Insights on *Pinna nobilis* genetic connectivity in the Eastern Mediterranean Sea (#80443)

First submission

Guidance from your Editor

Please submit by 6 Feb 2023 for the benefit of the authors (and your token reward) .

Structure and Criteria

Please read the 'Structure and Criteria' page for general guidance.

Custom checks

Make sure you include the custom checks shown below, in your review.

Raw data check

Review the raw data.

Image check

Check that figures and images have not been inappropriately manipulated.

Privacy reminder: If uploading an annotated PDF, remove identifiable information to remain anonymous.

Files

Download and review all files from the <u>materials page</u>.

Custom checks

4 Figure file(s) 6 Table file(s)

DNA data checks

- Have you checked the authors <u>data deposition statement?</u>
- Can you access the deposited data?
- Has the data been deposited correctly?
- Is the deposition information noted in the manuscript?

Field study

- Have you checked the authors field study permits?
- Are the field study permits appropriate?

Structure and Criteria

Structure your review

The review form is divided into 5 sections. Please consider these when composing your review:

- 1. BASIC REPORTING
- 2. EXPERIMENTAL DESIGN
- 3. VALIDITY OF THE FINDINGS
- 4. General comments
- 5. Confidential notes to the editor
- You can also annotate this PDF and upload it as part of your review

When ready submit online.

Editorial Criteria

Use these criteria points to structure your review. The full detailed editorial criteria is on your guidance page.

BASIC REPORTING

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context.
 Literature well referenced & relevant.
- Structure conforms to <u>PeerJ standards</u>, discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
- Raw data supplied (see <u>PeerJ policy</u>).

EXPERIMENTAL DESIGN

- Original primary research within Scope of the journal.
- Research question well defined, relevant & meaningful. It is stated how the research fills an identified knowledge gap.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.

VALIDITY OF THE FINDINGS

- Impact and novelty not assessed.

 Meaningful replication encouraged where rationale & benefit to literature is clearly stated.
- All underlying data have been provided; they are robust, statistically sound, & controlled.

Conclusions are well stated, linked to original research question & limited to supporting results.

Standout reviewing tips

The best reviewers use these techniques

Τ	p

Support criticisms with evidence from the text or from other sources

Give specific suggestions on how to improve the manuscript

Comment on language and grammar issues

Organize by importance of the issues, and number your points

Please provide constructive criticism, and avoid personal opinions

Comment on strengths (as well as weaknesses) of the manuscript

Example

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57-86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that an international audience can clearly understand your text. Some examples where the language could be improved include lines 23, 77, 121, 128 – the current phrasing makes comprehension difficult. I suggest you have a colleague who is proficient in English and familiar with the subject matter review your manuscript, or contact a professional editing service.

- 1. Your most important issue
- 2. The next most important item
- 3. ...
- 4. The least important points

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.

Insights on *Pinna nobilis* genetic connectivity in the Eastern Mediterranean Sea

Georgia Sarafidou $^{\text{Corresp.},1,2}$, Dimitris Tsaparis 1 , Yiannis Issaris 2 , Giorgos Chatzigeorgiou 1 , Panos Grigoriou 3 , Eva Chatzinikolaou 1 , Christina Pavloudi 1,4

Corresponding Author: Georgia Sarafidou Email address: g.sarafidou@hcmr.gr

The fan mussel *Pinna nobilis* Linnaeus, 1758 is an endemic species of the Mediterranean Sea, protected by international agreements (Annex IV of the Habitat Directive, Annex II of the Barcelona Convention). It is one of the largest bivalves in the world, playing an important role in the benthic communities; yet it has been recently characterized as "Critically Endangered" by the IUCN, due to a Mass Mortality Event. In this context, the assessment of the genetic variation of the remaining *P. nobilis* populations and the evaluation of connectivity among them are crucial elements for the conservation of the species. For this purpose, samples were collected from six regions of the Eastern Mediterranean Sea; the Islands of Karpathos, Lesvos and Crete; the Chalkidiki and Attica Peninsulas; and the Amvrakikos Gulf. The sampling was performed either by collecting tissue from the individuals or by using a non-invasive method, i.e. by scraping the inside of their shells aiming to collect their mucus and thus avoiding stress induction to them. Conventional molecular techniques (DNA extraction, PCR amplification, Sanger Sequencing) with the use of the COI and 16S rRNA genetic markers were selected for the depiction of the intra-population genetic variability. The analyses included 105 samples from the present study and publicly available sequences of the species across the Mediterranean Sea. The results of this work a) suggest the use of eDNA as an efficient sampling method for protected bivalves and b) shed light to the population connectivity of P. nobilis in the Eastern Mediterranean, knowledge that might prove to be fundamental for the species conservation and hence the ecosystem resilience. The haplotype analyses reinforced the evidence that there is a certain degree of connectivity among the distinct regions of the Mediterranean; yet there is evidence of population distinction within the basin. The combination of both genetic markers in the same analysis produced more robust results, revealing a group of haplotypes being present only in the Eastern PeerJ reviewing PDF | (2022:12:80443:0:0:REVIEW 22 Jan 2023)

¹ Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), Hellenic Centre for Marine Research (HCMR), Heraklion, Crete, Greece

 $^{^{2}}$ Institute of Oceanography (IO), Hellenic Centre for Marine Research (HCMR), Anavyssos, Greece

³ Cretaquarium, Hellenic Centre for Marine Research (HCMR), Heraklion, Crete, Greece

⁴ Department of Biological Sciences, The George Washington University, Washington, D.C., USA

Mediterranean and providing insights for the species' most suitable management.

1 Insights on *Pinna nobilis* genetic connectivity in the

2 Eastern Mediterranean Sea

- 3 Georgia Sarafidou^{1,2}, Dimitris Tsaparis¹, Yiannis Issaris², Giorgos Chatzigeorgiou¹, Panos
- 4 Grigoriou³, Eva Chatzinikolaou¹, Christina Pavloudi^{1,4}

5

- 6 ¹ Hellenic Centre for Marine Research (HCMR), Institute of Marine Biology, Biotechnology and
- 7 Aquaculture (IMBBC), Heraklion, Crete, Greece
- 8 ² Hellenic Centre for Marine Research (HCMR), Institute of Oceanography (IO), Anavyssos,
- 9 Greece
- 10 ³ Cretaquarium, Hellenic Centre for Marine Research (HCMR), Greece
- 11 ⁴ Department of Biological Sciences, The George Washington University, District of Columbia,
- 12 USA

13

- 14 Corresponding Author:
- 15 Georgia Sarafidou^{1,2}
- 16 Hellenic Centre for Marine Research (HCMR), Institute of Marine Biology, Biotechnology and
- 17 Aquaculture (IMBBC), 71500, Heraklion, Crete, Greece
- 18 Email address: <u>g.sarafidou@hcmr.gr</u>

19

- 20 Short Title:
- 21 Pinna nobilis population genetics
- 22 Keywords:

- 23 Pinna nobilis, population genetics, Mediterranean, COI, 16S rRNA, eDNA, critically
- 24 endangered, connectivity, haplotype networks

25

26

27

28

Abstract

29 The fan mussel *Pinna nobilis* Linnaeus, 1758 is an endemic species of the Mediterranean Sea, 30 protected by international agreements (Annex IV of the Habitat Directive, Annex II of the 31 Barcelona Convention). It is one of the largest bivalves in the world, playing an important role in 32 the benthic communities; yet it has been recently characterized as "Critically Endangered" by the 33 IUCN, due to a Mass Mortality Event. In this context, the assessment of the genetic variation of 34 the remaining P. nobilis populations and the evaluation of connectivity among them are crucial 35 elements for the conservation of the species. For this purpose, samples were collected from six 36 regions of the Eastern Mediterranean Sea; the Islands of Karpathos, Lesvos and Crete; the Chalkidiki and Attica Peninsulas; and the Amvrakikos Gulf. Sampling was performed either by 37 38 collecting tissue from the individuals or by using a non-invasive method, i.e., by scraping the inside of their shells aiming to collect their mucus and thus avoiding stress induction to them. 39 40 Conventional molecular techniques (DNA extraction, PCR amplification, Sanger Sequencing) with the use of the COI and 16S rRNA genetic markers were selected for the depiction of the 41 42 intra-population genetic variability. The analyses included 104 samples from the present study 43 and publicly available sequences of the species across the Mediterranean Sea. The results of this 44 work a) suggest the use of eDNA as an efficient sampling method for protected bivalves and b) shed light to the population connectivity of *P. nobilis* in the Eastern Mediterranean, knowledge 45 46 that might prove to be fundamental for the species conservation and hence the ecosystem 47 resilience. The haplotype analyses reinforced the evidence that there is a certain degree of 48 connectivity among the distinct regions of the Mediterranean; yet there is evidence of population 49 distinction within the basin. The combination of both genetic markers in the same analysis 50 produced more robust results, revealing a group of haplotypes being present only in the Eastern 51 Mediterranean and providing insights for the species' most suitable management.

Introduction

52

- In the autumn of 2016 a phenomenon of massive mortality was observed on the Western
- Mediterranean populations of *Pinna nobilis*, the largest endemic bivalve of the Mediterranean
- 55 Sea (Darriba, 2017). The mass mortality events (MME) reached quickly the Eastern
- Mediterranean Sea (Katsanevakis et al., 2019). Although several pathogens have been proposed

57 as the MME agents (Catanese et al., 2018; Carella et al., 2019; Panarese et al., 2019), the most likely one is the protozoan *Haplosporidium pinnae*, which is considered to affect the digestive 58 59 gland of the animal, resulting in stress, starvation and in a general dysfunction and finally death 60 of the organism (Box, Sureda & Deudero, 2009; Grau et al., 2022). Based on all the above, the species status in the IUCN red list changed into that of Critically Endangered (CR) (Kersting et 61 62 al., 2019). The decline of the pen shell's population was known several years before the MME (Centoducati 63 64 et al., 2007) due to threats such as the coastal construction activity, the degradation of its habitat, 65 the anchoring -especially at touristic hotspots- the wave action, the byssus exploitation for production of sea silk and the illegal trawling activity (Hendriks et al., 2013; Basso et al., 2015). 66 This led to a series of regulations aiming to protect the species and ensure its survival. National 67 68 legislation and international conventions have been in force for the past decades, such as the 69 Barcelona Convention for the Protection of the Marine Environment and the Coastal Region of the Mediterranean and the Council Directive 92/43/EEC on the Conservation of natural habitats 70 71 and of wild fauna and flora (Annex IV). Nevertheless, the effectiveness of those measures was argued, since P. nobilis was still subject to illegal fishing for personal or massive consumption or 72 for decorative purposes (Katsanevakis et al., 2011). 73 74 Undoubtedly, P. nobilis is a beneficial species for the benthic communities for a number of 75 reasons and for various ecosystem services. As a filter feeder, it filters large amounts of water 76 contributing to the seawater clarity (Basso et al., 2015), a process that benefits the meadows of 77 the cohabitant species P. oceanica (Trigos et al., 2014). Its large valves provide a hard substrate 78 within a sandy area for many sedentary organisms, so it is fairly considered as an ecosystem 79 engineer (Rabaoui et al., 2015). It sometimes also cohabits with the crustaceans *Pontonia* 80 pinnophylax and Nepinnotheres pinnotheres (Hassine, Zouari & Rabaoui, 2008; Akyol & Ulaş, 81 2015), thus increasing even more the complexity and species richness of the community it lives 82 in. Recently, due to the attention it has attracted, P. nobilis has been characterized as a flagship 83 species (Scarpa et al., 2020). Without a doubt, this could prove important not only for the 84 conservation of the species itself and the ecosystem it is associated with, but also for raising 85 public awareness for marine environmental issues in general (Polgar & Jaafar, 2018). For this reason, P. nobilis has been the subject of several molecular studies during the past 86 87 decade conducted in the Aegean Sea (Katsares et al., 2008), Tunisian coasts (Rabaoui et al.,

2011), at a larger area of the Central Mediterranean (Sanna et al., 2013), while in the Adriatic
Sea, Ankon (2017) investigated the population genetics of <i>P. nobilis</i> in marine parks of Croatia.
Microsatellite markers were used for the first time at Catalonian, Balearic and French coasts
(González-Wangüemert et al., 2015; Wesselmann et al., 2018; Peyran et al., 2021), reinforcing
the existing knowledge about the genetic structure and variability of the populations of the
species. In this context, the mitochondrial DNA (mtDNA) has proved to be a very useful marker
for population genetics studies. Due to its high variability and evolutionary rate (Sunnucks,
2000) it can depict differences that nuclear DNA cannot (Brown, George & Wilson, 1979).
Therefore, a significant differentiation among and within populations is revealed, including
animals (Parker et al., 1998), with bivalves not being an exception (Baldwin et al., 1996;
Matsumoto, 2003; Wood et al., 2007; Feng et al., 2011). It should be noted though, that mtDNA
in certain bivalves, such as Donax trunculus (Theologidis et al., 2008) and Mytilus spp. (Zouros,
2013), has a biparental inheritance which, undoubtedly, affects population diversity estimates
based on it.
The aim of the present study was to a) investigate the genetic diversity of the P. nobilis
populations at the Eastern Mediterranean Sea, an area that has not been well studied in this
regard, and b) compare it with similar studies from the Western and Central Mediterranean in an
attempt to c) provide further insights into population structuring of this critically endangered
species, which will offer a good estimation on the fitness and diversity of the Greek populations.

131

107 Material and Methods

108	Sampling area
109	For the purpose of the study 105 samples were analyzed, after being collected within the period
110	of August 2018 - April 2021. The samples were collected from six locations of the Eastern
111	Mediterranean Sea and particularly from the Islands of Karpathos, Lesvos and Crete, the
112	Chalkidiki and Attica Peninsulas, and the Amvrakikos Gulf (Fig. 1, Table 1).
113	eDNA sampling
114	The sampling method for Karpathos' samples was non-lethal, non-invasive and low impact
115	aiming at the minimization of the disturbance towards the bivalves, since the tissue removal may
116	provoke stress and make the animal more susceptible to diseases. Initially, a rod of 0.5 cm
117	diameter was placed at the opening of the valves of each animal by the SCUBA divers, taking
118	into account the fragility of the shell's outermost part. Consequently, a sampling brush,
119	resembling a buccal swab was used (Supplementary Fig. 1) to scrape the tissue remnants and
120	mucus from the interior of the valves. The sampling brushes (one for each individual) were
121	placed in small zip bags and stored at -20 °C until further processing. Additionally, the shells'
122	width and length were recorded by the divers.
123	Tissue sampling
124	All the other samples were collected under research permits, for the initial aim of the sampling
125	which was the investigation of the infection of <i>P. nobilis</i> from the parasite <i>H. pinnae</i> .
126	Specifically, 50-100 mg of different tissues of each individual were removed, preserved in
127	absolute ethanol and stored at 4 °C until further processing. As previously, the shells' width and
128	length were recorded by the divers.
129	DNA extraction
130	DNA was extracted according to the protocol of Sambrook, Fritsch & Maniatis (1989), both

from the brushes as well as from the tissues. In the case of the latter, small pieces of the collected

132	tissues were chopped with sterile scissors; triplicate extractions were performed for each tissue,
133	in order to minimize biases. Each replicate sample was washed with 800 ul of sterile distilled
134	water for 15 min, following centrifugation at 13000 g for 2 min, as in Darriba (2017). The
135	supernatant was removed and the wash was repeated. Afterwards, each sample was washed with
136	600 µl of lysis buffer (0.5 M Tris, 0.1 M EDTA, 2% SDS, ph 8.8) for 15 min, following
137	centrifugation at 13000 g for 2 min and removal of the supernatant. The washes with the lysis
138	buffer were repeated twice. The pellet was mixed with 600 μ l of lysis buffer and 6 μ l of
139	proteinase K (20 mg/ml) and incubated at 55°C overnight. DNA was extracted by precipitation
140	with isopropanol and ammonium acetate (5 M) (Sambrook, Fritsch & Maniatis, 1989). In the
141	final step of the DNA extraction protocol; i.e. the elution of the DNA pellet, replicate samples
142	were pooled and their concentration was measured in a NanoDrop 1000 spectrophotometer.
143	PCR amplifications
144	For the PCR amplification of the tissue samples, no specific tissue was chosen but rather a
145	mixture of all the extracted DNAs in similar concentrations. Initially PCR amplifications were
146	performed for the COI and 16S rRNA genes with previously used primers and conditions
147	(Folmer et al., 1994; Sanna et al., 2013, 2014; Leray et al., 2013); however the amplifications
148	were not successful. Therefore, new primers were designed (Table 2) based on the available P .
149	nobilis sequences in GenBank (Sayers et al., 2023).
150	Each PCR contained 2 μl of DNA template (about 20 ng/μl), 4 μl of 5X KAPA HiFi Fidelity
151	Buffer, 1 ul of each primer (10 um), 0.8 ul of dNTPs (10 mM each), 1 µl of KAPA HiFi HotStar
152	DNA Polymerase (1 U/uL) at a total volume of 20 μl. Amplifications were performed at a
153	BioRad T100 thermal cycler. The PCR protocol was the same for the two genes; namely a
154	denaturation step at 95 °C for 5 min followed by 35 cycles of 98 °C for 20 sec, 53 °C for 30 sec,
155	72 °C for 30 sec and a final extension step at 72 °C for 5 min.
156	Amplification of the 16S rRNA yielded in some cases a double PCR product; in this case,
157	purification of both the PCR products was carried out from a 2% agarose gel using the
158	NucleoSpin Gel and PCR Clean-up (MACHEREY-NAGEL). For the COI amplicons, a sodium
159	acetate-absolute ethanol cleanup protocol was conducted. All purified PCR products were
160	sequenced in an automated sequencer ABI 3730.
161	

162	Analyses
163	The ABI chromatograms were checked and corrected by eye using the BioEdit Sequencing
164	Alignment Editor software (Hall, 2011) and MEGA X (Kumar et al., 2018) sequence analysis
165	software. 16S rRNA sequences, COI sequences and concatenated 16S rRNA-COI sequences
166	from the present study were aligned with the Clustal W package (Thompson, Higgins & Gibson,
167	1994) embedded in BioEdit and MEGA X. In addition, publicly available sequences of the
168	corresponding genes of P. nobilis, for which sample location information was available, were
169	also downloaded from GenBank and added to the aforementioned alignments (Supplementary
170	Table 1). DnaSP software (Rozas et al., 2017) was used to estimate the following variables:
171	number of haplotypes (h), haplotype diversity (Hd), number of polymorphic loci (Ps),
172	nucleotidic diversity (Pi) and Fst values. With the use of DnaSP .nex archives (nexus format)
173	median joining haplotype networks were generated in PopART (Leigh & Bryant, 2015). The
174	Arlequin 3.5.2.2 software (Excoffier, Laval & Schneider, 2005) was used for the AMOVA
175	(Analysis of molecular variance). The sampling sites map was generated with the QGIS
176	software. Raw sequences from the present study are available from the European Nucleotide
177	Archive (ENA) (Burgin et al., 2023) using the urls
178	http://www.ebi.ac.uk/ena/data/view/OX406989-OX407068 (16S rRNA) and
179	http://www.ebi.ac.uk/ena/data/view/OX407172-OX407248 (COI).
180	Results
181	From the 60 eDNA samples, amplification was successful in 36 for the 16S rRNA and 33
182	samples for the COI gene. All the tissue samples had successful amplifications for both genes.
183	For the purpose of the study eight different datasets of sequences were analyzed. Datasets of
184	COI, 16S rRNA and their concatenation from the Eastern Mediterranean Sea and from the whole
185	Mediterranean basin were analyzed providing eight sets of results (Table 3). The first dataset
186	included 294 sequences (N) of 714 bp from the Central (Sardinia, Sicily, Corsica, Venice, Elba)
187	and the Eastern Mediterranean Sea with the concatenation of COI and 16SrRNA genes. It
188	revealed the highest number of haplotypes (104) and polymorphic sites (72) of all the datasets.
189	The haplotypic diversity (Hd: 0.961±0.005) was high and the nucleotide diversity was
190	moderately high (Pi: 0.00511±0.00019). In the Eastern Mediterranean Sea (dataset 5), the 100

191	sequences of 982 bp (concatenation of both genes) revealed the highest number of haplotypes
192	(34) and polymorphic sites (45). The haplotypic diversity was also the highest (Hd: 0.91±0.017)
193	while the nucleotide diversity was low (Pi: 0.00304±0.00029). These two datasets were the most
194	informative and hence they were chosen for further analyses.
195	Eastern Mediterranean
196	In the Eastern Mediterranean the concatenated 16S rRNA-COI dataset depicted a star-like
197	haplotype network with two central haplotypes from which all the other haplotypes derive (Fig.
198	2). The regions of Epanomi and Aggelochori from the North Aegean Sea along with Chios Island
199	and Korinthiakos Gulf formed a distinct group compared to all the other regions. A similar
200	indication of differentiation appeared also in the South Aegean with samples mainly from
201	Karpathos being distinct from the other ones. The AMOVA maximized the variation among the
202	following groups; Group 1: Aggelochori, Epanomi, Chios and Korinthiakos and Group 2: Attica,
203	Karpathos, Crete. This analysis showed a 20.8% of variation among the groups (P-value<0.05)
204	(Table 4). The AMOVA among North (Aggelochori, Epanomi, Chios, Lesvos, Vourvourou) and
205	South (Attica, Karpathos, Crete) Aegean and Ionian regions (Amvrakikos and Korinthiakos
206	Gulfs) did not show any differentiation.
207	
208	Central - Eastern Mediterranean
209	
210	The COI-16S rRNA haplotype analysis from the Central and Eastern Mediterranean depicted a
211	complex network with clear differentiation among 3 subregions; Adriatic Sea (Venice), Central
212	Mediterranean (Sardinia, Corsica, Elba Island, Sicily) and Eastern Mediterranean Sea (Fig. 3).
213	The percentage of variation among these groups in AMOVA was the highest; 30,38% and it was
214	statistically significant (P-value<0.01) (Table 5). A few central, highly frequent haplotypes from
215	the Central Mediterranean Sea split into many closely related unique haplotypes in a star-like
216	scheme. The same structure was observed in the haplotypes that occurred in the Eastern
217	Mediterranean regions although there were a few that were closer to the Central Mediterranean
218	ones. The Venice samples, although distinct, showed a higher relatedness to the Central
219	Mediterranean samples than the Eastern ones.
220	

222

221 Discussion

Population genetic structure

223	Eastern Mediterranean
224	This is the first population genetics study that includes sequences from several known <i>P. nobilis</i>
225	populations from the Eastern Mediterranean Sea (North Aegean, South Aegean, Ionian). The
226	results of this study indicate that within the Eastern Mediterranean Sea there is no differentiation
227	among the different geographic regions that were sampled implying a high connectivity among
228	them, i.e. the isolation by distance of the populations of North and South Aegean Sea, as well as
229	of Ionian and Aegean Sea is not supported. Similar results have been found for the horse mussel
230	(Modiolus barbatus), a fact which was attributed to the very long (up to 6 months) pelagic larval
231	stage of the species (Giantsis et al., 2019), which by far exceeds that of P. nobilis. Previously, it
232	has been suggested that transplantations may have been responsible for the absence of
233	geographic structure of Mytilus galloprovincialis populations in the Aegean Sea (Giantsis,
234	Kravva & Apostolidis, 2012). This might have been the case also for <i>P. nobilis</i> , as
235	transplantations had been proposed as a conservation action for the protection of the species
236	(Katsanevakis, 2016; Acarli, 2021). A small population differentiation is observed in both the
237	regions of the North and South Aegean Sea (Fig. 2) which could be attributed to the fact that the
238	island of Karpathos is part of a Marine Protected Area (MPA) or it could be due to the higher
239	number of samples compared to the other regions, leading to a higher haplotypic diversity in this
240	case. Although the design of MPAs is generally not based on genetic and genomic data
241	(Sandström et al., 2016; Xuereb et al., 2020), in certain cases it has been shown that they succeed
242	in capturing most of the genetic diversity of their keystone species (Miller & Ayre, 2008), and
243	combined with the protection measures for those species, they might end up preserving a higher
244	number of haplotypes.
245	In the haplotype network of the Eastern Mediterranean (Fig. 2) the haplotypes of North Aegean
246	(Epanomi, Aggelochori, Chios) formed a subgroup shown in blue coloring; yet the Korinthiakos
247	Gulf (Ionian Sea) also shares them. These haplotypes were described by Katsares et al (2008)
248	and were grouped with the ones from the Tunisian coasts in the research of Sanna et al (2013),
249	reinforcing the hypothesis of the high connectivity within the Eastern Mediterranean basin. On

250	the other hand, the populations that were sampled within the present study (sampled in the period
251	2018-2021) did not share the above mentioned haplotypes with the AMOVA test confirming this
252	distinction (Table 4, scenario C). The intervening period between the studies coincided with the
253	outbreak of the MME, thus raising questions on the association of the populations genetic
254	structuring and the massive mortality events the populations of the species underwent.
255	Central-Eastern Mediterranean
256	The findings of this study support the distinction of the <i>P. nobilis</i> individuals into three
257	populations in the Mediterranean Sea. The case of the Adriatic Sea is explained in detail in
258	Sanna et al. (2013); it is a semi-enclosed sea where the genetic flow from the rest of the
259	Mediterranean Sea is not that high. The other two basins of the Mediterranean Sea are distinct
260	for a number of other species (Zitari-Chatti et al., 2009; Mejri et al., 2009; Gharbi & Said, 2011;
261	Deli, Said & Chatti, 2015), including P. nobilis (Sanna et al., 2013). The present study analyzed
262	a high number of samples from the Eastern Mediterranean Sea in order to confirm this pattern.
263	The concatenation of the COI and 16S rRNA genes that was used in the present study has also
264	proved useful and more informative in other genetic studies of bivalves (Yuan, He & Huang,
265	2009; Feng et al., 2011; Slynko et al., 2018), and shows that there is a certain level of
266	differentiation between the <i>P. nobilis</i> populations in the two basins. This finding suggests that
267	the already known oceanographic barriers at the Sicily Strait and at the Otranto Strait might be
268	limiting the dispersal of the species and minimizing the gene flow (Čekovská et al., 2020). Due
269	to its pelagic larval duration stage, P. nobilis is a species which is considered to be weakly
270	affected by currents and fronts but, at the same time, it has a weak recovery to gene flow from
271	other locations (Pascual et al., 2017) and exhibits strong population structuring (Ye, Wu & Li,
272	2015).
273	eDNA and mtDNA marker sequencing
274	eDNA has been used widely for biodiversity assessments (Pereira et al., 2021) and for the
275	detection of cryptic, threatened (Hunter et al., 2018) and invasive species (Ardura et al., 2015).
276	This study was the first, to our knowledge, to use eDNA collected separately from each
277	individual for population genetics assessment on a critically endangered species, although its
278	potential has been advocated for in the literature (Barnes & Turner, 2016; Adams et al., 2019).

279	Our results suggest that the approach can be replicated to other organisms where minimal
280	disturbance and non-invasive methods are in order. In addition, it can be employed in the few
281	remaining populations of P. nobilis around the Mediterranean, such as the ones in Ebro Delta
282	(Prado et al., 2020), Occitan coast (Peyran et al., 2022) and the one in Amvrakikos Gulf.
283	Successful amplification for our chosen markers was possible for about half of the samples,
284	which was still a number considered adequate for the estimation of population genetics indices.
285	Another advantage of this approach is the certainty that each sample of genetic material
286	corresponds to a specific individual which would not have been possible if the eDNA matrix was
287	e.g. water or sediment collected from the study sites; however, there have been studies on
288	population-level inferences from eDNA water samples mostly regarding large populations of fish
289	(Sigsgaard et al., 2020).
290	The results of the present study are based on the sequencing of two mtDNA genes and there is
291	the possibility that they would be different if another approach was used instead or as
292	complement to ours, such as sequencing of microsatellites markers (Meenakshi, Remya & Sanil,
293	2010; Vanhaecke et al., 2012) or ddRAD sequencing (Darschnik et al., 2019; Ortiz et al., 2021)
294	or even the addition of more mtDNA markers (e.g. D-loop) (Pourkazemi, Skibinski &
295	A.Beardmore, 1999; Parmaksiz, 2019). However, as mentioned previously, P. nobilis is a
296	critically endangered species and the amount of available samples for deciphering population
297	genetic structure is quite limited; it is challenging to detect the remaining populations of the
298	species and obtain the appropriate number of samples, with a subsequent high DNA quality,
299	while ensuring the well-being of the organisms.
300	Conclusions
301	The present study is the first one including such a high number of <i>P. nobilis</i> specimens from
302	different areas of the Eastern Mediterranean basin. Therefore it significantly contributes to the
303	knowledge of the genetic variability of the pen shell's populations. In light of the MME,
304	coordinated studies on the genetic diversity of P. nobilis throughout the Mediterranean Sea
305	should be performed towards the aim of the conservation and management of the remaining
306	populations of the species. An orchestrated attempt of a pan-mediterranean investigation appears
307	to be indispensable. Scientific cooperation and use of common standards should be implemented
308	in order to obtain more FAIR data and therefore lead more efficiently to knowledge (Wilkinson

309	et al., 2016). In future conservational plans on a national level, the Eastern Mediterranean basin
310	should be considered as homogenous, based on the findings herein. It is obvious that more
311	samples from the Southern-Eastern Mediterranean (Turkey, Syria, Lebanon, Israel, Egypt,
312	Libya) Sea would shed more light on the population genetics status of the species. Furthermore,
313	more detailed methodologies should be employed to unravel the genetic structure of <i>P. nobilis</i>
314	throughout the Mediterranean.
315	Acknowledgements
316	We would like to thank the Management Agency of the Dodecanese Protected Areas (MADPA)
317	and especially Mr Dinos Protopapas and Mr Giorgos Prearis (captain of the R/V Saria) for
318	providing assistance during our sampling campaign in Karpathos island. The authors would like
319	to also thank the scuba divers for their help in sampling, namely M. Salomidi, V. Gerakaris and
320	Hippocampus Bali dive center. D. Karagiannis of the National Reference Laboratory for Mollusc
321	Diseases (Greek Government) provided the samples MYT1-MYT9 from Lesvos, which were
322	collected under a permit from local authorities (MEE/GDDDP89926/1117). Samples TS1-TS6
323	from Lesvos were collected under a permit by the Department of Agriculture and Fisheries,
324	Decentralized Administration of the Aegean (No. 52321/6-9-2018). Samples from Crete,
325	Chalkidiki and Attica Peninsulas were collected under a relevant research permit (175828/2195
326	of 14/11/2018) issued by the Greek Ministry of Environment and Energy, General Directorate
327	for the Forests & Forest's Environment, Department of Wildlife and Hunting Management. We
328	would also like to thank Dr Katerina Vasileiadou (ORCID: 0000-0002-5057-6417) and Ms
329	Xenia Sarropoulou (ORCID: 0000-0003-3671-9693) for their invaluable contribution to the
330	manuscript and the statistical analyses.
331	References
332	Acarli S. 2021. Population, Aquaculture and Transplantation Applications of Critically
333	Endangered Species Pinna nobilis (Linnaeus 1758) in the Mediterranean Sea. Marine
334	Science and Technology Bulletin 10:350–369. DOI: 10.33714/masteb.627562.
335	Adams CIM, Knapp M, Gemmell NJ, Jeunen G-J, Bunce M, Lamare MD, Taylor HR. 2019.
336	Beyond Biodiversity: Can Environmental DNA (eDNA) Cut It as a Population Genetics

337	Tool? Genes 10:192. DOI: 10.3390/genes10030192.
38	Akyol O, Ulaş A. 2015. Two Decapod Crustacean Species, Pontonia pinnophylax (Otto, 1821)
339	and Nepinnotheres pinnotheres (Linnaeus, 1758), Living Inside Pinna nobilis Linnaeus,
340	1758 in Izmir Bay (Aegean Sea, Turkey). Turkish Journal of Maritime and Marine
341	Sciences 1:102–106.
342	Ankon P. 2017. Genetic and morphological variability of the noble pen shell (Pinna nobilis
343	Linnaeus, 1758) in Nature park Telašćica and National park Mljet.
344	Ardura A, Zaiko A, Martinez JL, Samulioviene A, Semenova A, Garcia-Vazquez E. 2015.
345	eDNA and specific primers for early detection of invasive species - A case study on the
346	bivalve Rangia cuneata, currently spreading in Europe. Marine Environmental Research
347	112:48-55. DOI: 10.1016/j.marenvres.2015.09.013.
348	Baldwin BS, Black M, Sanjur O, Gustafson R, Lutz RA, Vrijenhoek RC. 1996. A diagnostic
349	molecular marker for zebra mussels (Dreissena polymorpha) and potentially co-occurring
350	bivalves: mitochondrial COI. Molecular Marine Biology and Biotechnology 5:9-14.
351	Barnes MA, Turner CR. 2016. The ecology of environmental DNA and implications for
352	conservation genetics. Conservation Genetics 17:1-17. DOI: 10.1007/s10592-015-0775-
353	4.
354	Basso L, Hendriks I, Steckbauer A, Duarte C. 2015. Resistance of juveniles of the Mediterranean
355	pen shell, (Pinna nobilis) to hypoxia and interaction with warming. Estuarine, Coastal
356	and Shelf Science 165:199–203. DOI: 10.1016/j.ecss.2015.05.016.
357	Box A, Sureda A, Deudero S. 2009. Antioxidant response of the bivalve Pinna nobilis colonised
358	by invasive red macroalgae Lophocladia lallemandii. Comparative Biochemistry and
359	Physiology:5.
360	Brown WM, George M, Wilson AC. 1979. Rapid evolution of animal mitochondrial DNA.
361	Proceedings of the National Academy of Sciences 76:1967–1971. DOI:
362	10.1073/pnas.76.4.1967.
363	Burgin J, Ahamed A, Cummins C, Devraj R, Gueye K, Gupta D, Gupta V, Haseeb M, Ihsan M,
364	Ivanov E, Jayathilaka S, Balavenkataraman Kadhirvelu V, Kumar M, Lathi A, Leinonen
365	R, Mansurova M, McKinnon J, O'Cathail C, Paupério J, Pesant S, Rahman N, Rinck G,
366	Selvakumar S, Suman S, Vijayaraja S, Waheed Z, Woollard P, Yuan D, Zyoud A,
367	Burdett T, Cochrane G. 2023. The European Nucleotide Archive in 2022. Nucleic Acids

368	Research 51:D121–D125. DOI: 10.1093/nar/gkac1051.
369	Carella F, Aceto S, Pollaro F, Miccio A, Iaria C, Carrasco N, Prado P, De Vico G. 2019. A
370	mycobacterial disease is associated with the silent mass mortality of the pen shell Pinna
371	nobilis along the Tyrrhenian coastline of Italy. Scientific Reports 9:2725. DOI:
372	10.1038/s41598-018-37217-y.
373	Catanese G, Grau A, Valencia JM, Garcia-March JR, Vázquez-Luis M, Alvarez E, Deudero S,
374	Darriba S, Carballal MJ, Villalba A. 2018. Haplosporidium pinnae sp. nov., a
375	haplosporidan parasite associated with mass mortalities of the fan mussel, Pinna nobilis,
376	in the Western Mediterranean Sea. Journal of Invertebrate Pathology 157:9-24. DOI:
377	10.1016/j.jip.2018.07.006.
378	Čekovská K, Šanda R, Eliášová K, Kovačić M, Zogaris S, Pappalardo AM, Soukupová T, Vukić
379	J. 2020. Population Genetic Diversity of Two Marine Gobies (Gobiiformes: Gobiidae)
380	from the North-Eastern Atlantic and the Mediterranean Sea. Journal of Marine Science
381	and Engineering 8:792. DOI: 10.3390/jmse8100792.
382	Centoducati G, Tarsitano E, Bottalico A, Marvulli M, Lai OR, Crescenzo G. 2007. Monitoring of
383	the Endangered Pinna nobilis Linné, 1758 in the Mar Grande of Taranto (Ionian Sea,
384	Italy). Environmental Monitoring and Assessment 131:339–347. DOI: 10.1007/s10661-
385	006-9479-z.
386	Darriba S. 2017. First haplosporidan parasite reported infecting a member of the Superfamily
387	Pinnoidea (Pinna nobilis) during a mortality event in Alicante (Spain, Western
388	Mediterranean). Journal of Invertebrate Pathology 148:14-19. DOI:
389	10.1016/j.jip.2017.05.006.
390	Darschnik S, Leese F, Weiss M, Weigand H. 2019. When barcoding fails: development of
391	diagnostic nuclear markers for the sibling caddisfly species Sericostoma personatum
392	(Spence in Kirby & Spence, 1826) and Sericostoma flavicorne Schneider, 1845. ZooKeys
393	872:57–68. DOI: 10.3897/zookeys.872.34278.
394	Deli T, Said K, Chatti N. 2015. Genetic Differentiation among Populations of the Green Crab
395	Carcinus aestuarii (Brachyura, Carcinidae) from the Eastern and Western Mediterranean
396	Coast of Tunisia. Acta Zoologica Bulgarica 67:327–335.
397	Excoffier L, Laval G, Schneider S. 2005. Arlequin (version 3.0): An integrated software package
398	for population genetics data analysis. Evolutionary Bioinformatics Online 1:47.

399	Feng Y, Li Q, Kong L, Zheng X. 2011. DNA barcoding and phylogenetic analysis of Pectinidae
100	(Mollusca: Bivalvia) based on mitochondrial COI and 16S rRNA genes. Molecular
101	Biology Reports 38:291–299. DOI: 10.1007/s11033-010-0107-1.
102	Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R. 1994. DNA primers for amplification of
103	mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates.
104	Molecular Marine Biology and Biotechnology 3:294–299.
105	Gharbi A, Said K. 2011. Genetic variation and population structure of Holothuria polii from the
106	eastern and western Mediterranean coasts in Tunisia. Journal of the Marine Biological
107	Association of the United Kingdom 91:1599–1606. DOI: 10.1017/S0025315411000245.
804	Giantsis IA, Exadactylos A, Feidantsis K, Michaelidis B. 2019. First insights towards the
109	population genetic structure and the phylogeographic status of the horse mussel
10	(Modiolus barbatus) from the eastern Mediterranean. Journal of the Marine Biological
11	Association of the United Kingdom 99:1111–1118. DOI: 10.1017/S0025315418001133.
12	Giantsis IA, Kravva N, Apostolidis AP. 2012. Genetic characterization and evaluation of
13	anthropogenic impacts on genetic patterns in cultured and wild populations of mussels
114	(Mytilus galloprovincialis) from Greece. Genetics and molecular research: GMR
115	11:3814–3823. DOI: 10.4238/2012.August.17.14.
116	González-Wangüemert M, Costa J, Basso L, Duarte CM, Serrão EA, Hendriks I. 2015. Highly
17	polymorphic microsatellite markers for the Mediterranean endemic fan mussel Pinna
118	nobilis. :5.
19	Grau A, Villalba A, Navas JI, Hansjosten B, Valencia JM, García-March JR, Prado P, Follana-
120	Berná G, Morage T, Vázquez-Luis M, Álvarez E, Katharios P, Pavloudi C, Nebot-
121	Colomer E, Tena-Medialdea J, Lopez-Sanmartín M, Peyran C, Čižmek H, Sarafidou G,
122	Issaris Y, Tüney-Kizilkaya I, Deudero S, Planes S, Catanese G. 2022. Wide-Geographic
123	and Long-Term Analysis of the Role of Pathogens in the Decline of Pinna nobilis to
124	Critically Endangered Species. Frontiers in Marine Science 9.
125	Hall T. 2011. BioEdit: An important software for molecular biology. GERF Bulletin of
126	Biosciences 2:60–61.
127	Hassine OKB, Zouari ST, Rabaoui L. 2008. Two species of Crustacea (Decapoda) associated
128	with the fan mussel, pinna nobilis Linnaeus, 1758 (Mollusca, Bivalvia). Crustaceana
29	81:433–446. DOI: 10.1163/156854008783797507.

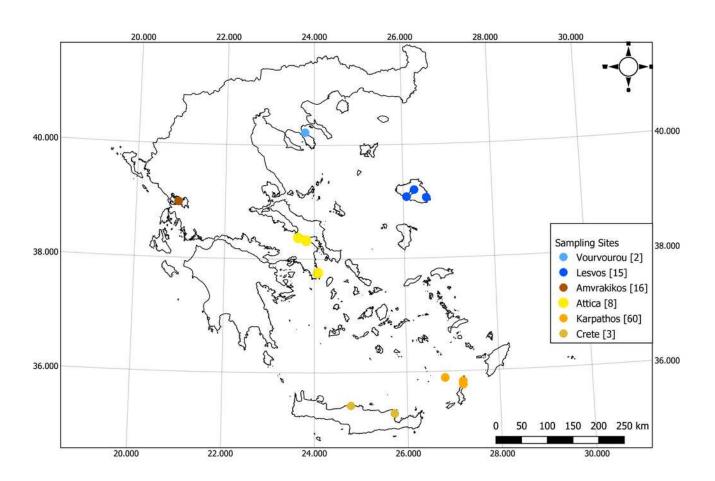
430	Hendriks IE, Tenan S, Tavecchia G, Marbà N, Jordà G, Deudero S, Alvarez E, Duarte CM.
431	2013. Boat anchoring impacts coastal populations of the pen shell, the largest bivalve in
432	the Mediterranean. Biological Conservation 160:105-113. DOI:
433	10.1016/j.biocon.2013.01.012.
434	Hunter ME, Meigs-Friend G, Ferrante JA, Kamla AT, Dorazio RM, Diagne LK, Luna F, Lanyon
435	JM, Reid JP. 2018. Surveys of environmental DNA (eDNA): a new approach to estimate
436	occurrence in Vulnerable manatee populations. Endangered Species Research 35:101-
437	111. DOI: 10.3354/esr00880.
438	Katsanevakis S. 2016. Transplantation as a conservation action to protect the Mediterranean fan
439	mussel Pinna nobilis. Marine Ecology Progress Series 546:113-122. DOI:
440	10.3354/meps11658.
441	Katsanevakis S, Poursanidis D, Issaris Y, Panou A, Petza D, Vassilopoulou V, Chaldaiou I, Sini
442	M. 2011. "Protected" marine shelled molluscs: thriving in Greek seafood restaurants.
443	Mediterranean Marine Science 12:429–438. DOI: 10.12681/mms.42.
444	Katsanevakis S, Tsirintanis K, Tsaparis D, Doukas D, Sini M, Athanassopoulou F, Kolygas M,
445	Tontis D, Koutsoubas D, Bakopoulos V. 2019. The cryptogenic parasite Haplosporidium
446	pinnae invades the Aegean Sea and causes the collapse of Pinna nobilis populations.
447	Aquatic Invasions 14. DOI: 10.3391/ai.2019.14.2.01.
448	Katsares V, Tsiora A, Galinou-Mitsoudi S, Imsiridou A. 2008. Genetic structure of the
449	endangered species Pinna nobilis (Mollusca: Bivalvia) inferred from mtDNA sequences.
450	Biologia 63:412–417. DOI: 10.2478/s11756-008-0061-8.
451	Kersting D, Benabdi M, Čižmek H, Grau A, Jimenez C, Katsanevakis S, Öztürk B, Tuncer S,
452	Tunesi L, Vázquez-Luis M, Vicente N, Otero Villanueva M. 2019. Pinna nobilis. The
453	IUCN Red List of Threatened Species 2019. Gland: IUCN.
454	Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2018. MEGA X: Molecular Evolutionary
455	Genetics Analysis across Computing Platforms. Molecular Biology and Evolution
456	35:1547–1549. DOI: 10.1093/molbev/msy096.
457	Leigh JW, Bryant D. 2015. popart: full-feature software for haplotype network construction.
458	Methods in Ecology and Evolution 6:1110–1116. DOI: 10.1111/2041-210X.12410.
459	Leray M, Yang JY, Meyer CP, Mills SC, Agudelo N, Ranwez V, Boehm JT, Machida RJ. 2013.
460	A new versatile primer set targeting a short fragment of the mitochondrial COI region for

161	metabarcoding metazoan diversity: application for characterizing coral reef fish gut
162	contents. Frontiers in Zoology 10:34. DOI: 10.1186/1742-9994-10-34.
163	Matsumoto M. 2003. Phylogenetic analysis of the subclass Pteriomorphia (Bivalvia) from
164	mtDNA COI sequences. Molecular Phylogenetics and Evolution 27:429-440. DOI:
165	10.1016/s1055-7903(03)00013-7.
166	Meenakshi K, Remya R, Sanil G. 2010. DNA barcoding and microsatellite marker development
167	for Nyctibatrachus major: the threatened amphibian species. In: Proceedings of the
168	International Symposium on Biocomputing. ISB '10. New York, NY, USA: Association
169	for Computing Machinery, 1-3. DOI: 10.1145/1722024.1722029.
170	Mejri R, Lo Brutto S, Hassine OKB, Arculeo M. 2009. A study on Pomatoschistus tortonesei
1 71	Miller 1968 (Perciformes, Gobiidae) reveals the Siculo-Tunisian Strait (STS) as a
172	breakpoint to gene flow in the Mediterranean basin. Molecular Phylogenetics and
173	Evolution 53:596-601. DOI: 10.1016/j.ympev.2009.04.018.
174	Miller KJ, Ayre DJ. 2008. Protection of Genetic Diversity and Maintenance of Connectivity
175	among Reef Corals within Marine Protected Areas. Conservation Biology 22:1245-1254
176	DOI: 10.1111/j.1523-1739.2008.00985.x.
177	Ortiz D, Pekár S, Bilat J, Alvarez N. 2021. Poor performance of DNA barcoding and the impact
178	of RAD loci filtering on the species delimitation of an Iberian ant-eating spider.
179	Molecular Phylogenetics and Evolution 154:106997. DOI:
180	10.1016/j.ympev.2020.106997.
181	Panarese R, Tedesco P, Chimienti G, Latrofa MS, Quaglio F, Passantino G, Buonavoglia C,
182	Gustinelli A, Tursi A, Otranto D. 2019. Haplosporidium pinnae associated with mass
183	mortality in endangered Pinna nobilis (Linnaeus 1758) fan mussels. Journal of
184	Invertebrate Pathology 164:32–37. DOI: 10.1016/j.jip.2019.04.005.
185	Parker PG, Snow AA, Schug MD, Booton GC, Fuerst PA. 1998. What Molecules Can Tell Us
186	About Populations: Choosing Andusing a Molecular Marker. <i>Ecology</i> 79:361–382. DOI:
187	10.1890/0012-9658(1998)079[0361:WMCTUA]2.0.CO;2.
188	Parmaksiz A. 2019. Population Genetic Diversity of Yellow Barbell (Carasobarbus luteus) from
189	Kueik, Euphrates and Tigris Rivers Based on Mitochondrial DNA D-loop Sequences.
190	Turkish Journal of Fisheries and Aquatic Sciences 20:79–86.
191	Pascual M, Rives B, Schunter C, Macpherson E. 2017. Impact of life history traits on gene flow:

192	A multispecies systematic review across oceanographic barriers in the Mediterranean
193	Sea. PLOS ONE 12:e0176419. DOI: 10.1371/journal.pone.0176419.
194	Pereira CL, Gilbert MTP, Araújo MB, Matias MG. 2021. Fine-tuning biodiversity assessments:
195	A framework to pair eDNA metabarcoding and morphological approaches. Methods in
196	Ecology and Evolution 12:2397–2409. DOI: 10.1111/2041-210X.13718.
197	Peyran C, Boissin E, Morage T, Nebot-Colomer E, Iwankow G, Planes S. 2021. Genetic
198	homogeneity of the critically endangered fan mussel, Pinna nobilis, throughout lagoons
199	of the Gulf of Lion (North-Western Mediterranean Sea). Scientific Reports 11:7805. DOI:
500	10.1038/s41598-021-87493-4.
501	Peyran C, Morage T, Nebot-Colomer E, Iwankow G, Planes S. 2022. Unexpected residual
502	habitats raise hope for the survival of the fan mussel Pinna nobilis along the Occitan
503	coast (Northwest Mediterranean Sea). Endangered Species Research 48:123-137. DOI:
504	10.3354/esr01191.
505	Polgar G, Jaafar Z. 2018. Flagship Species. In: Polgar G, Jaafar Z eds. Endangered Forested
506	Wetlands of Sundaland: 'Ecology, Connectivity, Conservation. Cham: Springer
507	International Publishing, 57–88. DOI: 10.1007/978-3-319-52417-7_4.
508	Pourkazemi M, Skibinski DOF, A.Beardmore J. 1999. Application of mtDNA d-loop region for
509	the study of Russian sturgeon population structure from Iranian coastline of the Caspian
510	Sea. Journal of Applied Ichthyology 15:23–28. DOI: 10.1111/j.1439-
511	0426.1999.tb00199.x.
512	Prado P, Andree KB, Trigos S, Carrasco N, Caiola N, García-March JR, Tena J, Fernández-
513	Tejedor M, Carella F. 2020. Breeding, planktonic and settlement factors shape
514	recruitment patterns of one of the last remaining major population of Pinna nobilis within
515	Spanish waters. <i>Hydrobiologia</i> 847:771–786. DOI: 10.1007/s10750-019-04137-5.
516	Rabaoui L, Belgacem W, Ben Ismail D, Mansour L, Tlig-Zouari S. 2015. Engineering effect of
517	Pinna nobilis shells on benthic communities. <i>Oceanologia</i> 57:271–279. DOI:
518	10.1016/j.oceano.2015.03.002.
519	Rabaoui L, Mejri R, Tlig-Zouari S, Bahri L, Hassine OKB, Tsigenopoulos CS. 2011. Genetic
520	variation among populations of the endangered fan mussel Pinna nobilis (Mollusca:
521	Bivalvia) along the Tunisian coastline. :13.
522	Rozas J, Ferrer-Mata A, Sánchez-DelBarrio JC, Guirao-Rico S, Librado P, Ramos-Onsins SE,

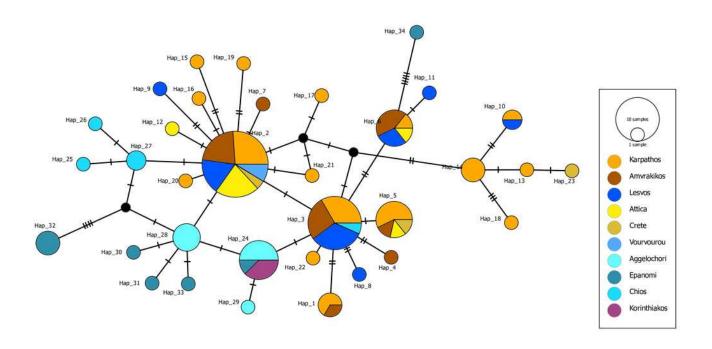
523	Sánchez-Gracia A. 2017. DnaSP 6: DNA Sequence Polymorphism Analysis of Large
524	Data Sets. Molecular Biology and Evolution 34:3299–3302. DOI:
525	10.1093/molbev/msx248.
526	Sambrook J, Fritsch EF, Maniatis T. 1989. Molecular cloning: a laboratory manual. <i>Molecular</i>
527	cloning: a laboratory manual.
528	Sandström A, Lundmark C, Jansson E, Edman M, Laikre L. 2016. Assessment of management
529	practices regarding genetic biodiversity in Baltic Sea marine protected areas. Biodiversity
530	and Conservation 25:1187–1205. DOI: 10.1007/s10531-016-1121-y.
531	Sanna D, Cossu P, Dedola GL, Scarpa F, Maltagliati F, Castelli A, Franzoi P, Lai T, Cristo B,
532	Curini-Galletti M, Francalacci P, Casu M. 2013. Mitochondrial DNA Reveals Genetic
533	Structuring of Pinna nobilis across the Mediterranean Sea. PLOS ONE 8:17.
534	Sanna D, Dedola GL, Scarpa F, Lai T, Cossu P, Alaya HB, Curini-Galletti M, Francalacci P,
535	Casu M. 2014. New mitochondrial and nuclear primers for the Mediterranean marine
536	bivalve Pinna nobilis. :8.
537	Sayers EW, Cavanaugh M, Clark K, Pruitt KD, Sherry ST, Yankie L, Karsch-Mizrachi I. 2023.
538	GenBank 2023 update. Nucleic Acids Research 51:D141–D144. DOI:
539	10.1093/nar/gkac1012.
540	Scarpa F, Sanna D, Azzena I, Mugetti D, Cerruti F, Hosseini S, Cossu P, Pinna S, Grech D,
541	Cabana D, Pasquini V, Esposito G, Cadoni N, Atzori F, Antuofermo E, Addis P, Sechi
542	LA, Prearo M, Peletto S, Mossa MA, Saba T, Gazale V, Casu M. 2020. Multiple Non-
543	Species-Specific Pathogens Possibly Triggered the Mass Mortality in Pinna nobilis. Life
544	10:238. DOI: 10.3390/life10100238.
545	Sigsgaard EE, Jensen MR, Winkelmann IE, Møller PR, Hansen MM, Thomsen PF. 2020.
546	Population-level inferences from environmental DNA—Current status and future
547	perspectives. Evolutionary Applications 13:245–262. DOI: 10.1111/eva.12882.
548	Slynko YuV, Slynko EE, Pirkova AV, Ladygina LV, Ryabushko VI. 2018. Mitochondrial DNA
549	Barcoding of the Pacific Oyster Crassostrea gigas (Thunberg, 1793) (Mollusca: Bivalvia:
550	Ostreidae), Cultivated in the Black Sea. Russian Journal of Genetics 54:1445-1451. DOI
551	10.1134/S1022795418120153.
552	Sunnucks P. 2000. Efficient genetic markers for population biology. Trends in Ecology &
553	Evolution 15:199–203. DOI: 10.1016/S0169-5347(00)01825-5.

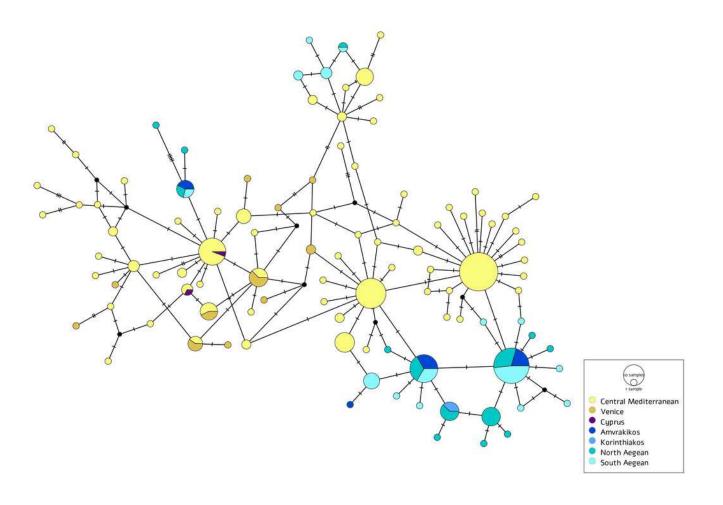
554	Theologidis I, Fodelianakis S, Gaspar MB, Zouros E. 2008. Doubly Uniparental Inheritance
555	(dui) of Mitochondrial Dna in Donax Trunculus (bivalvia: Donacidae) and the Problem of
556	Its Sporadic Detection in Bivalvia. Evolution 62:959–970. DOI: 10.1111/j.1558-
557	5646.2008.00329.x.
558	Thompson JD, Higgins DG, Gibson TJ. 1994. CLUSTAL W: improving the sensitivity of
559	progressive multiple sequence alignment through sequence weighting, position-specific
560	gap penalties and weight matrix choice. Nucleic Acids Research 22:4673-4680. DOI:
561	10.1093/nar/22.22.4673.
562	Trigos S, García-March JR, Vicente N, Tena J, Torres J. 2014. Utilization of muddy detritus as
563	organic matter source by the fan mussel Pinna nobilis. Mediterranean Marine Science
564	15:667–674. DOI: 10.12681/mms.836.
565	Vanhaecke D, Leaniz CG de, Gajardo G, Young K, Sanzana J, Orellana G, Fowler D, Howes P,
566	Monzon-Arguello C, Consuegra S. 2012. DNA Barcoding and Microsatellites Help
567	Species Delimitation and Hybrid Identification in Endangered Galaxiid Fishes. PLOS
568	ONE 7:e32939. DOI: 10.1371/journal.pone.0032939.
569	Wesselmann M, González-Wangüemert M, Serrão EA, Engelen AH, Renault L, García-March
570	JR, Duarte CM, Hendriks IE. 2018. Genetic and oceanographic tools reveal high
571	population connectivity and diversity in the endangered pen shell Pinna nobilis. Scientific
572	Reports 8:4770. DOI: 10.1038/s41598-018-23004-2.
573	Wilkinson MD, Dumontier M, Aalbersberg IjJ, Appleton G, Axton M, Baak A, Blomberg N,
574	Boiten J-W, da Silva Santos LB, Bourne PE, Bouwman J, Brookes AJ, Clark T, Crosas
575	M, Dillo I, Dumon O, Edmunds S, Evelo CT, Finkers R, Gonzalez-Beltran A, Gray AJG,
576	Groth P, Goble C, Grethe JS, Heringa J, 't Hoen PAC, Hooft R, Kuhn T, Kok R, Kok J,
577	Lusher SJ, Martone ME, Mons A, Packer AL, Persson B, Rocca-Serra P, Roos M, van
578	Schaik R, Sansone S-A, Schultes E, Sengstag T, Slater T, Strawn G, Swertz MA,
579	Thompson M, van der Lei J, van Mulligen E, Velterop J, Waagmeester A, Wittenburg P,
580	Wolstencroft K, Zhao J, Mons B. 2016. The FAIR Guiding Principles for scientific data
581	management and stewardship. Scientific Data 3:160018. DOI: 10.1038/sdata.2016.18.
582	Wood AR, Apte S, MacAvoy ES, Gardner JPA. 2007. A molecular phylogeny of the marine
583	mussel genus Perna (Bivalvia: Mytilidae) based on nuclear (ITS1&2) and mitochondrial
584	(COI) DNA sequences. <i>Molecular Phylogenetics and Evolution</i> 44:685–698. DOI:



10.1016/j.ympev.2006.12.019.
Xuereb A, D'Aloia CC, Daigle RM, Andrello M, Dalongeville A, Manel S, Mouillot D,
Guichard F, Côté IM, Curtis JMR, Bernatchez L, Fortin M-J. 2020. Marine Conservation
and Marine Protected Areas. In: Oleksiak MF, Rajora OP eds. Population Genomics:
Marine Organisms. Population Genomics. Cham: Springer International Publishing, 423-
446. DOI: 10.1007/13836_2018_63.
Ye YY, Wu CW, Li JJ. 2015. Genetic Population Structure of Macridiscus multifarius
(Mollusca: Bivalvia) on the Basis of Mitochondrial Markers: Strong Population Structure
in a Species with a Short Planktonic Larval Stage. PloS One 10:e0146260. DOI:
10.1371/journal.pone.0146260.
Yuan T, He M, Huang L. 2009. Intraspecific genetic variation in mitochondrial 16S rRNA and
COI genes in domestic and wild populations of Huaguizhikong scallop Chlamys nobilis
Reeve. Aquaculture 289:19–25. DOI: 10.1016/j.aquaculture.2009.01.004.
Zitari-Chatti R, Chatti N, Fulgione D, Caiazza I, Aprea G, Elouaer A, Said K, Capriglione T.
2009. Mitochondrial DNA variation in the caramote prawn Penaeus (Melicertus)
kerathurus across a transition zone in the Mediterranean Sea. Genetica 136:439-447.
DOI: 10.1007/s10709-008-9344-9.
Zouros E. 2013. Biparental Inheritance Through Uniparental Transmission: The Doubly
Uniparental Inheritance (DUI) of Mitochondrial DNA. Evolutionary Biology 40:1-31.
DOI: 10.1007/s11692-012-9195-2.

Figure 1


Map of the sampling locations.


Figure 2

Haplotype network for the Eastern Mediterranean of 16S rRNA-COI dataset. The circle size depicts the haplotype frequency (10 regions).

Figure 3

Haplotype network for the whole Mediterranean of 16S rRNA-COI dataset. The circle size depicts the haplotype frequency (7 regions).

Table 1(on next page)

Details and metadata of the samples. TH: Total height, HS: Height above sediment, HD: Height inside the sediment, W: Greater width.

Table 1: Details and metadata of the samples. TH: Total height, HS: Height above sediment, HD: Height inside the sediment, W: Greater width.

Sample code	Location	Latitude/Longitude	Collecti on date	Samplin g method	16S rRNA accessio n number	COI accessio n number	Depth (m)	TH (cm)	HS (cm)	HD (cm)	W (cm)
EL01	Elounda	35.272369/25.723469	12/2/201	tiggya	OX4069 91	OX4071 72	2	38.55	22.8	15.75	16.1
ELUI	(Crete)	33.272309/23.723409		tissue			3	38.33	22.8	13.73	10.1
EL02	Elounda (Crete)	35.272389/25.723472	12/2/201 9	tissue	OX4069 92	OX4071 73	3	36.19	22.4	13.79	16.45
BAL01	Bali (Crete)	35.416267/24.785967	6/3/2019	tissue	OX4069 93	OX4071 74	5	28.4	15.15	13.25	13.85
AV01	Avlida (Attica)	38.373219/23.640273	3/3/2019	tissue	OX4069 94	OX4071 75	1.5	46	29.7	16.3	17
AV02	Avlida (Attica)	38.373219/23.640273	3/3/2019	tissue	OX4069 95	OX4071 76	1.5	36	21.2	14.8	16
OR01	Oropos (Attica)	38.328049/23.807744	8/3/2019	tissue	OX4069 96	OX4071 77	3.4	29	16.6	12.4	14
OR02	Oropos (Attica)	38.328049/23.807744	8/3/2019	tissue	OX4069 97	OX4071 78	4.3	26.5	15.1	11.4	13
OR03	Oropos (Attica)	38.320699/23.820207	8/3/2019	tissue	OX4069 98	OX4071 79	3.8	54	37.2	16.8	21
OR04	Oropos (Attica)	38.320699/23.820207	8/3/2019	tissue	OX4069 99	OX4071 80	3.6	49	33.1	15.9	19

VOUR0	Vourvourou		28/4/201		OX4070	OX4071					
1	(Chalkidiki)	40.221874/23.788816	9	tissue	00	81	7	61	34	27	24
VOUR0 2	Vourvourou (Chalkidiki)	40.221874/23.788816	28/4/201 9	tissue	OX4070 01	OX4071 82	7	62	46	16	24
A1	Astakida (Karpathos)	35.886497/26.824323	10/7/201 8	eDNA	OX4070 02	OX4071 83	10	19.3	9.6	9.7	8.9
A2	Astakida (Karpathos)	35.886497/26.824323	10/7/201 8	eDNA			10	19.8	11.7	8.1	10.2
A3	Astakida (Karpathos)	35.886497/26.824323	10/7/201 8	eDNA	OX4070 03	OX4071 84	10	21.5	13.8	7.7	11.2
A4	Astakida (Karpathos)	35.886497/26.824323	10/7/201 8	eDNA	OX4070 04	OX4071 85	10	14.5	6.7	7.8	7.2
A5	Astakida (Karpathos)	35.886497/26.824323	10/7/201 8	eDNA			10	10.7	5.6	5.1	4.7
A6	Astakida (Karpathos)	35.886497/26.824323	10/7/201 8	eDNA	OX4070 05	OX4071 86	10	13	7.2	5.8	7.1
A7	Astakida (Karpathos)	35.886497/26.824323	10/7/201 8	eDNA	OX4070 06	OX4071 87	10	14.1	6.7	7.4	7.3
AMV1	Amvrakikos Gulf	38.9856717451461/20.94545 047741468	17/4/202 1	tissue	OX4070 16	OX4071 96					
AMV2	Amvrakikos Gulf	38.9856717451461/20.94545 047741468	17/4/202	tissue	OX4070 17	OX4071 97					
AMV3	Amvrakikos Gulf	38.9856717451461/20.94545 047741468	17/4/202 1	tissue	OX4070 18	OX4071 98					
AMV4	Amvrakikos	38.9856717451461/20.94545	17/4/202	tissue	OX4070	OX4071					

	Gulf	047741468	1		19	99			
AMV5	Amvrakikos Gulf	38.9856717451461/20.94545 047741468	17/4/202 1	tissue	OX4070 20	OX4072 00	 	 	
AMV6	Amvrakikos Gulf	38.9856717451461/20.94545 047741468	17/4/202 1	tissue	OX4070 21	OX4072 01	 	 	
AMV7	Amvrakikos Gulf	38.9856717451461/20.94545 047741468	17/4/202 1	tissue	OX4070 22	OX4072 02	 	 	
AMV8	Amvrakikos Gulf	38.9856717451461/20.94545 047741468	17/4/202 1	tissue	OX4070 23	OX4072 03	 	 	
AMV9	Amvrakikos Gulf	38.9856717451461/20.94545 047741468	17/4/202 1	tissue	OX4070 24	OX4072 04	 	 	
AMV10	Amvrakikos Gulf	38.9856717451461/20.94545 047741468	17/4/202 1	tissue	OX4070 25	OX4072 05	 	 	
AMV11	Amvrakikos Gulf	38.9856717451461/20.94545 047741468	17/4/202 1	tissue	OX4070 26	OX4072 06	 	 	
AMV12	Amvrakikos Gulf	38.9856717451461/20.94545 047741468	17/4/202 1	tissue	OX4070 27	OX4072 07	 	 	
AMV13	Amvrakikos Gulf	38.9856717451461/20.94545 047741468	17/4/202 1	tissue	OX4070 28	OX4072 08	 	 	
AMV14	Amvrakikos Gulf	38.9856717451461/20.94545 047741468	17/4/202 1	tissue	OX4070 29	OX4072 09	 	 	
AMV15	Amvrakikos Gulf	38.9856717451461/20.94545 047741468	17/4/202 1	tissue	OX4070 30	OX4072 10	 	 	
AMV16	Amvrakikos Gulf	38.9856717451461/20.94545 047741468	17/4/202 1	tissue	OX4070 31	OX4072 11	 	 	

	Kalloni		19/1/201		OX4070	OX4072					
MYT1	(Lesvos)	39.081244/26.07566	9	tissue	32	12	5-6	25.8	11.2	14.6	3.5
	Kalloni		19/1/201		OX4070	OX4072					
MYT2	(Lesvos)	39.081244/26.07566	9	tissue	33	13	5-6	30.5	13.1	17.4	4.2
	Kalloni		19/1/201		OX4070	OX4072					
MYT3	(Lesvos)	39.081244/26.07566	9	tissue	34	14	5-6	34.5	13.6	20.9	4.4
MYT4	Kalloni (Lesvos)	39.081244/26.07566	19/1/201 9	tissue	OX4070 35	OX4072 15	5-6	39	14	25	4.5
MYT5	Kalloni (Lesvos)	39.081244/26.07566	19/1/201 9	tissue	OX4070 36	OX4072 16	5-6	27.8	12.9	14.9	4
	Kalloni		19/1/201		OX4070	OX4072					
MYT6	(Lesvos)	39.081244/26.07566	9	tissue	37	17	5-6	30.1	12.6	17.5	4.2
	Kalloni		19/1/201		OX4070	OX4072					
MYT7	(Lesvos)	39.081244/26.07566	9	tissue	38	18	5-6	34.2	12.8	21.4	4.3
MATTO	Kalloni	20.001244/26.07566	19/1/201		OX4070	OX4072	5.6	20.5	10.4	10.1	2.0
MYT8	(Lesvos)	39.081244/26.07566	9	tissue	39	19	5-6	30.5	12.4	18.1	3.8
МҮТ9	Kalloni (Lesvos)	39.081244/26.07566	19/1/201 9	tissue	OX4070 40	OX4072 20	5-6	29.3	11.4	17.9	3.5
TS4	Kalloni (Lesvos)	39.20174957104768/26.2491 9936396623	12/2018	tissue	OX4070 44	OX4072 24	1–1.5				
TS5	Kalloni (Lesvos)	39.20174957104768/26.2491 9936396623	12/2018	tissue	OX4070 45	OX4072 25	1–1.5				
TS6	Kalloni (Lesvos)	39.20174957104768/26.2491 9936396623	12/2018	tissue	OX4070 46	OX4072 26	1–1.5				
TS1	Gera (Lesvos)	39.062908364108715/26.519	12/2018	tissue	OX4070	OX4072	2–5				

		669291535266			41	21					
TS2	Gera (Lesvos)	39.062908364108715/26.519 669291535266	12/2018	tissue	OX4070 42	OX4072 22	2–5				
TS3	Gera (Lesvos)	39.062908364108715/26.519 669291535266	12/2018	tissue	OX4070 43	OX4072 23	2–5				
D1	Diafani (Karpathos)	35.762570/27.211337	11/7/201 8	eDNA	OX4070 47	OX4072 27	13	26.5	19.7	6.8	13.6
D2	Diafani (Karpathos)	35.762570/27.211337	11/7/201 8	eDNA	OX4070 48	OX4072 28	13	26.3	17.1	9.2	15.6
D3	Diafani (Karpathos)	35.762570/27.211337	11/7/201 8	eDNA	OX4070 49	OX4072 29	13	32.1	23.4	8.7	15.1
D4	Diafani (Karpathos)	35.762570/27.211337	11/7/201 8	eDNA			13	34.3	18.6	15.7	14.2
GD1	Diafani (Karpathos)	35.762570/27.211337	14/7/201 8	eDNA	OX4070 50	OX4072 30	13	29.9	19.7	10.2	14.9
GD2	Diafani (Karpathos)	35.762570/27.211337	14/7/201 8	eDNA	OX4070 51	OX4072 31	13	23.2	15.4	7.8	12.3
GD3	Diafani (Karpathos)	35.762570/27.211337	14/7/201 8	eDNA	OX4070 52	OX4072 32	13	26.4	19.1	7.3	13.2
GD4	Diafani (Karpathos)	35.762570/27.211337	14/7/201 8	eDNA	OX4070 53	OX4072 33	13	23.6	15.2	8.4	11.3
GD5	Diafani (Karpathos)	35.762570/27.211337	14/7/201 8	eDNA			13	38.5	27.1	11.4	15.7
GD6	Diafani (Karpathos)	35.762570/27.211337	14/7/201 8	eDNA	OX4070 54	OX4072 34	13	45.1	30.2	14.9	19.3

	Diafani		14/7/201		OX4070						
GD7	(Karpathos)	35.762570/27.211337	8	eDNA	55		13	26.9	18.2	8.7	14.7
	Diafani		14/7/201		OX4070	OX4072					
GD8	(Karpathos)	35.762570/27.211337	8	eDNA	56	35	13	33.6	23.4	10.2	13.5
	Diafani		14/7/201								
GD9	(Karpathos)	35.762570/27.211337	8	eDNA			13	29.8	20	9.8	14.6
	Diafani		14/7/201	D111	OX4070	OX4072			1.0		
ID1	(Karpathos)	35.762570/27.211337	8	eDNA	60	39	13	26	18	8	16
	Diafani		14/7/201								
ID2	(Karpathos)	35.762570/27.211337	8	eDNA			13	26	16	10	13
	Diafani		14/7/201								
ID3	(Karpathos)	35.762570/27.211337	8	eDNA			13	43	26	17	20
	Diafani		14/7/201		OX4070	OX4072					
ID4	(Karpathos)	35.762570/27.211337	8	eDNA	61	40	13	18	11	7	10
	Diafani		14/7/201		OX4070	OX4072					
ID5	(Karpathos)	35.762570/27.211337	8	eDNA	62	41	13	18	12	6	10
	Diafani		14/7/201								
ID6	(Karpathos)	35.762570/27.211337	8	eDNA			13	33	18	15	17
	Diafani		14/7/201		OX4070	OX4072					
ID7	(Karpathos)	35.762570/27.211337	8	eDNA	63	42	13	39	26	13	18
	Tristomo				OX4070	OX4071					
X1	(Karpathos)	35.820845/27.211023	8/7/2018	eDNA	07	88	6	39.5	24.4	15.1	17.7
	Tristomo				OX4070	OX4071					
X2	(Karpathos)	35.820845/27.211023	8/7/2018	eDNA	08	89	6	62.5	50.2	12.3	27.6
X3	Tristomo	35.820845/27.211023	8/7/2018	eDNA	OX4070	OX4071	6	49.5	29	20.5	21

	(Karpathos)				09	90					
X4	Tristomo (Karpathos)	35.820845/27.211023	8/7/2018	eDNA	OX4070 10		6	53.1	30.2	22.9	22.7
X5	Tristomo (Karpathos)	35.820845/27.211023	8/7/2018	eDNA			6	42.4	19.2	23.2	18.1
X6	Tristomo (Karpathos)	35.820845/27.211023	8/7/2018	eDNA	OX4070 11	OX4071 91	6	51.6	27.2	24.4	23.9
X7	Tristomo (Karpathos)	35.820845/27.211023	8/7/2018	eDNA	OX4070 12	OX4071 92	6	47.3	20.9	26.4	21.2
X8	Tristomo (Karpathos)	35.820845/27.211023	8/7/2018	eDNA	OX4070 13	OX4071 93	6	23.9	13.1	10.8	14.6
X9	Tristomo (Karpathos)	35.820845/27.211023	8/7/2018	eDNA	OX4070 14	OX4071 94	6	27.6	20.4	7.2	15.4
X10	Tristomo (Karpathos)	35.820845/27.211023	8/7/2018	eDNA	OX4070 15	OX4071 95	6	43.2	19.4	23.8	20.2
GT1	Tristomo (Karpathos)	35.820845/27.211023	13/7/201 8	eDNA	OX4070 57	OX4072 36	6	53.9	24.2	29.7	20.4
GT2	Tristomo (Karpathos)	35.820845/27.211023	13/7/201 8	eDNA			6	40.5	20.8	19.7	17.6
GT3	Tristomo (Karpathos)	35.820845/27.211023	13/7/201 8	eDNA	OX4070 58	OX4072 37	6	36	20.4	15.6	17.3
GT4	Tristomo (Karpathos)	35.820845/27.211023	13/7/201 8	eDNA			6	21.5	11.2	10.3	13.1
GT5	Tristomo (Karpathos)	35.820845/27.211023	13/7/201 8	eDNA			6	29.1	16.7	12.4	16.8

	Tristomo		13/7/201								
GT6	(Karpathos)	35.820845/27.211023	8	eDNA			6	37.4	20.7	16.7	18.7
GT7	Tristomo (Karpathos)	35.820845/27.211023	13/7/201 8	eDNA	OX4070 59	OX4072 38	6	31.8	20.6	11.2	17.8
GT8	Tristomo (Karpathos)	35.820845/27.211023	13/7/201 8	eDNA			6	8	4.4	3.6	3.3
GT9	Tristomo (Karpathos)	35.820845/27.211023	13/7/201 8	eDNA			6	39.2	21.9	17.3	16.7
IT1	Tristomo (Karpathos)	35.820845/27.211023	13/7/201 8	eDNA			6	18	6	12	11.5
IT2	Tristomo (Karpathos)	35.820845/27.211023	13/7/201 8	eDNA	OX4070 64	OX4072 43	6	33	21	12	18
IT3	Tristomo (Karpathos)	35.820845/27.211023	13/7/201 8	eDNA			6	34	18	16	16.5
IT4	Tristomo (Karpathos)	35.820845/27.211023	13/7/201 8	eDNA			6	39	18.5	20.5	21.5
IT5	Tristomo (Karpathos)	35.820845/27.211023	13/7/201 8	eDNA			6	27.5	11	16.5	15.5
IT6	Tristomo (Karpathos)	35.820845/27.211023	13/7/201 8	eDNA			6	30.5	16	14.5	17.5
IT7	Tristomo (Karpathos)	35.820845/27.211023	13/7/201 8	eDNA			6	36.5	18	18.5	19.5
IT8	Tristomo (Karpathos)	35.820845/27.211023	13/7/201 8	eDNA	OX4070 65	OX4072 44	6	53	26	27	23
IT9	Tristomo	35.820845/27.211023	13/7/201	eDNA			6	40	23	17	15.5

	(Karpathos)		8								
IT10	Tristomo (Karpathos)	35.820845/27.211023	13/7/201 8	eDNA			6	42	23	19	21
IT11	Tristomo (Karpathos)	35.820845/27.211023	13/7/201 8	eDNA	OX4070 66		6	49.5	27.5	22	22
IT12	Tristomo (Karpathos)	35.820845/27.211023	13/7/201 8	eDNA	OX4070 67	OX4072 45	6	48	24.5	23.5	17
IT13	Tristomo (Karpathos)	35.820845/27.211023	13/7/201 8	eDNA	OX4070 68	OX4072 46	6	13	13	0	11
IT14	Tristomo (Karpathos)	35.820845/27.211023	13/7/201 8	eDNA			6	43	23	20	17.5
LAV01	Lavrio (Attica)	37.757668/24.077698	3/8/2018	tissue	OX4069 89	OX4072 47	12	33	17	16	16.7
LAV02	Lavrio (Attica)	37.757373/24.077915	3/8/2018	tissue	OX4069 90	OX4072 48	14	53.8	34.6	19.2	21.2

Table 2(on next page)

Primers used in the present study.

1

Table 2:	Primers used in the present study.			
Target			Amplification	
gene	Forward primer (5'-3')	Reverse primer (5'-3')	length (bp)	Reference
		5'-CCAAATTACACCAGTCAGCC-		
	5'-CAGCTTTTGTAGAGGGCG-3'	3'	722	this study
COI	5'-GATCCGGGATAGTAGGTAC-3'	5'-CMGGATGACCAAARAACC-3'	645	this study
	5'-ATGGCYGTCGATTTAGC-3'	5'-CMGGATGACCAAARAACC-3'	298	this study
	LCO 1490	HCO 2198	710	Folmer et al, 1994
COI	mlCOIintF	jgHCO2198	313	Leray et al, 2013
	5'-GGTTGAACTATHTATCCNCC-3'	5'-GAAATCATYCCAAAAGC-3'	338	Sanna et al 2013
16S				
rRNA	5'-GGTAGCGAAATTCCTAGCC-3'	5'-AAKGGTSGAACAGACCC-3'	408	this study
16S	5'-TGCTCAATGCCCAAGGGGTAAAT-			
rRNA	3'	5'-AACTCAGATCACGTAGGG-3'	450	Sanna et al 2013
		5'-		
		TCHATAAGYTCATARTAYARCCC		
nad3	5'-CCTTATGARTGYGGBTTT-3'	-3'	203	Sanna et al 2014

Table 3(on next page)

Genetic diversity estimates: N: number of sequences, Bp: Base pairs, h: number of haplotypes, Hd: Haplotype diversity, Ps: Polymorphic sites, Pi: Nucleotide diversity.

1

Table 3: Genetic diversity estimates: N: number of sequences, Bp: Base pairs, h: number of haplotypes, Hd: Haplotype diversity, Ps: Polymorphic sites, Pi: Nucleotide diversity.

	Dataset	N	Bp	h	Hd	Ps	Pi
	16S rRNA-COI whole	294	714	104	0.961 ± 0.005	72	0.00511 ± 0.00019
1	Mediterranean		,	10.	0.501		0.00011 0.00015
2	COI Italy Tunisia Greece	392	338	71	0.915 ± 0.006	48	0.00768 ± 0.00024
3	COI whole Mediterranean	450	243	48	0.652 ± 0.024	36	0.00475 ± 0.00028
4	16S whole Mediterranean	341	376	38	0.601 ± 0.03	31	0.00243 ± 0.00018
	16S rRNA-COI Eastern	100	982	34	0.91 ± 0.017	45	0.00304 ± 0.00029
5	Mediterranean	100	962	34	0.91 ± 0.017	43	0.00304 ± 0.00029
6	COI Tunisia Greece	149	606	33	0.793 ± 0.024	39	0.00311 ± 0.0003
7	COI Eastern Mediterranean	100	606	27	0.84 ± 0.026	36	0.00388 ± 0.00041
8	16S Eastern Mediterranean	105	376	10	0.507 ± 0.051	9	0.00161 ± 0.00021

2

Table 4(on next page)

AMOVA table using genetic distances based on haplotype frequencies (FST) of the Eastern Mediterranean populations.

		Degre					
		es of		Var.			
		freedo	Sum of	componen	Percentage of	Fixation	
Scenarios	Source of variation	m	squares	ts	variation	Indices	P-value
						FCT:	$0.19550 \pm$
	Among groups	3	18,933	0,07939	5,12	0.05120	0.01411
	Among populations					FSC:	0.00098±0.0
A. Group 1 (Agg, Epa, Vou)	within groups	6	16,825	0,22789	14,7	0.15490	0098
Group 2 (Att, Kar, Cre) Group 3						FST:	0.00000±0.0
(Kor, Amv) Group 4 (Les, Chi)	Within populations	90	111,902	1,24336	80,18	0.19817	0000
						FCT:-	0.55621±0.0
	Among groups	2	9,257	-0,06751	-4,43	0.04431	1366
	Among populations					FSC:	0.00000±0.0
B. Group 1 (Agg, Epa, Vou, Les,	within groups	7	26,501	0,34759	22,82	0.21848	0000
Chi) Group 2 (Kor, Amv), Group						FST:	0.00000±0.0
3 (Att, Kar, Cre)	Within populations	90	111,902	1,24336	81,61	0.18385	0000
						FCT:	0.01173±0.0
	Among groups	1	16,18	0,36139	20,8	0.20800	0363
	Among populations					FSC:	0.00098±0.0
C. Group 1 (Agg, Epa, Kor, Chi)	within groups	8	19,578	0,13269	7,64	0.09643	0098
Group 2 (Vou, Les, Amv, Att,						FST:	0.00000±0.0
Kar, Cre)	Within populations	99	111,902	1,24336	71,56	0.28437	0000
D. Group 1 (Agg, Epa, Chi, Vou,	Among groups	1	1.711	-15.269	-10.58	FCT:-	0.98631±0.0

Les, Att, Kar, Cre) Group 2						0.10580	0367
(Amv, Kor)	Among populations within groups	8	34.047	35.254	24.43	FSC: 0.22090	0.00000±0.0 0000
	Within populations	90	111.902	124.336	86.15	FST: 0.13848	0.00000±0.0 0000

Table 5(on next page)

AMOVA table using genetic distances based on haplotype frequencies (FST) of the whole Mediterranean.

Scenarios	Source of variation	Degrees of freedom	Sum of squares	Var. components	Percentage of variation	Fixation Indices	P-value
A. Group 1 (Ven, Elb, Sic, Cor, Sar) Group 2 (Vou, Agg, Epa, Les, Chi) Group 3 (Att, Kar, Cre, Cyp) Group 4 (Amv, Kor)	Among groups	3	87.613	0,44877	21,72	FCT: 0.21718	0.00098± 0.00098
	Among populations within groups	12	57.626	0,21771	10,54	FSC: 0.13459	0.00000 ± 0.00000
	Within populations	278	389.162	139.986	67,75	FST: 0.32254	0.00000± 0.00000
B. Group 1 (Elb, Sic, Cor, Sar) Group 2	Among groups	4	111.851	0,53997	26,34	FCT: 0.26338	0.00000± 0.00000
(Vou, Agg, Epa, Les, Chi) Group 3 (Att, Kar, Cre, Cyp) Group	Among populations within groups	11	33.388	0,11034	5,38	FSC: 0.07307	0.00000± 0.00000
4 (Amv, Kor) Group 5 (Ven)	Within populations	278	389.162	139.986	68,28	FST: 0.31720	0.00000± 0.00000
C. Group 1 (Elb, Sic, Cor, Sar, Cyp) Group 2 (Vou, Agg, Epa, Les, Chi, Att, Kar, Cre) Group 3 (Amv, Kor) Group 4 (Ven)	Among groups	3	109.576	0,59015	28,17	FCT: 0.28171	0.00000±0.00000
	Among populations within groups	12	35.663	0,10488	5,01	FSC: 0.06970	0.00000± 0.00000
	Within populations	278	389.162	139.986	66,82	FST: 0.33178	0.00000± 0.00000

D. Group 1 (Elb, Sic, Cor, Sar, Cyp) Group 2 (Vou, Agg, Epa, Les, Chi, Att, Kar, Cre, Amv, Kor)	Among groups	2	108.201	0,64274	30,04	FCT: 0.30042	0.00000± 0.00000
	Among populations within groups	13	37.039	0,09685	4,53	FSC: 0.06471	0.00000± 0.00000
Group 3 (Ven)	Within populations	278	389.162	139.986	65,43	FST: 0.34569	0.00000± 0.00000