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ABSTRACT
Background. Considerable resources are spent to track fish movement in marine en-
vironments, often with the intent of estimating behavior, distribution, and abundance.
Resulting data from these monitoring efforts, including tagging studies and genetic
sampling, often can be siloed. For Pacific salmon in the Northeast Pacific Ocean,
predominant data sources for fish monitoring are coded wire tags (CWTs) and genetic
stock identification (GSI). Despite their complementary strengths and weaknesses in
coverage and information content, the two data streams rarely have been integrated
to inform Pacific salmon biology and management. Joint, or integrated, models can
combine and contextualize multiple data sources in a single statistical framework to
produce more robust estimates of fish populations.
Methods. We introduce and fit a comprehensive joint model that integrates data from
CWT recoveries and GSI sampling to inform the marine life history of Chinook salmon
stocks at spatial and temporal scales relevant to ongoing fisheries management efforts.
In a departure from similar models based primarily on CWT recoveries, modeled
stocks in the new framework encompass both hatchery- and natural-origin fish. We
specifically model the spatial distribution and marine abundance of four distinct stocks
with spawning locations inCalifornia and southernOregon, one of which is listed under
the U.S. Endangered Species Act.
Results. Using the joint model, we generated the most comprehensive estimates
of marine distribution to date for all modeled Chinook salmon stocks, including
historically data poor and low abundance stocks. Estimated marine distributions from
the joint model were broadly similar to estimates from a simpler, CWT-only model
but did suggest some differences in distribution in select seasons. Model output also
included novel stock-, year-, and season-specific estimates of marine abundance. We
observed andpartially addressed several challenges inmodel convergencewith the use of
supplemental data sources andmodel constraints; similar difficulties are not unexpected
with integrated modeling. We identify several options for improved data collection
that could address issues in convergence and increase confidence in model estimates
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of abundance. We expect these model advances and results provide management-
relevant biological insights, with the potential to inform future mixed-stock fisheries
management efforts, as well as a foundation for more expansive and comprehensive
analyses to follow.

Subjects Aquaculture, Fisheries and Fish Science, Genetics, Statistics, Population Biology
Keywords Chinook salmon, Genetic stock identification, Coded wire tag, Fisheries management,
Marine life history, Distribution, Abundance, Integrated state-space model

INTRODUCTION
Various methods exist for tracking and estimating the distribution of fish in marine and
freshwater environments (e.g., mark-recapture analyses based on tag recoveries, fisheries-
independent and -dependent surveys, genetic stock identification), particularly for fish with
multiple stock groupings of conservation importance. Analyses of resulting data, however,
are often conducted in isolation and focus on data from a single monitoring method
(Trudel et al., 2009; Bellinger et al., 2015; Shelton et al., 2019). Combining multiple sources
of fishery information into joint (integrated) models can provide more comprehensive
insights into all aspects of fish biology (e.g., life-history traits, fisheries reference points,
distribution) (Maunder & Punt, 2013). Moreover, leveraging all available data to yield
more robust demographic estimates is an efficient use of (often-public) resources that may
lead to better management outcomes (Brownscombe et al., 2022), but such methods can be
statistically complicated and require careful attention.

While integrated models have a long history in fisheries (reviewed in Maunder & Punt,
2013), they have become more common in the ecological literature and serve to link
disparate sets of observations to estimate a common set of shared, often demographic
parameters (Zipkin & Saunders, 2018). Examples from fisheries feature the integration of
mark-recapture and snorkel survey count data (Staton et al., 2022), physical sampling and
PIT tag antenna detection data (Conner et al., 2019), and fixed-location counts and acoustic
telemetry data (Izzo, Zydlewski & Parrish, 2022). Other examples from the ecological
literature include the integration of multiple data streams to estimate jackal abundance
(Farr et al., 2021), population dynamics of greater horseshoe bats (Schaub et al., 2007),
population trends of California spotted owls (Tempel, Peery & Gutierrez, 2014), viability of
Great Lakes piping plovers (Saunders, Cuthbert & Zipkin, 2018), and vital rates of North
American waterfowl (Arnold et al., 2018). The benefits of combining datasets for common
inference are significant—for example, integrated models can reduce uncertainty (where
constituent datasets agree), and better represent the nuances that the strengths of different
data sources reveal. However, these benefits come at the cost of increasedmodel complexity,
demands on the expertise of the analyst, and structural demands of the models themselves
(Maunder & Punt, 2013). Consequently, where datasets reflect fundamentally different
aspects of a system and model processes do not sufficiently capture these differences
(i.e., the model is misspecified), joint models may result in biased model estimates and fail
to capture meaningful information about the world (Maunder & Piner, 2017).
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Because of their cultural, ecological, and economic value in the Northeast Pacific Ocean,
Pacific salmon (Oncorhynchus spp.) species have been subject to a long history of intensive
research and monitoring. However, the complexities of these species’ life histories over an
enormous spatial range (i.e., 1000s of kms, spanning multiple geopolitical boundaries) and
the often-disparate methods of surveying mean that different datasets frequently reflect a
localized understanding of phenomena that play out at larger scales. Historically, Chinook
salmon (O. tshawytscha) and coho salmon (O. kisutch) have been targeted by recreational,
commercial, and tribal fisheries catching a mix of stocks, each arising from different river
systems. In addition to their fishery importance, increased research focus has been placed
on specific stocks over the last two decades, as multiple populations of Chinook and coho
salmon have been listed under the U.S. Endangered Species Act (ESA) and Canadian
Species at Risk Act (SARA). Chinook and coho salmon have been monitored, managed,
and analyzed using coded wire tags (CWTs), in which juvenile fish have wire-based tags
with specific alphanumeric codes implanted in their nasal cavity prior to or during their
migration from freshwater to the ocean. CWTs have been deployed by state, federal, and
tribal management agencies in the USA and Canada using a standardized protocol across
theNortheast Pacific Ocean for decades (i.e., since the 1970s). They offer precise assignment
of recovered fish to natal region and age, and while their use has been largely restricted
to hatchery-produced fish (Bernard & Clark, 1996), many stocks do have CWT programs.
Data from CWTs support large scale fishery-management models in the Northeast Pacific
Ocean (e.g., Pacific Fishery Management Council, 2008; Pacific Salmon Commission, 2023),
and large-scale analyses have successfully employed historical patterns of CWT recoveries to
reconstruct marine distributions (Weitkamp, 2010; Shelton et al., 2019; Shelton et al., 2021)
and productivity (e.g., Sharma et al., 2013; Kilduff, Botsford & Teo, 2014; Welch, Porter &
Rechisky, 2021) of Chinook salmon stocks.

Genetic stock identification (GSI) has increasingly become available for Pacific salmon,
including Chinook salmon, and sampling and laboratory efforts starting in the 1980s have
yielded numerous datasets for the species. Genetic stock identification is a general term
encompassing a variety of methods of genetic analysis, including the use of markers such as
allozymes, mitochondrial DNA,microsatellites, and single nucleotide polymorphisms, with
the common aim of distinguishing stocks or population units (Grant et al., 1980; Utter &
Ryman, 1993; Shaklee et al., 1999;Cronin et al., 1993; Banks et al., 2000;Narum et al., 2008).
Individuals from distinct source populations of anadromous fish species, including Pacific
salmon, are intermixed in the ocean, and GSI is a means to identify the natal origin of those
fish and inform management of populations with varying levels of conservation concern.
Although GSI frequently has been applied to salmonid fish species (Flannery et al., 2010;
Dann et al., 2013; Satterthwaite et al., 2015; Jensen et al., 2021; Beacham et al., 2022), the
same techniques are applied to varied non-salmonid and non-fish species (Bolker et al.,
2007; Hasselman et al., 2016; Scribner et al., 2022; Henriksson et al., 2023). A strength of
GSI data for species with strong genetic differentiation among populations, relative to
tagging-based identification alternatives, is that it can be used to identify the origin of
individuals sampled without a reliance on tagged, and typically hatchery, fish and therefore
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potentially improve information about populations that have not been tagged (e.g., wild
salmon populations of conservation concern) (Hess et al., 2014; Satterthwaite et al., 2014).

As both CWT and GSI have been used separately to inform the relative abundance
and distribution of salmon stocks for decades, it is surprising that there have been no
completed, large-scale efforts to formally combine information from CWT and GSI and
inform both of these stock attributes (see Pacific Salmon Commission (2007) for proposed
analyses). Reported integrations of CWT and GSI data largely have been confined to
regional applications informing escapement or fishery-specific harvest (Korman et al.,
2011; Bernard et al., 2014; Barclay et al., 2019). Here we present a first attempt to leverage
the relative strengths of each data type by building joint models that can utilize both
data types and endeavor to improve estimates of marine abundance and distribution
for a small number of Chinook salmon stocks. During model construction and testing,
we encountered a number of significant technical challenges that we were unable to
entirely and satisfactorily overcome. Such challenges are not unexpected in constructing
complicated integratedmodels, andwe describe both the successes and failures encountered
during model building and testing. Importantly, we describe additional data needs and
assumptions that will be necessary to smoothly integrate CWT and GSI information in the
future. We view this paper as a roadmap that can be used to help guide future investigators
interested in advancing the use of CWT and GSI for salmon biology and management.

To understand how linking GSI and CWT data can improve estimates of ocean
distribution and abundance, we construct our joint CWT and GSI model using Chinook
salmon data for four, fine-resolution stock groupings fromCalifornia and southern Oregon
with particular management and conservation relevance. These four stocks represent a
range of CWT information availability (from sparse to abundant) and provide a venue
for understanding the relative value of adding GSI information to existing CWT-based
models. CWT and GSI datasets for these stocks previously have only been analyzed
separately (Satterthwaite et al., 2013; Bellinger et al., 2015; Satterthwaite et al., 2015). We
build upon previous state-space modeling efforts that relied primarily on CWT recoveries
(Shelton et al., 2019; Shelton et al., 2021) and add GSI information to estimate the marine
spatial distributions for both hatchery- and natural-origin fish from the four selected
Chinook salmon stocks. Model results provide refined estimates of spatial distribution
for selected stock groupings, novel estimates of stock abundances over time, and insights
into the strengths and weaknesses of conducting this type of joint modeling. We expect
this joint model provides a foundation for more expansive analyses that include more
stocks, life history types, and datasets. Understanding the ocean spatial distribution and
abundance of multiple stocks simultaneously is valuable to informingmixed-stock fisheries
management to target healthy stocks while avoiding weak ones (O’Farrell & Satterthwaite,
2015), understanding spatial portfolio effects and dynamics in abundance for different
ocean areas (Sullaway, Shelton & Samhouri, 2021), and quantifying trophic interactions,
including the prey needs of charismatic megafauna (Stewart et al., 2021).
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MATERIALS & METHODS
Methods overview
We aim to provide the first model to formally integrate information from (1) large-
scale, long-term CWT programs and (2) more recently developed monitoring based
on GSI sampling of fisheries catches, to derive estimates of marine distribution and
abundance for Chinook salmon. We first describe the CWT-based model structure
developed in Shelton et al. (2019) and Shelton et al. (2021) before describing the additional
GSI-associated components, including incorporation of GSI mixture observations, stock-
specific age structure, freshwater run size, and total marine fisheries catches. Several of
these components act as model constraints to address challenges in integrating CWT and
GSI data sources into a single, joint model.

CWT-based (CWT-only) model structure
We first present the model structure and data of the CWT-based state-space model,
described in detail in Shelton et al. (2021), which served as the foundation for subsequently
integrating GSI data. In this model, we estimate the spatio-temporal dynamics of tagged
releases ofChinook salmon fromdistinct stocks, using a state-spacemodel that distinguishes
biological processes from population observations. We track each CWT release group
(i.e., juvenile salmon reared in a hatchery and released together) from initial release
abundance (ranging between 9,000 and 3.5million) through final escapement for spawning.
We describe the corresponding age classification schedule in Table S1.1. Patterns in CWT
recoveries from fisheries-dependent and fisheries-independent sampling in marine and
freshwater environments provide information on four biological processes: (a) themortality
of fish prior to spring of age 2; (b) fishing mortality by age and ocean region among fleets;
(c) spatial distributions of stocks among discrete ocean regions; and (d) age-specific
departure of fish from the ocean due to maturation and spawning. The model compares
model-predicted CWT recoveries to observed recoveries across releases, times, and regions
to find parameters that minimize the distance between predictions and observations.

In a departure from previous modeling efforts (Shelton et al., 2019; Shelton et al., 2021),
we reduced the number of modeled stocks, releases, and ocean regions to facilitate the
subsequent integration of GSI data and focus comparisons across stocks of primary interest.
We followed Shelton et al. (2019) in assuming spatial distributions of stocks did not vary
annually. We tracked the population dynamics of 284 tagged groups of Chinook salmon
from between 1979 and 2018, which resulted in 82,542 observations of CWT catch (Table
S2.1). The selected four stocks were fall-run Chinook salmon from California’s Central
Valley (code: SFB), coastal rivers and streams south of Klamath River to the Russian River
(CAC), Klamath and Trinity Rivers (KLT), and coastal rivers and streams in northern
California and southern Oregon, south of the Elk River and north of Klamath River
(NCASOR). These stocks reflect finer resolution groupings than those specified in previous
analyses and largely map onto the structure of both managed Evolutionarily Significant
Units(ESUs) and baseline reporting groups used in GSI (Seeb et al., 2007; Clemento et
al., 2014; Shelton et al., 2019; Shelton et al., 2021). We modeled distribution along the
U.S. west coast, divided into 8 ocean regions (i.e., Monterey (MONT), San Francisco
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Bay (SFB), Mendocino (MEN), Northern California (NCA), Southern Oregon (SOR),
Northern Oregon (NOR), Columbia River (COL), and Washington (WAC); see Fig. 1)
due to limited availability of GSI data north of WAC; we rarely observed CWT recoveries
for the four focal stocks north of WAC (Table S2.5; see also Shelton et al., 2019; Shelton
et al., 2021). We incorporated three additional years of CWT recovery data compared
to previous analyses (2016–2018; Shelton et al., 2021) to maximize overlap between the
temporal coverage of CWT and GSI sampling (Fig. 2). Finally, we changed the definition
of seasons spring and winter to better match patterns of fishery harvest (Supplemental
Information S1). We implemented the statistical model in Stan (Stan Development Team,
2022) as structured in R (rstan v2.21.2; R Core Team, 2023; Stan Development Team, 2023).
Full details on model structure and data for this and other portions of the model are
provided in Supplemental Information S1.

Integrated CWT- and GSI-based (CWT+GSI) model structure
In addition to tracking the abundance and distribution of focal stocks using hatchery-
derived CWT release groups, we separately track the abundance and distribution of total
populations from each of the focal stocks (i.e., including hatchery- and natural-origin fish).
More specifically, we treated and tracked all fish ‘‘released’’ (i.e., out-migrated) into the
marine environment in a given year and from a given stock as a single total release group.
Tracking total release groups is necessary for us to link model processes to GSI data because
GSI provides information on the composition of all fish, not just tagged fish. These new
estimates also expand our inference to provide insights into the abundance of a given stock
at a given time and place. We only track these total release groups starting at the spring
of age 2 (i.e., after any juvenile mortality occurs following initial entry into the ocean),
as we lack sufficient data on total out-migrating smolt abundances. Estimation of life
history processes for the total release groups is based in part on GSI data to inform relative
stock composition in marine fisheries. Integrating GSI data into the model simultaneously
estimates shared life history parameters for CWT and total release groups and provides
estimates of spatial distribution and abundance reflective of fish both with and without
CWTs.

We incorporated individual assignment data from dockside GSI sampling of recreational
landings from California in 1998–2002 and GSI sampling of commercial catch from
California, Oregon, andWashington in 2006-2014 into the model to inform the abundance
and distribution of total release groups; GSI sampling from commercial fisheries relied
on voluntary participation and data collection by fishermen (Satterthwaite et al., 2014;
Bellinger et al., 2015; Satterthwaite et al., 2015; Fig. 2; Supplemental Information S2). Our
use of individual assignment probabilities, rather than raw genotype data, to generate
GSI observations was intended to reduce computation requirements and facilitate use
of publicly available GSI datasets; however, we emphasize that we used all individual
probability-of-group-membership data for each sampled fish, and not just maximum
assignment probability, to generate unbiased estimates of stock composition (Koljonen,
Pella & Masuda, 2005). In total, we included GSI data spanning 139 unique region-
season combinations for two fisheries (i.e., commercial troll, recreational), including a
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Figure 1 Map of the study area, discrete coastal regions, and some natal spawning rivers of modeled
Chinook salmon stocks. The map is unique, was not reproduced from existing, copyrighted geospatial
data or publications, and the background hillshaded bathymetry in the main panel was sourced from
NOAA National Centers for Environmental Information (2022).

Full-size DOI: 10.7717/peerj.16487/fig-1

total of 63,018 Chinook salmon sampled for GSI. We selected these datasets based on
their spatial and temporal coverage and available sample sizes for characterizing fishery
composition. Relative availability of GSI and CWT data varies among stocks; for stocks
with more extensive CWT tagging efforts like SFB, CWT observations greatly outnumber
GSI observations, while there were similar numbers of CWT and GSI observations for rarer
and less supplemented stocks like CAC (Fig. 2).

Similar to our treatment of CWT data, we compared predicted patterns of stock-specific
fishery catch to observed stock compositions from GSI sampling. However, in contrast to
CWT observations that provide information on the specific age of recovered fish, GSI data
only provide information on relative contributions of stocks to the mixture of sampled
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Figure 2 Summary of CWT and GSI data observations, based on presence/absence of data only, by
stock, region, season, and year.

Full-size DOI: 10.7717/peerj.16487/fig-2

fish (e.g., approximately 12 of 200 sampled fish in a given region, season, and year are
assigned to stock SFB). Furthermore, GSI data can include genetic assignments for stocks
other than the four focal stocks (i.e., non-focal stocks like Columbia River Chinook salmon
stocks); these can contribute substantially to GSI sampling in ocean regions progressively
further north. Our model structure accounts for these complexities. We also note that the
GSI reporting group for SFB includes Feather River spring-run fish along with late-fall
fish and the KLT reporting group includes both Klamath River fall- and spring-run fish,
due to limitations in the available GSI baselines (Seeb et al., 2007; Clemento et al., 2014).
Therefore, to an extent, GSI information will reflect information on more than strictly
fall-run fish for these two stocks. However, fall-run is numerically dominant for both
stocks (Pacific Fishery Management Council, 2020).

To incorporate GSI mixture observations in our model structure, we compare the
expected proportional contributions of each focal stock to fisheries harvest to observed GSI
data using a zero-and-one inflatedDirichlet regressionmodelwith estimated overdispersion
(Jensen et al., 2022). This model structure allows for zero and non-integer GSI observations
of focal stocks—that is, instances in which none or all the observed fish derive from a
given stock—in addition to an overdispersion term that implicitly allows the model to
weight the importance of GSI data relative to competing data sources, including CWT data
(i.e., greater overdispersion, as measured by a smaller overdispersion parameter, indicates
reduced model weighting of GSI data).

To calculate expected proportional contributions of each focal stock to harvest, we first
obtain expected catches for a given stock r, region l, season s, year c, and gear g (µ1,l,s,c,r,g )
by summing expected catches across total release groups representing all available ages.
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Release group-specific expected catches already are estimated in the model as a function
of group abundance, spatial distribution, and fishery mortality rate. We use the total
number of GSI sampled fish and summed number of fish assigned to focal stocks F using
GSI to estimate the expected proportion of sampled catch comprised of focal stocks
(p2,l,s,c,F ,g ), then estimate the total expected catch across all stocks µ1,l,s,c,g by dividing
the expected catch summed across all focal stocks (µ1,l,s,c,F ,g ) by this expected proportion
(µ1,l,s,c,g =µ1,l,s,c,F ,g/p2,l,s,c,F ,g ). This expansion is necessary to account for the fact that
we onlymodel catches for four focal stocks but total fisheries catch often includes additional
stocks. Finally, we estimate the expected proportional contribution of each focal stock r to
total harvest by dividing expected stock-specific catch µ1,l,s,c,r,g by µ1,l,s,c,g .

Because the complete model struggled to converge, we implemented several additional
model constraints. In the absence of release abundance data for total release groups (e.g.,
number of out-migrating smolts in a given year), we constrained estimates of total release
abundances to biologically feasible values using the following data: (1) annual estimates
of stock-specific run size (i.e., the number of mature adults that enter freshwater to
spawn) when available, (2) estimates of total fishery landings by season, region, and fishery
type, and (3) within-model estimates of CWT release group abundances. First, using
total release groups within the model, we obtained the expected number of fish entering
freshwater across all ages for each stock in a given stock and year; we then minimized
the distance between these numbers and independent estimates of run size generated
from assorted survey data using a lognormal likelihood with fixed standard deviation
values (Supplemental Information S2). Second, we compared total expected catch for
recreational and commercial fisheries for all seasons and regions from 1998–2014 (i.e.,
µ1,l,s,c,g ) to corresponding independent estimates of landings using a normal likelihood
and a fixed coefficient of variation (Pacific Fishery Management Council, 2019). To deal with
seasons, regions, and years without the corresponding GSI data necessary to estimate total
expected catch (i.e., no data to estimate the proportion of focal stocks in expected catch,
p2,l,s,c,F ,g ), we estimated these proportions hierarchically using a logit-normal likelihood,
expected mean proportions of focal stocks in each region, and an estimated standard
deviation. The hierarchical structure facilitates borrowing of information from seasons,
regions, and years with the necessary GSI data to directly estimate p2,l,s,c,F ,g . Third, to
further constrain estimates of abundance and improve model convergence, we specify the
abundance of total release groups as the sum of the expected number of CWT-tagged fish
(i.e., already estimated internally in the model and informed by known CWT release sizes
and CWT fisheries recoveries) and the modeled number of non-CWT-tagged fish (i.e.,
including both untagged hatchery- and natural-origin fish); this functionally establishes
the CWT abundance as the lower bound of total abundance and reduces the occurrence
of unrealistically low abundance estimates for some release groups. Finally, the model
allows process variability in estimates of CWT and total release group abundances: we
constrained the process variability to be identical for every release (i.e., either CWT or
total) associated with the same stock and brood year, based on the implicit assumption
that effects of population drivers not included in our model are shared by releases from
the same stock and brood year.
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Exploration of synthetic age structure (CWT+GSI+Age)
Based on persistent challenges in achieving model convergence for estimates of total release
group abundances for the CWT+GSI model (see Results), we added an exploratory set of
age-structure constraints to the model by providing synthetic samples of ages. Specifically,
for a given season, year, and stock, we provide counts of aged fish, generated from the
product of fixed age proportions (i.e., either ages 2–5 or 3–5, depending on season) and a
specified number of sampled fish, as part of a new multinomial likelihood below.

A.,s,c,r ∼Multinomial
(
p3,.,s,c,r

)
.

Specifically, counts of aged fish for each season s, year c, and stock r, or A.,s,c,r , are used
as a form of prior to constrain the proportional contributions of each release age to the
total stock abundance, or p3,.,s,c,r . We provide artificial counts of aged fish due to a lack
of systematic data collection of age structure for catches in the marine environment. We
estimated fixed age proportions using reconstructed total Klamath River Fall Chinook
ocean abundances (Pacific Fishery Management Council, 2021) that we assumed applied
to CAC and NCASOR as well; we provide separate proportions for SFB based on both
expectations of skew to younger ages and expert judgment (Carvalho et al., 2023). We
recognize these proportions are coarse, imprecise values, and are primarily intended to
demonstrate the value of improved data availability in the future. Furthermore, although
the inclusion of CWT data in the KLT cohort reconstruction, alongside our use of CWT
recoveries in this model framework, could represent double-weighting of these data to
some extent, we note that a large fraction of age data for the reconstruction was obtained
from unmarked fish. We anticipated this synthetic age structure would constrain model
flexibility in estimating abundances of total release groups and subsequently improve
model convergence.

Model analyses
We first ran the model with only CWT-based catch observations (CWT-only) using the
previously described number of stocks, release groups, regions, and years of data, and we
characterized estimates of seasonal ocean distribution for each stock. We then ran the
model with both CWT- and GSI-based catch observations, but no synthetic age structure
(CWT+GSI ), and characterized both estimates of seasonal ocean distributions and total
abundances for each stock. Finally, we ran the model with CWT- and GSI-based catch
observations, in addition to synthetic age structure (CWT+GSI+Age), and characterized
improvements in model convergence in addition to any changes in estimates of seasonal
ocean distribution and abundance.

We ran each model with six chains, 400 burn-in iterations, and 1,400 retained iterations.
We primarily characterized model convergence using R-hat (Gelman & Rubin, 1992;
Vehtari et al., 2020).

Statement on data availability
Raw and processed data, including CWT and GSI catch observations, estimates of run size,
and estimates of landings, in addition to the corresponding processing scripts, are available
at Zenodo (DOI 10.5281/zenodo.8057794) or by contacting the authors.
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RESULTS
GSI observations
In the CWT+GSI and CWT+GSI+Age models, we included GSI observations from every
region, years 1998–2002, 2006–2007, and 2009–2014, and spring, summer, and fall seasons
across both commercial troll and recreational hook-and-line fisheries (Supplemental
Information S2). Lack of consistent fishing effort in winter resulted in a lack of winter-based
GSI data, and observations from the more northern regions COL and WAC were relatively
rare. For the GSI observations from the commercial troll fishery (Fig. 3), the SFB stock
generally predominated observed catch, particularly in southern spatial regions. In some
seasons and years, the KLT stock contributed themost to sampled catch among focal stocks;
this generally occurred in either the NCA or SOR regions. The total contribution of the
four focal stocks to sampled catch generally decreased with increasing latitude, consistent
with their spawning locations. We present GSI observations from the recreational fishery
in Fig. S2.12; these observations were restricted to California regions, years 1998–2002, and
were again predominated by the SFB stock.

CWT-based (CWT-only) model
We observed satisfactory model convergence for the CWT-only model (R̂< 1.01 for all
parameters). Detailed model diagnostics for this and subsequent models are shared in
Supplemental Information S3.

We present estimates of seasonal spatial distribution for the four focal stocks, including
95% credible intervals, in Fig. 4. The estimated spatial distributions of SFB correspond well
to those estimated in Shelton et al. (2019) and Shelton et al. (2021), as expected, but also to
other qualitative estimates of ocean distribution (e.g., Weitkamp, 2010; Satterthwaite et al.,
2013; Bellinger et al., 2015; Satterthwaite et al., 2015). This stock generally occurs between
approximately Morro Bay (CA) and Cape Falcon (OR), and is particularly concentrated
in the MONT, SFB, and MEN regions. The spatial distribution estimated for CAC is the
most comprehensive one for this stock to date, based on spatial extent and the amount
of utilized data, and exhibits a more northerly distribution than SFB, predominantly
occurring in the MEN and NCA regions. Estimated distributions for KLT are concentrated
more northerly still, with the greatest proportion of the stock generally occurring in the
NCA region. Finally, the NCASOR stock had the most northerly distribution, with the
greatest proportion of the stock occurring in the NCA and SOR regions; the estimated
distribution also is the most comprehensive to date for this stock. Estimates of spatial
distribution for CAC and NCASOR have wider credible intervals than those estimated for
SFB and KLT, consistent with the lower data availability for these stocks. There were minor
but inconsistent differences in seasonal distributions for each stock, further supporting the
inclusion of seasonality in the model structure.

CWT- and GSI-based (CWT+GSI) model
The CWT+GSI model exhibited some challenges in model convergence (median R̂= 1.01,
R̂< 1.01 and R̂< 1.1 for 48% and 88% of tracked parameters). Most issues in model
convergence were associated with new estimates of abundance for total release groups
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Figure 3 Summary of GSI data from commercial troll fisheries. Points represented observed mixture
proportions by stock for each combination of spatial region, season, and year. Point size (N) indicates the
total number of sampled fish within each stratum.

Full-size DOI: 10.7717/peerj.16487/fig-3

(Table S3.1). In particular, the initial abundance atmodel age 1, before application of fishing
or natural mortality, were not fully estimable; there are many combinations of abundances
for individual cohorts that can produce abundances similar to the GSI observations (see
Supplemental Information S3 and below for more details and discussion).

Estimated ocean distributions for the CWT-only and CWT+GSI models were generally
similar, with increasingly northerly distributions for stocks with more northerly spawning
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Figure 4 Estimated spatial distributions of the four modeled stocks by season. Shades of gray in each
facet represent the total number of recovered CWTs that contributed to estimates of spatial distribution.
Error bars represent 95% credible intervals.

Full-size DOI: 10.7717/peerj.16487/fig-4

distributions (Fig. 4). However, ocean distributions differed between models for some
stocks and seasons. For SFB, the CWT+GSI model estimated a more southerly distribution
in winter-spring and lower occurrence in MONT in fall, based on non-overlapping 95%
credible intervals, relative to the CWT-only model; all other estimated distributions had
overlapping intervals. Similarly, although all credible intervals overlapped for CAC, the
CWT+GSI model indicated a more southerly distribution in winter-spring and summer
and a more northerly distribution in fall. Estimated spatial distributions were highly
similar among models for KLT, as all credible intervals again overlapped. For NCASOR,
the CWT+GSI model indicated ocean distributions were generally more diffuse but did
not show any consistent shifts to either the north or south. Credible intervals for NCASOR
did not overlap between models for several regions in both summer and fall. The width of
credible intervals did not differ appreciably between the CWT-only and CWT+GSI models.

New parameter estimates from the CWT+GSI model include total estimates of stock
abundance over time. Because we estimated abundances of total release groups over time,
we also were able to calculate estimates of total stock abundance over time for years 1998–
2014 (i.e., abundances of all tracked ages). We present example estimates of regional and
seasonal stock abundances for 2002 and 2009 (Fig. 5). These years represented convenient
example years with very different estimates of stock contributions and total abundance
to illustrate the value of these new parameter estimates. Estimated stock abundances in
2002 were high, exceeding 800,000 fish across focal stocks for some regions in spring and
summer, and were dominated by the SFB stock. In 2009, estimated stock abundances
were noticeably lower and more heterogeneous across stocks. Relative distributions of
total fish abundance among regions also varied by year as a function of proportional stock
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Figure 5 Estimated stock abundances and proportional contributions to total abundance across fo-
cal stocks by season, year, and region for the CWT+GSI model. We selected 2002 and 2009 to highlight
contrast in total abundance and stock-specific proportional contributions to abundance.

Full-size DOI: 10.7717/peerj.16487/fig-5

abundances; fish were distributed more northerly overall when northern origin stocks like
KLT were predominant. Although not shown, we also can present estimates of uncertainty
in stock abundances via 95% credible intervals as part of standard model output. These
estimates represent novel historical estimates of relative and total abundances for an
assemblage of both rare and abundant Chinook salmon stocks, with the obvious caveat
that the model struggled to converge in estimating these values.

The CWT+GSI model also generated some model parameter estimates that differed
noticeably from those estimated by the CWT-only model. Specifically, the CWT+GSI
model estimated higher juvenile mortality rates and fishery mortality rates than CWT-only,
with subsequent effects on estimates of CWT and total release group abundances over time
(Supplemental Information S3). This shift in estimated mortality rates shows instability
in estimation of these mortality terms as we add data and model complexity, and suggests
that further investigation may be required to identify which set of mortality rates is most
defensible.
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Synthetic age structure (CWT+GSI+Age) model
We added synthetic age structure to the CWT+GSI model in an attempt to improve model
convergence, particularly for estimates of total release group abundances over time. The
CWT+GSI+Age model still exhibited challenges in overall model convergence (median
R̂= 1.01, R̂< 1.01 and R̂< 1.1 for 49% and 90% of tracked parameters). Addition of age
structure-related model constraints did improve convergence for estimates of abundance
for total release groups, as well as other parameters, but estimates of initial abundance
at model age 1 before application of fishing or natural mortality again failed to converge
(Table S3.2). The fact that the synthetic age structure did not resolve all issues in model
convergence is unsurprising, based on our specification of fixed age proportions from a
KLT-based cohort reconstruction. Failure to improve convergence for initial total release
group abundances indicates additional data or model constraints still are required to
resolve these parameter estimates.

Estimates of ocean distribution for focal stocks did not differ appreciably between the
CWT+GSI and CWT+GSI+Age models, suggesting that difficulty in model convergence
for some GSI-based parameters did not substantially affect estimates of spatial distribution
for models that include GSI-based components (Fig. S3.26). Additionally, estimates of
total stock abundances by region, season, and year also did not differ substantially (Fig.
S3.27). The only parameter we observed to change with the inclusion of synthetic data was
the overdispersion term for GSI, which indicated less weight is applied to GSI data for the
CWT+GSI+Age model.

DISCUSSION
The primary objective of our analysis was to develop a novel integrated statistical model
to reconcile several fisheries dependent data sources (CWT, GSI) that have been used to
inform the spatial distribution of Chinook salmon populations in the Northeast Pacific
Ocean. Our model using only CWT data converged and provides the most comprehensive
estimates of marine distribution for Central Valley, California Coastal, Klamath, and North
California and Southern Oregon fall-run Chinook stocks to date, based on our inclusion of
CWT data from new release years and hatcheries. Estimated spatial distributions generally
matched expectations based on spawning distributions and earlier modeling efforts (e.g.,
Weitkamp, 2010; Shelton et al., 2019), and uncertainty in estimated distributions reflected
available sample sizes of recovered CWTs. Our integrated model that combined GSI data
with CWT data appeared to be more problematic, however. In a variety of sensitivity
analyses designed to constrain parameters or model assumptions (e.g., using estimates
of run size, commercial and recreational landings), our joint model was not able to
converge. Parameters that remained particularly challenging to estimate were total release
group abundances. Because total release group abundances are only informed by GSI
data (i.e., CWT data only inform the abundance of a known number of tagged fish and
tagged fish make up an unknown fraction of the total number fish) and GSI does not
provide observations of age structure, there are many possible combinations of total
release abundances that can yield similar aggregate catches to those observed via GSI
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in commercial and recreational fisheries. When we added age-structure constraints to
our model with synthetic data (CWT+GSI+Age model), we observed generally improved
model fits but the model still did not result in satisfactory convergence. The inability of the
synthetic age structure to entirely resolve convergence issues is not entirely unsurprising
because the age informationmay conflict with true time-varying age distributions; however,
improvement in fitting with the inclusion of age structure suggests that pairing age and
GSI information may be necessary to allow for estimation of salmon abundance for
individual Chinook salmon cohorts. Both the CWT+GSI and CWT+GSI+Age models
produced similar estimates of marine spatial distribution and abundance, suggesting that
the inclusion of age structure information does not substantially change information about
distribution. Integrated estimates of spatial distribution and abundance with uncertainty,
including those presented here, are relatively novel for Chinook salmon and can inform
more effective mixed-stock fisheries management and conservation efforts.

We observed several differences in estimated spatial distribution between the models
excluding and including GSI data. Models with GSI data showed a general trend of
estimating greater proportional occurrence of stocks in southern regions (i.e., MEN,
SFB, MONT) in winter-spring and summer; trends were less clear in fall. One possible
explanation for the shift in estimated marine distribution is that untagged natural-
and tagged hatchery-origin fish exhibit different persistent marine distributions and
accounting for natural-origin fish with GSI data partially captures these differences. This
explanation may contrast prior observations of limited differences in coarse-scale stock
composition estimated using either GSI or CWTs (Weitkamp, 2010; Sharma & Quinn,
2012; Satterthwaite et al., 2015; Satterthwaite & O’Farrell, 2018), although differences in
distributions among proximate populations at finer resolutions suggest single population
indicators of distribution may not completely represent stock dynamics (Beacham et al.,
2020; Freshwater et al., 2021). Alternatively, the inconsistent temporal coverage of GSI
data, relative to the broader coverage for CWT data, means that GSI sampling could have
occurred during periods of time inwhich ocean distributionswere generallymore southerly.
The magnitude of the differences in spatial distribution is similar to temperature-based
differences in estimated spatial distribution for SFB between 1997 and 2008 (Shelton et
al., 2021). Accounting for interannual variability by including environmental conditions
in modeling, similar to the inclusion of temperature effects in Shelton et al. (2021), could
help resolve the probable cause for the shifted distributions. The fisheries responsible
for generating the current GSI data also could have influenced distribution estimates.
Commercial and recreational fisheries can produce different estimates of stock composition
and distribution, as commercial fisheries frequently operate in deeper water and at greater
distances from ports (Satterthwaite & O’Farrell, 2018). We expect locating and adding new
sources of GSI data from different time periods, fisheries, and spatial locations can inform
how much variability in estimates of spatial distribution may be attributed to coverage of
GSI data. Finally, we note directional biases in GSI assignments (e.g., mis-assigned fish
from one group preferentially are assigned to another group), in addition to the necessary
inclusion of low abundance spring-run groups in some of the presumably fall-run stocks,
have the potential to influence model results. GSI-based estimates of KLT distribution
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in particular may not completely capture the distribution of fall-run Klamath River fish
specifically, given estimated differences in fine-scale distribution between spring- and
fall-run fish (Satterthwaite & O’Farrell, 2018); however, our estimates of KLT distribution
were more consistent between model versions than those for other stocks. For SFB,
the inclusion of more southerly-distributed late-fall Chinook (Satterthwaite et al., 2013)
might affect the distribution estimated compared to fall run alone, though fall run greatly
outnumbers late fall (Pacific Fishery Management Council, 2020).

New estimates of life history characteristics, including fishery mortality rates, release-
specific juvenile mortality rates, and population-specific spatial distribution, ocean
abundance, and spawner run size, represent important contributions to ongoing Chinook
salmon fisheries management. The most comprehensive estimates of spatial distribution
to date for the four modeled stocks represent varying improvement from previous
understanding, with the greatest improvement for rarer stocks with limited marking
and tagging programs (i.e., CAC and NCASOR). Previous estimates of distribution
for all stocks include relative patterns in CWT recoveries prior to 2005 (Weitkamp,
2010), and a subset of CWT recoveries from our focal stocks (i.e., SFB, CAC, KLT,
NCASOR) were included in previous distribution modeling (Shelton et al., 2019; Shelton
et al., 2021). Previous estimates of CAC and KLT distribution in California and Oregon
waters were generated using GSI in years 2010 and 2011 (Satterthwaite et al., 2014),
estimates of SFB distribution were generated using CWT recoveries between 1983 and 2007
(Satterthwaite et al., 2013), and distributions of fall-run and spring-run Klamath River fish
were generated using CWT recoveries between 1983 and 1989 (Satterthwaite & O’Farrell,
2018). Additionally, the integrated model allows estimation of stocks’ ocean abundance
by season, year, and region between 1998 and 2014, informed by numerous sources of
empirical data including fisheries landings, CWT recoveries, GSI sampling, and run size
estimates. Estimated abundances exhibited extensive variability in stock abundances and
composition over time, in accordance with similar studies that utilized either GSI or
CWT data to generate estimates of stock composition and/or standardized catch rates
and inform abundances and distributions of Chinook salmon (e.g., Satterthwaite et al.,
2015; Moran et al., 2018; Freshwater et al., 2021). These estimates of abundance, paired
with estimates of distribution, offer the potential for improvement in mixed-stock fisheries
management in Pacific Northwest, particularly for the spatial allocation of fishing effort to
target healthy stocks while avoiding more vulnerable stocks (e.g.,O’Farrell & Satterthwaite,
2015). Finally, we again note that adding GSI data to these models shifted the estimates
of juvenile and fishery mortality rates, and this uncertainty has implications for resolving
potential bottlenecks in population productivity. For example, increased juvenile and
fishery mortality rates in the models with GSI data necessarily correspond with higher
starting ocean abundances of stock release groups and suggest ocean mortality could
play a larger role in regulating population trends relative to early life history processes in
freshwater. However, we emphasize we did not have the necessary data to resolve which
set of mortality estimates is best supported.

These novel, direct estimates of ocean abundances have the potential to inform fisheries
management. Current estimates of stock abundance for use in fisheries management
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and planning for many stocks are generated by the Pacific Fishery Management Council
(PFMC) using the Fishery Regulation Assessment Model (FRAM), which analyzes CWT
recoveries relative to a historical ‘‘base period’’ using a deterministic framework (Pacific
Fishery Management Council, 2008; https://framverse.github.io/fram_doc/). The type of
empirical, integrated model structure we present here represents a possible alternative
or complementary method for fisheries modeling and forecasting, particularly if we can
resolve ongoing challenges in model fitting. Our model quantifies uncertainty, which is
neglected in most U.S. West Coast salmon management (Satterthwaite & Shelton, 2023),
and is not dependent on the assumption that hatchery-origin fish are good proxies for
nearby naturally-produced fish (Pacific Salmon Commission, 2007). This model framework
may be particularly useful for generating metrics of pre-fishing abundance and distribution
for future forecast models to capture.

Numerous supplemental data sources and possible model constraints have the potential
tomove themodel closer to satisfactory convergence. First, obtaining independent estimates
of broodyear-specific outgoing smolt or juvenile abundance would greatly facilitate model
convergence, given the observed challenge in resolving estimates of initial stock abundance.
Empirical estimates rarely exist for most stocks (there are exceptions however, such as daily
smolt trap data collected by WDFW; Nelson et al., 2019; Anderson et al., 2020), but we
envision stock-specific population dynamics models or stock-recruitment relationships
could be utilized to generate estimates of smolt abundance. Second, systematic collection of
age structure information for GSI sampled fish could be used to inform relative abundances
of broodyears for specific stocks and improve model convergence. Specifying synthetic
age structure constraints (i.e., constant among years, shared among stocks) based on a
single stock-specific cohort reconstruction markedly improved model convergence in this
application (i.e., CWT+GSI+Age), but we expect age structure to vary annually among
stocks and years as a function of broodyear strength and environmental conditions. The
age data ideally would be obtained using age readings based on either scales or otoliths.
Data collection of this type, paired with GSI sampling, is rare, and the accuracy of scale
age readings in particular is typically assessed and validated using only hatchery-origin
fish (McNicol & MacLellan, 2010; Kormos, Palmer-Zwahlen & Miller, 2011; Harris, 2020).
Alternatively, annual estimates of in-river age structure for spawning adults, either just
for fish with CWTs or (ideally) all spawners, would allow us to obtain better estimates of
age-specific return rates for each stock and further improve estimates of broodyear-specific
ocean abundances. However, as is often the case, these data are rarely both systematically
collected and publicly available (e.g., exceptions include data from Columbia River PIT
tagging, Chulik et al., 2017; weir counts, Echave, 2009; PBT methodology, Beacham et al.,
2021a). Similarly, comprehensive annual estimates of the expected total number of in-river
CWTs for each CWT release group would be immensely helpful. These annual data,
combined with the known starting release abundance, would improve estimates of fishery
mortality rates over time and help resolve estimates of juvenile and fishery mortality that
varied between models with and without GSI data. Detailed escapement data capable of
generating these estimates exist for some stocks and years, although public availability
varies (e.g., Kormos, Palmer-Zwahlen & Low, 2012). Some in-river data are available for
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many of the stocks included in the Pacific Salmon Commission’s Chinook salmon models
(e.g., Pacific Salmon Commission, 2023), but none of the four stocks included here are
included in those models and only some of the freshwater CWT recoveries used by the PSC
are in the RMIS database (O. Shelton, 2023, pers. comm.). Finally, improved estimates of
total run size for all stocks also would improve realized model convergence. We expect
our input estimates of run size for rarer stocks (i.e., CAC, NCASOR) represent substantial
under-estimates of true escapement based on inconsistent sampling methodology and
survey implementation; this expectation is supported by the observation that model
estimates of run size consistently exceeded input estimates for these stocks (Fig. S3.14).

Our approaches make a series of important assumptions about the biology of Chinook
salmon and the connection between our observations and that biology. While we view
our assumptions and model implementation as reasonable, we think it is important to be
explicit about our approach for transparency and to allow future researchers to build on
or depart from our approach with an understanding of our reasoning. First, in order to
address data limitations and facilitate model convergence, we fixed a number of parameters
to pre-specified values, including uncertainty for estimates of PFMC landings, stock-specific
escapement age-structure, and run size estimates as well as constraints on spatial structure.
For many of these parameters, we lacked the necessary data to directly estimate uncertainty
within the existing model structure. Selecting alternative values for uncertainty parameters
has the potential to modify model results by changing the confidence we have in competing
data sources, while different spatial constraints may change fine-scale patterns in ocean
distribution. Similarly, we again note that assuming spatial distributions of stocks did
not vary annually fails to capture previously estimated differences in distribution as a
function of temperature (Shelton et al., 2021); this assumption may have constrained
expected variability in seasonal distributions and influenced estimation of other life
history parameters. Our decision to reduce the spatial extent of the study to 8 ocean
regions, spanning California to Washington, also could affect direct comparison of spatial
distributions to those presented in previous studies (Shelton et al., 2019; Shelton et al.,
2021). However, we found very few CWTs from modeled stocks are recovered north
of Washington state (Table S2.5), and we expect model estimation and convergence
would prove more difficult if we attempted to include all 17 regions with only sparse
CWT data. Finally, the decision to model total release groups and subsequently relate
catches and abundances associated with these groups to GSI observations added a great
deal of complexity and challenge in achieving model convergence; however, given the
existing structure of the CWT-only model, this approach represented the most feasible
and logically consistent method of integrating the two data sources in a single framework.
There were no clear connections between estimates of CWT release group abundances
and GSI observations, in the absence of additional information on the ratio of tagged to
untagged fish, as CWT release group abundances provide little information on overall
stock abundances.
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CONCLUSIONS
We developed and described the first completed model capable of integrating GSI and
CWT data to estimate Chinook salmon stock distribution and abundance, building from
a state-space model based on only CWT recoveries. Models resulted in new estimates
of stock distribution and ocean abundance, using information from both hatchery-
and natural-origin fish, for four fall-run Chinook salmon stocks from California and
southern Oregon. Estimates of stock distribution represent the most comprehensive to
date, especially for rarer stocks like California Coastal Chinook with limited records of
CWT recoveries; California Coastal Chinook in particular are a threatened stock whose
management poses ongoing challenges in the absence of sufficient data (O’Farrell et al.,
2023). As expected, given the challenges of fitting complex integrated models, we did
observe several challenges in model convergence that were not entirely resolved with
supplemental data and constraints. Proposed modifications to fisheries data collection
efforts have the potential to resolve these challenges. We expect these modeling advances
will provide a useful foundation for future efforts to integrate CWT and GSI data and
inform Pacific salmon management.

The described integrated model can be readily extended to inform the biology and
management of other Chinook salmon stocks. Obtaining and incorporating GSI data from
waters north of Washington (e.g., British Columbia, Alaska) would allow distribution
and abundance modeling for all fall-run stocks in the Northeast Pacific Ocean (e.g.,
Guthrie III et al., 2017; Beacham et al., 2021b). Leveraging older GSI data sources based on
protein electrophoresis and allozyme markers, instead of microsatellites or SNPs, may also
increase temporal coverage of GSI data (e.g., Milner et al., 1985; Utter et al., 1987; Winans
et al., 2001). Furthermore, the model can be expanded to include other Chinook salmon
run types (e.g., spring-run, winter-run) by modifying modeled life history processes and
assumptions. We anticipate the integrated modeling approach will be particularly valuable
for these other run types, which generally occur at lower abundances and yield fewer CWT
recoveries. Introducing modeling of environmental covariates like temperature also can
allow for inter-annual variability in stock distributions and help clarify whether differences
in estimated distributions between models with and without GSI data can be attributed to
temporal differences in sampling efforts. These advances and modifications will improve
the value of this model to ongoing fisheries management, which already represents a
comprehensive framework for integrating numerous data sources and providing robust
estimates of stock distribution and abundance.
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