caution, as controlled mechanistic
experiments are needed to validate these patterns and drivers of putative adaptive
differentiation (Savolainen, Lascoux & Merilä, 2013; Stinchcombe & Hoekstra, 2008). Also,
while our sampling regime was designed to correct for geographical distance, we cannot
rule out the possible influence of artefactual associations (i.e., false positives) and SNP
associations with other environmental factors varying with latitude (such as light intensity,
dissolved oxygen levels and rainfall-driven variation in salinity). Nevertheless, our findings
are consistent with many studies of marine species which demonstrated genetically
determined clines related to climatic variables in Australia and overseas (Poloczanska et al.,
2013, 2016; Wernberg et al., 2016).

Resilience to future climatic challenges
The coastal waters of south-eastern Australia are a recognised climate change hotspot with
warming occurring above the global average with changes enhanced by strengthening of
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the EAC (Cresswell, Peterson & Pender, 2016; Malcolm et al., 2011; Oliver et al., 2017).
Predictions anticipate warming to continue to increase, generating deteriorating marine
conditions for sessile taxa that are already at their thermal limits (e.g., Davis, Champion &
Coleman, 2021). Within the EAC, the effect of warming and changes to circulation may
also counter one another, with warming enhancing larval survival, but a strengthened
current reducing larval supply to the coast by restricting cross-current larval dispersal (e.g.,
in lobster, Cetina-Heredia et al., 2015). Our findings suggest that T. militarismay have the
capacity to adapt to future climatic challenges, assisted by both widespread gene flow
across environmental gradients and the availability of standing genomic variation for
selection to act upon. Findings of putative adaptive genetic differentiation associated with
temperature, nutrients and ocean currents is a particularly important finding, suggesting
that standing genetic variation may be available for selection to act on to counter future
environmental change, assisted by widespread gene flow, high fecundity (Romolo &
Trijoko, 2021) and highly probable short generation time in this species (Kimani, 1996;
Romolo & Trijoko, 2021).

While our findings suggest that T. militaris is likely to be generally resilient to shifts in
the physical ocean climate, aggregations in some areas may still be vulnerable to risks of
maladaptation. Those most at risk are likely to include locally adapted populations, where
projected local changes in climate are high, and connections to non-local aggregations are
relatively weak (Hoffmann & Sgrò, 2011). Recent climate projections indicate that many
low energy embayment habitats are likely to experience greater increases in SST than open
coastal habitats (Guyondet et al., 2015; Scanes, Scanes & Ross, 2020; Vila-Concejo et al.,
2007); Also, biophysical models suggest that the biological connections between low energy
embayment and high energy open coastal habitats can be weak in some marine
invertebrates from south-eastern Australia (Riginos et al., 2016; Treml et al., 2015).
Consequently, it is possible that locally adapted aggregations from low energy embayment
habitats may be most vulnerable to climate change effects, where gene flow is unlikely to
assist local aggregations in adapting to warming sea surface temperatures via the migration
of thermally adapted genotypes. In such cases adaptive management strategies might be
needed, including the assisted migration of thermally adapted genotypes to populations
showing signs of climate stress. Such approaches are being widely advocated as a tool for
“climate proofing” threatened marine and terrestrial animal and plant communities
(Aitken & Whitlock, 2013; Prober et al., 2015; Layton et al., 2020; Hoffmann, Miller &
Weeks, 2021). Although the northernmost Hastings Point population is not genetically
isolated, its position at the northern trailing edge may render it vulnerable to stochastic
events, such as heatwaves (Ab Lah et al., 2018;Mamo et al., 2019). Vulnerability in trailing
edge populations can be amplified by genetic impoverishment through loss of individuals,
without replenishment through immigration (gene-flow), consequently exposing these
populations to the risk of localised extinction (Clark et al., 2020; Coleman et al., 2020).
Indeed, this species has undergone prior range shifts indicating that the trailing (warm)
edge is likely to be vulnerable to ongoing warming.
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Implications for fisheries management
Sustainable fisheries management requires information on factors that influence the
resilience of individual fishing stocks to fishing pressure and environmental disturbance
(Astles et al., 2006; Kenny et al., 2018). This includes understanding the geographic
boundaries of biological populations and the recruitment potential of individual stocks
persisting within and across these populations (Binks et al., 2019; Roughgarden, Iwasa &
Baxter, 1985) and how this might be altered under climate change. In the case of
T. militaris, the presence of a single panmictic population unit across its distributional
range, generally means that the opportunity for recolonisation following depletion events
(overharvesting or environmental disturbance) are enhanced for central and southern sub-
populations. However, for the northern trailing edge, the opportunity for repopulation
with genotypes from pools of genetic diversity further south may be hampered by the
dominant poleward flow of the EAC. Furthermore, increasing human population and
harvesting pressure may reduce local abundance (Cooling & Smith, 2015) and the
opportunity for thermal adaption and repopulation.

CONCLUSIONS
Knowledge of population genomics, particularly adaptive structure, is important for
fisheries management and can be used to estimate vulnerability and adaptability of stocks
under climate change. This study revealed that the harvested gastropod, T. militaris, is
panmictic across its distributional range with little variation in genetic diversity and can be
considered as a single stock. As such, it has the genetic capacity to survive and proliferate
within its environmental niche and is likely to continue to track ocean temperatures by
shifting its entire distribution poleward. Genomic studies can improve management of
harvested species under climate change by providing insights into adaptive capacity and
help identify opportunities for strategic adaptive management (van Oppen & Coleman,
2022).
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